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Abstract: This paper considers the stability of a conveying fluid pipe with nonlinear energy sink
(NES), which is a passive vibration controller. Based on the Galerkin approximation method,
the fourth-order partial differential equation (PDE) model of the conveying fluid pipe-NES
system is converted into an ordinary differential equation (ODE) form. Then, based on the first
order characterization of convexity and energy disturbances technique under the framework of
Lyapunov stability theory, global exponential stability of the conveying fluid pipe-NES system
is obtained.
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1. INTRODUCTION

The conveying fluid pipe is widely applied in industrial
field, such as the system of oil/gas transmission, heat
exchange, hydraulic and so on. However, the excessive
vibration of the pipe caused by the fluid velocity pulsation
and lead to equipment failure.

Studies on dynamic behaviors of conveying fluid pipe have
begun half a century ago by Benjamin (1962). Since then,
the modeling problems of dynamics behavior of conveying
fluid pipe had been extensively studied (Päıdoussis and
Issid, 1974; Semler and Paıdoussis, 1996). Research on the
coupling between pipe and fluid shown that the natural
frequencies of pipe systems are highly dependent on the
velocity of the fluid, which promoted the development
of the dynamic behaviors modeling problem of conveying
fluid pipe (Jin and Song, 2005). Then, Guo et al. (2013)
made a detailed review of the nonlinear dynamics behavior
of conveying fluid pipe and provided a nonlinear model.

Based on the studies of the dynamic behaviors of con-
veying fluid pipe, intense study efforts have been made
to control unreasonable vibration of pipes. These research
are mainly divided into active control and passive control.
The active control requires external force generated by
the actuator such as piezoelectric crystals (Moheimani
and Fleming, 2006), phononic crystals (Wang and Wang,
2018) and other methods (Preumont, 2018) to inhibit the
vibration of the pipe system. Thus, sensors and energy
? This work was supported by the National Natural Science Foun-
dation of China under Grants 61890920, 61890921 and 61773090
and Liao Ning Revitalization Talents Program under Grant XLY-
C1907100 and in part by the Fundamental Research Funds for the
Central Universities under Grant DUT19LAB37.

inputs are also indispensable for the active control. These
factors make the active vibration controller too complex
and limit its application. Different to the active control
method, more and more passive control methods are ap-
plied to absorb or dissipate the vibration energy of the
mechanical structure due to its simpler and more reliable
controller construction. Many passive vibration controllers
have been studied decades years, such as inerter (Siami
et al., 2017) and nonlinear energy sink (NES) (Gendel-
man et al., 2001). Especially, as an essential nonlinearity
structure, the NES can engage in resonance over a very
wide frequency range (Gendelman et al., 2001; Vakakis
and Gendelman, 2001). Then, voluminous studies have
verified the feasibility and effectiveness of NES as a vi-
bration controller, from the theoretical and experimen-
tal perspective (Gendelman et al., 2011). Thereafter, the
NES vibration controller was applied to many engineering
structures, such as flexible wing (Hubbard et al., 2010),
elastic string (Zulli and Luongo, 2015), pipe (Yang et al.,
2014). These studies are demonstrated that the NES can
act as completely and inherently broadband passive vi-
bration controller (Silva et al., 2018). It can be efficiently
and robustly absorb and dissipate the vibration energy
of engineering structure with lightweight and modular
structure. However, for proof process of the stability and
the determination of the stability type of the conveying
fluid pipe systems with the NES controller, it has not
received the necessary attention of the researchers. The
study about the stability at present is only the method
that determines the stability and critical conditions by
obtaining the eigenvalues of the linearized Jacobian matrix
of the motion equation of the system (Yang et al., 2014).
The method of the eigenvalues of the linearized Jacobian
matrix of the dynamics system can only shows the local
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stability of the conveying fluid pipe-NES system, not the
global stability as in the literature (Wu et al., 2014, 2015).
Therefore, it is necessary to study the global stability of
the conveying fluid pipe-NES system.

In this paper, based on the Galerkin approximation
method, the fourth-order partial differential equation
(PDE) model of the conveying fluid pipe-NES system is
converted into a second-order ordinary differential equa-
tion (ODE) system with a nonlinear term, which is the
gradient of a convex function. Then, we establish a Lya-
punov function of the approximate conveying fluid pipe-
NES system based on the first order characterization of
convexity and energy disturbances technique by the func-
tional analysis method. Therefore, we get that the finite
dimensional approximation model of the conveying fluid
pipe-NES system is global exponential stability. Finally,
we verify the overall response characteristics of the con-
veying fluid pipe under the NES controller by a numerical
simulation.

