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Abstract: A non-linear quarter car vehicle model is used in this study, for developing an active suspension 

control algorithm. The control method used is optimal sliding mode control, along with feedback 

linearization technique for compensating the nonlinear aspects of the plant. In addition to the work in recent 

literature that applies these control methods, estimation of the static suspension deflection; i.e. vehicle 

sprung mass is performed. Through simulation results, it is shown that correct information of vehicle 

sprung mass, compared to taking it as a constant parameter in control design, improves the performance of 

the controller. This in turn, reduces the sprung mass acceleration level, and enhances ride comfort. 
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1. INTRODUCTION 

Ride comfort is among the most important assessment criteria 

regarding automobiles and buses today. The current trend is 

usage of semi-active [Savaresi et al. 2010] and active 

suspension systems [Liu et al. 2014] for improving ride 

comfort. 

Active suspension systems have a separate actuator, that can 

add or subtract force, independent of the passive components. 

In that sense, they are superior to semi-active ones [Gysen et 

al. 2008]. 

Different control methods are applied for active suspension 

control purpose. Among these are H∞ control [Wang et al. 

2015], backstepping [Savaş ve Baştürk 2017, Schwarzgruber 

et al. 2010] and sliding mode control [Pan et al. 2015]. A 

special version of sliding mode control on the other hand, 

named as “optimal sliding mode control” [Utkin 1992] is very 

suitable for active suspension control purpose. The reason of 

this is that the Eigenvalues of the desired sliding mode motion 

is specified with respect to a cost function. This cost function 

constitutes of weighted wheel travel, suspension deflection 

and sprung mass acceleration, just like the classical linear 

quadratic regulator design. By means, not only a control 

method that is known to be robust against parameter variations 

and unpredicted disturbances is applied but also the weightings 

can be tuned according to the priority of the active suspension. 

There is a recent study by [Chen et al. 2017] that applies this 

technique, along with feedback linearization, for active 

suspension control. In this study, considering a quarter car 

model that is commonly used for suspension control studies, 

five states are fed back within a sliding mode control scheme. 

These are wheel travel, suspension deflection, unsprung and 

sprung mass speeds, and the fifth state is sprung mass 

acceleration. The last state is added to the controller in a very 

similar design scheme to the integrator backstepping with 

cascade connection [Khalil 2002]. It is reported in this study  

 

that the controller performed well in reducing the sprung mass 

acceleration (which is essential for ride comfort), under 

varying sprung mass conditions and tire stiffness values, for 

different road profiles. 

In this work, another source of improvement is analyzed, 

which is knowing the sprung mass correctly for control 

development purpose. If the initial suspension deflection, 

which is a direct representation of sprung mass is not known 

correctly, then there will be three sources of error in 

determining the required control action. The first one is 

obviously due to the Kalman filter, which will use a wrong 

value for the sprung mass. This would cause inaccuracies in 

state estimation, which in turn would reflect on computation 

of the required closed loop control action. Second one is the 

linearizing feedback, which will be given by Equation 7 in 

Section 3 of this work. Again incorrect vehicle mass (or static 

suspension deflection) information would cause feedback 

linearization method to malfunction, which is already 

vulnerable against usage of estimated states. Lastly the 

coefficients of the sliding surface, i.e. the desired Eigenvalues 

of the sliding mode motion would be determined with respect 

to an incorrect transformation matrix; Equation 15 in Section 

3. All these errors in computing the control action would 

deteriorate the controller performance, which may end up with 

an increase in sprung mass acceleration. All these items are 

discussed and detailed in the third section with simulation 

results, considering two different vehicle mass scenarios, after 

describing the system and writing the non-linear state space 

and extended Kalman filter equations in the next section. 

