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Abstract: Alarm filtering is a structurally simple, easy to implement, and effective method to
improve industrial alarm systems. Owing to these advantages, alarm filters are widely used in
industrial applications. Linear and quadratic are the main types of alarm filters. Although a
linear filter can detect mean changes, it can not be used to detect variation changes. However,
a quadratic filter can be used to detect both types of changes. Although this remarkable
feature of quadratic filters has been addressed in the literature, no explicit performance analysis
is performed yet. So, deriving an analytical solution for quadratic filters is of paramount
importance. To this aim, we propose an analytical method for performance assessment and
design of quadratic filters. On the other side, in industrial applications, many process variables
are acquired. So one challenge is to identify the process variable that provides the best alarm
performance after filtering. We will derive an analytical solution to this problem. Furthermore,
we will prove that this optimal solution is a function of the statistical feature of historical data
and alarm filter structure.
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1. INTRODUCTION

In process industries, alarm management systems are of
prominent importance to maintain safe operation and
satisfy a certain level of performance. An alarm system
can be viewed as a classifier that notifies operators if
the process is working abnormally. Ideally, we expect no
false and missed alarms. However, in reality, numerous
false alarms are distracting operators that degrade overall
proficiency. The main concerns for analysis and design
of industrial alarm systems are addressed in Wang et al.
[2015], Kourti [2002] and Nimmo [1999]. The problem of
unnecessary alarms is not only limited to industries; a
study conducted by Lawless [1994] surprisingly shows that
over 94% of alarm warnings in intensive care units are
clinically worthless. Hagenouw [2007] reported that false
alarms impede clinical care in anesthesia environments.
Arrue et al. [2000] stated the problem of false alarms
in forest-fire detection. Abe et al. [2009] conducted some
experiments to explore the effects of missed alarms on
a driver’s trust in the alarm system. Inspired by this
great demand to improve alarm systems, many researchers
have proposed effective methods such as dead-bands (see
Naghoosi et al. [2011]), delay timers (see Zang et al.
[2015]), latches (see Kondaveeti et al. [2011]) and various
filters (see Gustafsson and Palmqvist [1997]).

In a basic alarm system, a process variable is compared
with a constant alarm threshold, and an alarm is raised
if the process variable exceeds the threshold. The alarm
system can be improved by adding a filter, and now the
filtered data can be compared by a new alarm threshold.

? This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

The main types of alarm filters are linear and quadratic
filters, which have been introduced in Cheng et al. [2011].
Quadratic filters have a significant advantage over lin-
ear filters. In a quadratic filter, both mean and variance
changes can be detected, but a linear filter can only iden-
tify the mean change. In Cheng et al. [2011], the authors
introduced an algorithm to find the optimal filter weights.
However, we need an analytical solution to facilitate the
design procedure and provide intuition about the impact
of filter weights on the performance of the alarm system.
On the other side, in industrial applications, numerous
process variables are measured by deployed sensors in the
plants. So the problem is to determine the process variable
that is the best representative in case of fault occurrence.
Geng et al. [2005] addressed this problem by ranking alarm
variables based on a fuzzy clustering algorithm. So we also
need an analytical solution to identify the optimal process
variable for filtering.

In this paper, we exploit an alarm index, proposed
by Roohi et al. [2019], to evaluate the performance of
quadratic filters. We provide an analytical expression for
alarm performance of two classes of quadratic filters. Fur-
thermore, we propose a new score for appraising process
variables to indicate the optimal choice. Via an example,
we illustrate that this optimal choice may be changed by
modifying the filter formulation.