2. SYSTEM MODEL

Considering a conveying fluid pipe that is simply support-
ed at both ends and a passive vibration controller is in-
stalled at the positionD (as shown in the red dashed box in
Fig. 1). The model of this system can be described by the
following PDE form based on the existing research (such
as Guo et al., 2013; Duan et al., 2016):

Fig. 1. Pipe conveying fluid with NES vibration controller.

EI
∂4Y (X,T )

∂X4
+λEI

∂5Y (X,T )

∂X4∂T
+MfV

2 ∂
2Y (X,T )

∂X2
(1)

+MfV
∂2Y (X,T )

∂X∂T
+(Mf +mp)

∂2Y (X,T )

∂T 2
+F (D,T )=0,

where Y (X,T ) is the transverse displacement of the pipe,
EI is the bending stiffness of the pipe, λ is the viscoelastic
coefficient of the pipe, Mf is the mass of the fluid in
the pipe, the mp is the mass of the pipe, V is the flow
velocity of the fluid in the pipe, F (D,T ) is the control
force on the conveying fluid pipe and T is the time variable,
respectively.

The first term in equation (1) refer to the flexural restoring
force; the second term represents the viscoelastic property
of the fluid conveying pipe; the third term is relevant with
the centrifugal force caused by the liquid flows; the fourth
term is relevant with the Coriolis effects; the fifth term
denotes the inertial force of the fluid filled pipe; and the
last term is the passive control force, which means the
coupling between the pipe and the controller.

According to the characteristics of the passive vibration
controller, the motion equation of conveying fluid pipe can
be written as follows:

EI
∂4Y (X,T )

∂X4
+λEI

∂5Y (X,T )

∂X4∂T
+MfV

2 ∂
2Y (X,T )

∂X2

+MfV
∂2Y (X,T )

∂X∂T
+ (Mf +mp)

∂2Y (X,T )

∂T 2

+

{
K
[
Y (d, T )− Y (T )

]3
+ C

[
∂Y (d, T )

∂T
− dY (T )

dT

]}
δ(X −D) = 0,

(2)

where the last term is the detailed form of the control force
F (D,T ). Y (T ) is the the transverse displacement of the
NES vibration controller, mNES is the mass of the NES, K
is the nonlinear(cubic) stiffness of the vibration controller,
C is the damping of the NES system, δ(X−D) is the Dirac
delta function.

The motion equation of NES is

mNES
d2Y (T )

dT 2
+K

[
Y (T )− Y (d, T )

]3
+ C

[
dY (T )

dT
− ∂Y (d, T )

∂T

]
= 0.

(3)

Note that the mass of NES system is lightweight compared
with the total mass of pipe and fluid, that is

mNES

Mf +mp
= ε� 1,

where the ε is a small parameter. Define the following non-
dimensional quantities process

y =
Y

L
, x =

X

L
, y =

Y

L
, t =

T

L2

√
EI

Mf +mp
, d =

D

L
,

α =
λ

L2

√
EI

Mf +mp
, β =

Mf

Mf +mp
, ε =

mNES

Mf +mp
,

v = V L

√
Mf

EI
, k =

KL6

EI
, σ =

L2C√
EI(Mf +mp)

,

(4)

putting them into equations (2) and (3), the dimensionless
forms of conveying fluid pipe-NES system are obtained as
follows:
∂4y(x, t)

∂x4
+α

∂5y(x, t)

∂x4∂t
+v2

∂2y(x, t)

∂x2
+2
√
βv
∂2y(x, t)

∂x∂t

+
∂2y(x, t)

∂t2
+

{
k [y(d, t)− y(t)]

3

+ σ

[
∂y(d, t)

∂t
− dy(t)

dt

]}
δ(x− d) = 0,

(5)

ε
d2y(t)

dt2
+ k [y(t)− y(d, t)]

3

+ σ

[
dy(t)

dt
− ∂y(d, t)

∂t

]
= 0.