2. QUARTER CAR MODEL WITH NON-LINEAR STATE 

EQUATIONS 

Quarter car model, that is illustrated in Figure 1, is commonly 

applied in semi-active and active suspension control studies 

[Chen et al. 2016]. Representing the suspension deflection vs 
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suspension spring force characteristics in a non-linear fashion 

is more realistic. Also the suspension damper force exhibits a 

non-linear force characteristic; the damping coefficient is 

typically higher during rebound phase compared to bump 

phase [Dixon 2007], as shown in Figure 2.  

 

Figure 1. Quarter car model used for suspension control 

algorithm development 

Equation 1 gives the differential equations of motion for the 

quarter car model shown in Figure 1. 
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where M and m represent one quarter of the sprung mass of the 

vehicle and the unsprung mass associated with a single wheel 

respectively, ks1 and ks2 are the spring stiffness for the linear 

and the non-linear portion of the spring force, kt is the tire 

stiffness of the tire, c is the damping coefficient of the damper, 

g is the gravitational acceleration, dso is the suspension 

deflection at static equilibrium, and Fa represents the 

controlled linear motor force. z0 represents the random road 

profile, zm and zM represent the vertical unsprung, and sprung 

mass motion, respectively. Here the non-linear spring force 

characteristic is emphasized. The values for these parameters 

(except the maximum motor force) were obtained by 

modifying the ones in [Chen et al. 2017], which are listed in 

Table 1 below: 

Table 1. Quarter car model parameters 

Nominal static suspension deflection, dso [m]  -0.15 

Nominal quarter sprung mass, M [kg] 1234 

Unsprung mass, m [kg] 100 

Linear spring stiffness coefficient, ks1 [N/m] 80000 

Non-linear spring stiffness coefficient, ks2 [N/m3] 32000 

Tire stiffness, kt [N/m] 405000 

Max motor force, |Fa| [N] 2703 

 

If one derives the static deflection dso of the sprung mass at 

stationary condition, and dto; the static tire deflection, then the 

following expressions may be written relating the static 

deflections dso and dto with the sprung and unsprung masses: 

 

3

1 2s so s so

t to

k d k d Mg

k d m M g

  

  
                                                     (2) 

For the damping coefficient c, the following expression is used 

to represent typical asymmetrical characteristic of the damper 

force with respect to damper speed in the bump and rebound 

conditions, illustrated in Figure 2. 

  775atan 50 2800
s u

c z z                                          (3) 

 

Figure 2. Typical asymmetrical damper force characteristic. 

Arctangent function is used here to approximate the sign 

function with a differentiable function for controller 

development purposes, such as checking the rank of the 

controllability & observability matrices, as explained in 

[Hedrick and Girard 2015]. 

If Equations 2 & 3 are substituted into Equation set (1) for 

eliminating M from the equations, then one may obtain the 

following expressions for the sprung mass acceleration and the 

unsprung mass accelerations, respectively. 
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(4) 

To write the state space equations, the following state choices 

should be made, that is commonly applied for suspension 

control purposes: 
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So the states are taken as, tire deflection, suspension 

deflection, unsprung and sprung mass speeds. 

The two measurements on the other hand are the two 

acceleration measurements; unsprung and sprung mass 

accelerations. An accelerometer measuring the sprung mass 

acceleration is already a standard in many production vehicles. 

The accelerometer for the unsprung mass is the additional 

hardware in this proposed active suspension control system. 
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With the states defined above, the non-linear state and output 

equations can be formulated as: 
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(6) 

where v1 and v2 represent zero mean white noise processes, 

associated with accelerometer noise, with covariance R1 and 

R2, respectively. The time derivative of the road profile, 
0

z , 

on the other hand, is treated as the process error with 

covariance Q in writing the extended Kalman filter equations 

in the next section. The parameters used for simulation 

purpose, and in the extended Kalman filter algorithm are listed 

in Table 2. 