2. PROBLEM FORMULATION

Let x[k], k ∈ {0, 1, 2, · · · }, indicate a process variable that
is measured in a plant. Suppose that samples of this
process variable are independent, identically distributed
and follow
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X ∼
{
N (µx,n, σ

2
x,n), k < Tab,

N (µx,ab, σ
2
x,ab), k ≥ Tab,

(1)

where Tab corresponds to the time of abnormality occur-
rence, σ2

x,ab (resp. µx,ab) and σ2
x,n (resp. µx,n) are corre-

sponding to the variance (resp. mean) of x in abnormal and
normal operation modes, respectively. Now let y[k], k ∈
{0, 1, 2, · · · }, denote the output samples of a quadratic
alarm filter. The formulation of a general quadratic filter
of order N (see Cheng et al. [2011]) is given by

y[k] = xQxT , (2)

where Q is a symmetric matrix and

x ,
[
x[k] · · ·x[k −N + 1] 1

]
.

The alarm system decides weather to raise an alarm or not
based on what follows:{

alarm, y[k] > yth,

no alarm, otherwise,

where yth indicates the alarm threshold which is designed
by the operator using the historical information of the
plant. According the results of Roohi et al. [2019], we
define the alarm performance index as

A(y) ,
σ2
y,ab + σ2

y,n

(µy,ab − µy,n)2
, (3)

where σ2
y,ab (resp. µy,ab) and σ2

y,n (resp. µy,n) are corre-

sponding to the variance (resp. mean) of y in abnormal and
normal operation modes, respectively. A smaller index rep-
resents a better distinguishability of normal and abnormal
operation modes. Intuitively, when the mean difference of
abnormal and normal modes is large, and variance of each
mode is small, it is easier to separate these two modes by
using a constant threshold. The following lemma holds for
the introduced alarm index.

Lemma 1. Suppose that A(y), A(yc) and A(ym) are as-
sociated with y[k], y[k] + c and my[k] where c ∈ R and
m ∈ R− {0} are known and constant. It follows that

A(y) = A(yc) = A(ym). (4)

Proof. The proof is straightforward from the definition of
the alarm index. 2

Intuitively, if a constant value is multiplied by, or added
to, a process variable, the trip point can be modified
accordingly to compensate it. According to Lemma 1,
without loss of generality, we can fix the upper-left and
lower-right elements of Q to 1 and 0, respectively. Now
we impose some constraints on the structure of filters and
study two special cases.

2.1 Case I: diagonal Q

Suppose that the matrix Q has the following structure

Q =

[
Q1 0
0 0

]
.

Here, Q1 is a diagonal matrix and defined as

Q1 =


1 0 · · · 0

0 q1
. . .

...
...

. . .
. . . 0

0 . . . 0 qN−1

 , (5)

where qi’s are non-negative weights. In this case, the filter
can be reformulated as

y[k] = x2[k] +

N−1∑
i=1

qix
2[k − i].

For this problem, our goal is to evaluate A(y), given the
statistical information of x.

2.2 Case II: a more general case

Inspired by Cheng et al. [2011] we assume the following
structure for Q:

Q2 =


1 0 · · · 0 α0

0 q1
. . .

... α1q1
...

. . .
. . . 0

...
0 . . . 0 qN−1 αN−1qN−1
α0 α1q1 . . . αN−1qN−1 0

 . (6)

Considering this expression, one may rewrite the filter
equation as

y′[k] = (x[k] + α0)2 +

N−1∑
i=1

qi(x[k − i] + αi)
2 + c,

where c = −
(
α2
0+

N−1∑
i=1

α2
i qi

)
. It is worth noting that c does

not affect the alarm performance of filter (see Lemma 1)
and can be discarded in further analysis. Now the problem
is to find an explicit expression for A(y′).

3. PERFORMANCE ASSESSMENT OF CASE I

For this problem, the filter can be rewritten as x1Q1x
T
1 ,

where
x1 ,

[
x[k] · · ·x[k −N + 1]

]
. (7)

To evaluate the alarm performance index, we first need
the following lemma, which is introduced by Provost and
Mathai [1992].

Lemma 2. Consider the quadratic form P1(x1) = x1Q1x
T
1,

where Q1 is a symmetric matrix and X1 ∼ N (µ,Σ), where
Σ is a positive definite matrix. The rth moment of P1(x1)
for r ∈ {1, 2} is expressed as

E[P1(x1)]r =
r−1∑
r1=0

(
r − 1

r1

)
g(r−1−r1)

r1−1∑
r2=0

(
r1 − 1

r2

)
g(r1−1−r2), (8)

where

g(j) = 2jj!
(
tr(Q1Σ)j+1 + (j + 1)µ(Q1Σ)jQµT

)
,

for j ∈ {0, 1, 2, · · · }.

By using this lemma, the mean and variance of P1(x1) is
determined as

E[P1(x1)] =

(
0

0

)
g(0)

= tr(Q1Σ) + µQ1µ
T , (9)

and

Var[P1(x1)] = E[P1(x1)]2 −
(
E[P1(x1)]

)2
=

((
1

0

)
g(1) +

(
1

1

)(
g(0)

)2)− (0

0

)(
g(0)

)2
= 2tr(Q1Σ)2 + 4µQ1ΣQ1µ

T . (10)
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According to the equation in (2), it follows that

Σx1,n = σ2
xn
IN ,

Σx1,ab = σ2
x,abIN ,

where Σx1,n and Σx1,ab are corresponding to the normal
and abnormal operation modes, respectively, and IN is an
identity matrix of size N . Considering the equation in (5),
we have

tr(Q1Σx1,n) = σ2
x,n

(
1 +

N−1∑
i=1

qi

)
,

tr(Q1Σx1,ab) = σ2
x,ab

(
1 +

N−1∑
i=1

qi

)
,

(11)

and

tr(Q1Σx1,n)2 = σ4
x,n

(
1 +

N−1∑
i=1

q2i

)
,

tr(Q1Σx1,ab)2 = σ4
x,ab

(
1 +

N−1∑
i=1

q2i

)
.

(12)

Furthermore, according to the equation in (2) we have

µx1,n = µx,n [1 1 · · · 1] ,

µx1,ab = µx,ab [1 1 · · · 1] ,
(13)

where µx1,n and µx1,ab are corresponding to the normal
and abnormal operation modes, respectively. By perform-
ing some algebraic manipulations on the equations in (9),
(11) and (13), the mean of filtered data is determined as

µy =


(σ2

x,n + µ2
x,n)
(

1 +

N−1∑
i=1

qi

)
, N ≤ k < Tab,

(σ2
x,ab + µ2

x,ab)
(

1 +

N−1∑
i=1

qi

)
, k ≥ Tab +N.

(14)
Moreover, by manipulating the equations in (10), (11) and
(13), we have

σ2
y =


(2σ4

x,n + 4µ2
x,nσ

2
x,n)
(

1 +

N−1∑
i=1

q2i

)
, N ≤ k < Tab,

(2σ4
x,ab + 4µ2

x,abσ
2
x,ab)

(
1 +

N−1∑
i=1

q2i

)
, k ≥ Tab +N.

(15)
Now by substituting (14) and (15) into the definition of
alarm index (see the equation in (3)) we have

A(y) =(
2(σ4

x,n + σ4
x,ab) + 4(µ2

x,nσ
2
x,n + µ2

x,abσ
2
x,ab)

)(
1 +

N−1∑
i=1

q2i

)
(
σ2
x,n + µ2

x,n − (σ2
x,ab + µ2

x,ab)
)2(

1 +
N−1∑
i=1

qi

)2 .

(16)

Hence, the impact of filter weights on the alarm perfor-
mance index is given by

A(y) ∝
1 +

N−1∑
i=1

q2i(
1 +

N−1∑
i=1

qi

)2 . (17)

Now by setting
[
∂A
∂q1

∂A
∂q2
· · · ∂A

∂qN−1

]
= 0, the optimal alarm

weights are determined as qi = q, ∀i ∈ {1, 2, · · · , N − 1},
where q can be any positive real number.