Table 2. Controller parameters 

Controller sampling rate, milli-second 1 

Accelerometer noise covariance; R1 and R2 [m/s2]2 0.5 

Road profile speed covariance, Q [m/s]2 0.0111 

Static suspension deflection, process noise 

covariance [m]2 
6.25.10-4 

 

3. PROPOSED CONTROLLER 

In this study, by applying the feedback linearization technique 

[Isidori 1995] to avoid the non-linearities in the state 

equations, a sliding mode controller [Utkin et al. 2009] of the 

following form is structured: 
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where (dso)est is the estimated suspension static deflection, and 

1 2 3 4
ˆ ˆ ˆ ˆ, , ,  x x x x represent the estimated states. tanh function is 

used to approximate the sign function of the sliding mode 

controller, to avoid chattering. 

Note that the input Fa affects the output directly, as seen in 

Equation set 6. By means, the relative degree of the system is 

not defined in the usual way (it can be assumed to be zero), 

and the expression given by Equation 7 becomes sufficient to 

linearize the system. The reader is referred to [Chen et al. 

2017] for the details of this derivation. There are two 

differences of this work, compared to the referred study: The 

first one is that the sliding mode controller uses four states, as 

seen in Equation set 6 and Equation 7, instead of adding the 

sprung mass acceleration as the fifth one. The second 

difference is related to the main claim in this paper, as 

mentioned in the Introduction section as well: Correct 

knowledge of dso would improve the effectiveness of the 

sliding mode control. There are three reasons of this: 1) In the 

extended Kalman filter equations that will be introduced next, 

for estimating the four states correctly, correct information of 

dso is needed, otherwise there will be an estimation error. This 

would further degrade the performance of the feedback 

linearization method, which is already vulnerable against 

feedback of estimated states for linearization purpose. 2) The 

linearizing term, given by Equation 7 above, will eliminate the 

nonlinearities in the fourth state equation in Equation set 6, 

only if the estimated dso equals the actual dso. Otherwise, under 

conditions where it is taken as a constant, and no estimation is 

done, the error will cause increases in sprung mass 

acceleration. 3) Due to wrong dso information, the desired 

Eigenvalues of the sliding mode motion will deviate from the 

optimal ones, that are determined by the cost function. This 

will be another source of increase in sprung mass acceleration. 

The Kalman filer is introduced next, and the last two 

aforementioned item will be detailed. 

3.1 Extended Kalman Filter & Controller 

There are two extended Kalman filters utilized in the 

controller: The first one is basically responsible for estimating 

dso, with the controller off. This is to eliminate the errors 

explained above, which will later be quantified by simulation 

results in this section. In addition to the four states given by 

Equation set 6, a fifth state, dso, is introduced. With this, the 

state and output equations with no control action can be 

expressed as: 
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The equations for the extended Kalman filter can be 

summarized as follows, which gives the Kalman gain, state 

estimation covariance, state update, state prediction and 

posteriori covariance, respectively. 
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To initialize the extended Kalman filter, three-point 

initialization method is used [Bar-Shalom et al. 2001]. The dso 

estimation process with this 5 state extended Kalman filter is 

concluded, by checking three variables: P55; the state 

estimation covariance associated with dso, its derivative (P55-

P55z)/ and the derivative of the state estimate itself, (x̂5- x̂5z)/. 
Once these variables fit within pre-specified thresholds, 

correct dso information is obtained and the extended Kalman 

filter is deactivated. This procedure is explained by Figure 3, 

shown below. This figure shows a simulation result, where 

both dso estimation covariance P55, and the derivative of the 

estimate itself dropped below pre-specified thresholds, which 

is highlighted in the figure. Table 3 shows some simulation 

results for this estimation technique, comparing the actual and 

the estimated dso. 

 

Figure 3. Simulation result for dso estimation, where the real 

value is 0.15 m. The estimation, based on pre-specified 

thresholds, is concluded as -0.1495 m, at around three seconds 

after initialization of the algorithm. 