Remark 1. Although the best performance (in the view of
(3)) can be achieved by setting all qi’s to one, there are
some cases that operators decide to change the weights
due to some circumstances. An example is when operators
assign higher weights to the newer samples of a process
variable to reduce detection delay. For this condition, (17)
can be exploited as a straightforward measure for the
accuracy of alarm systems. Adding other constraints gives
rise to a new optimization problem.

The effect of statistical parameters of raw data x on the
alarm performance of filtered data is obtained as

Ay(x) ∝
(
2(σ4

x,n + σ4
x,ab) + 4(µ2

x,nσ
2
x,n + µ2

x,abσ
2
x,ab)

)(
σ2
x,n + µ2

x,n − (σ2
x,ab + µ2

x,ab)
)2 .

(18)
This expression can be utilized as a measure to help
operators for exploring historical data and determining the
optimal process variable for filtering. In this paper, we call
Ay(x), the alarm score. A smaller alarm score corresponds
to a better alarm performance after filtering.

4. PERFORMANCE ASSESSMENT OF CASE II

The quadratic filter associated with Case II can be refor-
mulated as

P2(x) = x

[
Q1 α

T

α 0

]
xT ,

where x = [x1 1], x1 is introduced by the equation
in (7), and α = [α0 α1q1 . . . αN−1qN−1]. Furthermore,
x1α

T = αxT
1 , thus

P (x) = x1Q1x
T
1 + 2αxT

1 . (19)

By performing some modification on a lemma presented
by Provost and Mathai [1992], we introduce the following
lemma.

Lemma 3. Considering the same assumptions that are
made in Lemma 2, the rth moment of P2(x) for r ∈ {1, 2}
is determined by replacing g(j) with g

(j)
∗ in (8), where

g
(j)
∗ =


1

2
j!

N−1∑
i=1

(2λi)
j+1 +

(j + 1)!

2

N−1∑
i=1

b∗i
2(2λi)

j−1, j ≥ 1,

1

2

N−1∑
i=1

(2λi) + 2αµ+ µQ1µ
T , j = 1.

Here, 
λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λN−1

 = Q1Σ,

and

b∗ , (b∗1, b
∗
2, · · · , b∗N−1) = 2

(
Σ

1
2α+ Σ

1
2µQ1

)
.

According to this lemma, the mean and variance of P2(x)
is determined as

E[P2(x)] = tr(Q1Σ) + 2αµ+ µQ1µ
T , (20)
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and

Var[P2(x)] = E[P2(x)]2 −
(
E[P2(x)]

)2
=

((
1

0

)
g
(1)
∗ +

(
1

1

)(
g
(0)
∗
)2)− (0

0

)(
g
(0)
∗

)2
= 2tr(ΣQ1)2 +

N−1∑
i=1

b∗i
2. (21)

Now let b∗n be corresponding to the normal operation
mode. Then

b∗n = 2σx,nα+ 2σx,nµ


1 0 · · · 0

0 q1
. . .

...
...

. . .
. . . 0

0 . . . 0 qN−1

 .
Hence {

b∗i,n = 2σx,n(αi + µx,n), i = 0,

b∗i,n = 2qiσx,n(αi + µx,n), i ≥ 1,
(22)

where b∗i,n’s are elements of b∗n. The same result holds
for the abnormal operation modes (b∗i,ab). By substituting

(11) and (13) into the equation in (20) and performing
some algebraic manipulations, the mean of filtered data is
obtained by

µy′ =

µy′,n = (σ2
x,n + µ2

x,n)
(

1 +

N−1∑
i=1

qi

)
+

2µx,n

(
α0 +

N−1∑
i=1

αiqi

)
, N ≤ k < Tab,

µy′,ab = (σ2
x,ab + µ2

x,ab)
(

1 +

N−1∑
i=1

qi

)
+

2µx,ab

(
α0 +

N−1∑
i=1

αiqi

)
, k ≥ Tab +N.

(23)

The variance of filtered data is determined by substituting
(12) and (22) into equation (21):

σ2
y′ =

σ2
y′,n = 4σ2

x,n

(
(α0 + µx,n)2 +

N−1∑
i=1

q2i (αi + µx,n)2
)

+

2σ4
x,n

(
1 +

N−1∑
i=1

q2i

)
, N ≤ k < Tab,

σ2
y′,ab = 4σ2

x,ab

(
(α0 + µx,ab)2 +

N−1∑
i=1

q2i (αi + µx,ab)2
)

+

2σ4
x,ab

(
1 +

N−1∑
i=1

q2i

)
, k ≥ Tab +N.

(24)

So the alarm index corresponding to the second scenario
is given by

A(y′) =
σ2
y′,ab + σ2

y′,n(
µ2
y′,ab − µ2

y′,n

)2 , (25)

where σy′,ab, σy′,n, µy′,ab, and µy′,n are given by the
equations in (23) and (24). Now consider a special case

where αi = α, ∀i ∈ {1, 2, · · · , N}, and let ỹ′ indicates the
filter output, which is represented by

ỹ′[k] = (x[k] + α)2 +

N−1∑
i=1

qi(x[k − i] + α)2. (26)

Under this assumption, we can obtain the mean and
variance of ỹ′ as

µỹ′=



(
σ2
x,n + µ2

x,n + 2αµx,n

)(
1 +

N−1∑
i=1

qi

)
, N ≤ k < Tab,

(
σ2
x,ab + µ2

x,ab + 2αµx,ab

)(
1 +

N−1∑
i=1

qi

)
, k ≥ Tab +N.

and

σ2
ỹ′ =

(
4σ2

x,n(α+ µx,n)2+ 2σ4
x,n

)(
1+

N−1∑
i=1

q2i

)
, N ≤ k < Tab,

(
4σ2

x,ab(α+ µx,ab)2+ 2σ4
x,ab

)(
1+

N−1∑
i=1

q2i

)
, k ≥ Tab +N.

Now the relation of qi’s and the alarm performance index
is determined as

A(ỹ′) ∝
1 +

N−1∑
i=1

q2i(
1 +

N−1∑
i=1

qi

)2 .
This expression is similar to the result that we derived
for Case I, so the optimal qi’s can be obtained similar to
the one in Case I. By performing some calculations, the
optimal value for α is determined as

αopt =
Π1Π2 −Π3Π4

Π1Π4 −Π5Π2
, Π1Π4 6= Π5Π2, (27)

where

Π1 = 2(σ2
x,abµx,ab + σ2

x,nµx,n),

Π2 = (σ2
x,ab + µ2

x,ab)− (σ2
x,n + µ2

x,n),

Π3 = (σ4
x,ab + σ4

x,n) + 2(σ2
x,abµ

2
x,ab + σ2

x,nµ
2
x,n),

Π4 = 2(µx,ab − µx,n),

Π5 = 2(σ2
x,ab + σ2

x,n).

Hence, the effect of statistical parameters of process vari-
able x on the alarm performance of filter data ỹ′ is ex-
pressed as

Aỹ′(x) ∝
Π5α

2
opt + Π1αopt + Π3

(Π4αopt + Π2)2
. (28)

5. NUMERICAL EXAMPLE

In this section, we study an example to demonstrate
the effectiveness of the proposed method and verify the
theoretical analysis. Consider a plant with three process
variables that are sampled at discrete times. The process
variables are indicated by x1[k], x2[k] and x3[k], k ∈
{1, 2, · · · , T} and are available for the alarm system to
detect abnormal operation of the plant. Now assume that

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

515



a fault occurred in the plant at sample k = Tab. Mean and
variance of the process variables can be estimated as