 

Table 3. Five state Kalman filter, dso estimation results 

Actual dso [m] Estimated dso [m] 

-0.15 -0.1495 

-0.175 -0.1766 

-0.2 -0.2084 

 

It should be stated at this point that, in order to increase the 

robustness of this estimation algorithm, numerous simulations 

(not just three cases) should be carried out considering a range 

of realistic dso values. In each of these simulations, the 

aforementioned thresholds should be fine-tuned such that 

these thresholds are affective in estimating all dso values 

correctly, in this range.  

Once dso estimation is finished, the order of the state space is 

reduced back to four states taking Equation set 6 into account, 

this time with the controller on. So the extended Kalman filter 

equations become: 
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with dso treated as a constant now, instead of the fifth state, and 

the control input Fa shows up in the third and the fourth 

equations in Equation set 10 above, multiplied by the control 

gain matrices D and B, respectively, as given in Equation set 

6. 

With the controller expression Equation 7, substituted into 

Equation set 6, and considering that the state estimation errors 

are negligible, the fourth equation; i.e. sprung mass 

acceleration equation becomes: 
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When |dsoest| > |dso|, i.e. when it is estimated wrong, or when it 

is taken as a constant as in [Chen et al. 2017], but the vehicle 

mass changes from the initial condition (very likely to happen 

for a vehicle in a real scenario) then, three things happen, as 

mentioned before: The dso used in the Kalman filter equations 

causes incorrect state estimation. Secondly, the sliding mode 

controller gain K in Equation 11 above will increase in an 

undesired way; specifically, by 34% considering dso = -0.15 m 

but the estimated one (or the constant value used in the 

controller) being -0.2 m, as an example. Lastly, the optimal 

sliding mode controller, specifies the sliding surface 

coefficients in such a way that the Eigenvalues associated with 

the desired sliding mode motion are set incorrectly. Below is a 

numerical example: 

First, with the assumption that dso = dsoest, when the control 

input Fa given in Equation 7 is substituted into the Equation 

set 6, the state space equations are simplified to: 
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where ua = -K tanh [3(Ka1x1+Ka2x2+Ka3x3+Ka4x4)]. When the 

weighting factors of the three important suspension 

parameters, namely the first state wheel travel, second state 

suspension deflection and the fourth state sprung mass speed 

are taken as (the values are modified from [Chen et al. 2017]) 

1

2

3

   0    0    0

0      0    0

0   0     0    0

0   0     0    

Q







 
 
 
 
 
 

                                                       (13) 

1 = 35689; 

2 = 27862;                                                                         (14) 

3 = 10000; 

Then the sliding surface coefficients, are computed by using 

the following transformation matrix M 
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with 
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And with P being the unique solution of the matrix Riccati 

equation as follows: 

(PAM11)
T+PAM11+QM11-(PAM12+QM12)QM22

-1(PAM 12+QM12)
T = 0 

                                                                                            (19) 

The coefficients of the sliding surface can be derived as: 

Ka = [QM22
-1(AM12

TP + QM12
T)   I]M                                   (20) 

when the dso is estimated correct, as -0.15, these values are 

computed as Ka = [0.8516   -1.6692    0.0004    1.0043], and 

this sliding surface corresponds to the following desired 

Eigenvalues of sliding mode motion: 

-1.6837 

-15.5495+61.4277i                                                             (21) 

-15.5495 -61.4277i 

Considering the weighting of the sprung mass speed is reduced 

to half of its value, namely 3 = 5000, then the Eigenvalues 

become: 

-2.4025 

-21.9787+59.1292i                                                             (22) 

-21.9787 - 59.1292i 

In other words, they increase. 