µxj ,n =
1

Tab

Tab−1∑
i=0

xj [k],

µxj ,ab =
1

T − Tab + 1

T∑
i=Tab

xj [k],

and

σ2
xj ,n =

1

Tab

Tab−1∑
i=0

(xj [k]− µxj ,n)2,

σ2
xj ,ab =

1

T − Tab + 1

T∑
i=Tab

(xj [k]− µxj ,ab)2,

where j ∈ {1, 2, 3}. We assume that after estimation
of mean and variance, the following distributions are
obtained:

X1 ∼
{
N (0.2, 0.42), k < Tab,

N (1, 12), k ≥ Tab,

X2 ∼
{
N (0.4, 0.32), k < Tab,

N (1, 0.42), k ≥ Tab,

X3 ∼
{
N (0.1, 0.42), k < Tab,

N (2.1, 1.42), k ≥ Tab.
Now we use the equations in (18) and (28) to obtain the
appropriate process variable for fault detection. The result
is presented in Table 1.

Table 1. Alarm score of process variables

x1 x2 x3

Ay(x) 1.87 0.92 1.10

Aỹ′(x) 1.63 0.69 0.46

In this table, a smaller alarm score represents a better
alarm performance after filtering. This result indicates
that for the filter structures of Case I and Case II, we
should select x2 and x3, respectively. Furthermore, we
can infer that x1 is not the right choice for either filter
structure. Now let y1, y2 and y3 denote the filtered data
corresponding to the process variables x1, x2 and x3,
respectively. This result can also be concluded from Fig. 1
which is obtained by conducting a Monte Carlo simulation.
Fig. 2 shows the alarm index of filtered data for Case I.
Details of the studied scenarios are presented in Table 2.
From Fig. 2, we can see that the best performance (in
terms of the equation in (3)) can be archived by setting
all qi’s to one. However, considering new constraints (see
Remark 1), another scenario may be a good candidate. In
all scenarios, the analytical result captures well the Monte
Carlo simulation.

For Case II, the obtained αopt for each process variable is
presented in Table 3.
The simulation result of Fig. 3 verifies this analysis.
Finally, Fig. 4 and Fig. 5 show time trends of x2 and y2,
respectively. By comparing the histograms of x2 and y2,
we conclude that the filter reduced the overlapped area of
normal and abnormal operation modes. This implies that
the separation of these two modes can be achieved with
higher accuracy after filtering.

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 1. Simulation result for various filter orders, where
qi = 1, ∀i ∈ {1, 2, · · · , N − 1}, and α = αopt.

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Simulation result of A(y) where qi’s are selected
according to Table 2.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2

0

0.5

1

1.5

Fig. 3. Analytically evaluated optimal α (using the equa-
tion in (27)) and simulation result for various choices
of α with N = 3.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

516



Table 2. Simulation scenarios

Scenario Filter weights

1 All set to 1

2
Set according to an arithmetic sequence with

initial term 1 and common difference 1/N

3
Set according to a geometric sequence with

initial term 1 and common ratio 0.6

4
Set according to a geometric sequence with

initial term 1 and common ratio 0.2

Table 3. Optimal α for process variables

x1 x2 x3
αopt 1.31 -6.64 -4.93

Fig. 4. Time trend and histogram of x2.

Fig. 5. Time trend and histogram of y2 (filtered version of
x2 according to the scenario 1 with N = 3).

6. CONCLUSION

This paper addressed the problem of optimal quadratic
filter design for industrial alarm management systems. We
derived an explicit solution for the alarm performance
of quadratic filters. We introduced a new score, which
can be utilized to help plant operators to determine an

appropriate process variable for alarm purposes. We also
demonstrated that for different filter structures, this opti-
mal choice might be different. The analysis of this paper
can be combined with other alarm performance indices
(e.g., alarm detection delay) to satisfy the requirements of
various applications. It can also be served as a stepping
stone to assess and design other forms of nonlinear alarm
filters.
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