There is a similar effect when the dso is estimated incorrect, for 

instance -0.2 m. When dso = -0.2, then the transformation 

matrix M is computed accordingly, and this ends up with the 

following controller gain Ka = [0.8516   -1.6692    0.0003    

1.0058] and the corresponding desired Eigenvalues of sliding 

mode motion: 

-1.6888 

-20.8764+59.7257i                                                             (23) 

-20.8764 -59.7257i 

In other words, miss-estimating dso makes an effect as if the 

weighting of the sprung mass speed is reduced. This undesired 

outcome contributes to the increase in sprung mass speed 

decay rate, as well. This is the last source of increase in sprung 

mass acceleration. Table 4 shows simulation results 

illustrating how much sprung mass acceleration increase is 

observed due to the aforementioned affects because of 

incorrect dso information that is used in the control algorithm. 

The tabulated acceleration is “ISO 2631 filtered” [ISO 1997]; 

a filter that is derived through experiments to express the effect 

of vertical vibrations on human body. The road profile used for 

the simulations is illustrated in Figure 4. 

The undesired increase in sprung mass acceleration is evident; 

from 0.3619 m/s2 to 0.4101 m/s2; i.e. 13%, due to estimating 

(or taking) it as -0.2084 m whereas the real value is -0.15 m. 

On the other hand, the increase is 4%, from 0.3379 m/s2 to 
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0.3501 m/s2, for incorrect knowledge of -0.2 m whereas the 

real value is -0.175 m. 

 

Table 4. Simulation results comparing correct and 

incorrect dso information 

 

Actual dso [m] Estimated dso [m] 
ISO 2631 filtered RMS 

sprung mass acc. [m/s2] 

-0.15 -0.1495 0.3619 

-0.15 -0.175 0.3857 

-0.15 -0.2084 0.4101 

 

-0.175 -0.1766 0.3379 

-0.175 -0.2 0.3501 

 

Figure 4. Road profile input z0 as a function of time. 

In regard to these results, it may be concluded that taking a low 

value for dso within the control algorithm (regardless of the real 

value) would yield a lower sprung mass acceleration. 

However, in such a case, the sliding surface coefficients; i.e. 

the desired Eigenvalues are computed incorrect, again. Table 

5 shows the effect of taking a lower dso value within the control 

algorithm, on the Eigenvalues. 

Again, with wrong dso information, shown by the third case of 

Table 5 (shown by Equation 21 as well), the Eigenvalues 

reduce compared to the first case where the dso information is 

correct. There is a similar effect on the Eigenvalues when the 

weighting of the suspension deflection, 2, is reduced, as 

shown by the second case of Table 5. Therefore, it may be 

concluded that using a lower dso in the control algorithm, 

compared to the actual one, would generate a tendency 

towards undesired suspension deflection increase. This 

prediction has been checked with simulations. The RMS value 

for the suspension deflection increased by 13%, when the 

actual dso is -0.2 m but the one used in the controller is -0.15 

m, despite a reduction in sprung mass acceleration. 

 

4. CONCLUSIONS 

A potential improvement in the performance of the optimal 

sliding mode controller explained in [Chen et al. 2017] is given 

in this work. The improvement is due to real time estimation 

of the suspension static deflection, i.e. sprung mass. Through 

simulation results, it was shown that the optimal sliding mode 

controller would perform better with the correct sprung mass 

information. This improvement corresponds to 13% and 4% 

lower ISO 2631 filtered sprung mass acceleration, considering 

dso = -0.15 m and dso = -0.175 m, respectively.   

Table 5. Effect of using a lower dso (actual one is -0.2 m) on 

the Eigenvalues of the desired sliding mode motion, for 

different weightings used within the optimal sliding mode 

controller 

 Eigenvalues 

1 = 35689; 

2 = 27862; (dso)est = -0.2; 

3 = 10000; 

-1.6888 

-20.8764 ± 59.7257 

1 = 35689; 

2 = 27862/2; (dso)est = -0.2; 

3 = 10000; 

-1.1872 

 -18.4521 ± 60.7136i 

1 = 35689; 

2 = 27862; (dso)est = -0.15; 

3 = 10000; 

  -1.6837 

 -15.5495 ± 61.4277i 
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