(6)

3. PRETREATMENT OF SYSTEM MODEL

The model of conveying fluid pipe-nonlinear energy sink
system given by (5) and (6) is a fourth-order PDE form,
which needs to be transformed into an ODE form by
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utilizing the Galerkin approximation approach to analyze
the stability of the closed-loop system more tractable.
The displacement function of the closed-loop system is
expanded into the following form (see Kheiri et al., 2014;
Ch’ng, 1977):

y(x, t) =

n∑
r=1

φr(x)qr(t), (7)

where φr(x) are the eigenfunctions for the free undamped
vibration of a pipe conveying fluid, qr(t) are the gener-
alized coordinates of the discretized system, and n is the
number of Galerkin approximation terms.

Thus, the following theorem for this closed-loop system
can be obtained.

Theorem 1. Based on the Galerkin-type projection (7),
the fourth-order PDE form (5) and (6) of the conveying
fluid pipe-NES system can be converted into a nonlinear
autonomous system, which is a second-order ODE system

MZ̈ +CŻ +KZ + FN(Z) = 0 (8)

with

Z=

[
q(t)
y(t)

]
∈Rn+1,M=

[
M0 0
0 ε

]
,K=

[
K0 0
0 0

]
,

C =

[
C0 + C̃ C

T

C σ

]
,F =

[
−kφrd

k

]
,M0 = δr,

C0 = αλ4rδr + 2
√
βvbr, N(Z) = (y − φTrdq)3,

K0 = λ4rδr + v2cr, C̃ = σφrdφ
T
rd,C = −σφT

rd,

φr = [ φ1(x) · · ·φn(x) ]
T
,φrd = [ φ1(d) · · ·φn(d) ]

T
,

qr = [ q1(t) · · · qn(t) ]
T
,

(9)

where M , C and K are the mass matrix, damping matrix
and stiffness matrix of the whole system, respectively. The
matrices M0, C0 and K0 represent the mass, damping
and stiffness of the conveying fluid pipe which is a simply
supported pipe at both ends. ε and σ are the matrix of
mass and damping of the controller, respectively, C is the

damping matrix associated with q̇(t) in the controller, C
T

is the damping matrix associated with ẏ(t) in the part
of pipe. N is the basic nonlinear term of the closed-loop
system, F is the nonlinear coefficient of the system. δr, br
and cr are Kronecker products of φr and φr,br and cr,
respectively.

The detailed proof process can refer to the author’s pre-
vious publication Duan et al. (2016). Now, the intractable
fourth-order PDE model (5)-(6) of the conveying fluid
pipe-NES system is transformed into an tractable ODE
form (8).

4. STABILITY ANALYSIS

In this section, we will give stability of the conveying
fluid pipe-NES system. To deduce the stability results, the
potential energy function U(Z) of system (8) is defined as
follows

U(Z) =
1

2
〈KZ,Z〉+

k

4
(φTrdq − y)4. (10)

where the symbol 〈·, ·〉 denotes the Euclidean inner prod-
uct of two vectors in Rn+1. It is easy to check that U(Z)
is a convex function.

According to the definition (10) of U(Z), nonlinear second-
order autonomous model (8) can be written as the follow-
ing form

MZ̈ +CŻ +∇U(Z) = 0, (11)

where ∇U(Z) represents the gradient of potential energy
function U(Z).

To presenting the main stability result for the system (8),
we define a energy functional E(t) and a disturbance
functional W (t) of the system based on (11), as follows:

E(t) =
1

2
〈MŻ, Ż〉+ U(Z), (12)

W (t) = 〈MŻ,Z〉+
1

2
〈CZ,Z〉. (13)

Then, for W (t) we obtain that

W (t) > 〈MŻ,Z〉+
1

2
λminC ‖Z‖22 . (14)

Applying the Young inequality

〈X,Y 〉 > − 1

2θ
‖X‖22 −

θ

2
‖Y ‖22 ,

with θ = λminC , (14) can be converted into

W (t)>− 1

2λminC

∥∥∥MŻ
∥∥∥2
2
− 1

2
λminC ‖Z‖22+

1

2
λminC ‖Z‖22

= − 1

2λminC

∥∥∥MŻ
∥∥∥2
2
> − λmaxM

2λminC

〈Ż,MŻ〉,
(15)

noticing M is a diagonal matrix from (9), hence

W (t) > − λmaxM

2λminC

〈Ż,MŻ〉,

that is

W (t) > −λ
max
M

λminC

E(t). (16)

Now, we provide the primary stability result for the
conveying fluid pipe-NES system (8) based on the first
order characterization of convexity and energy disturbance
technique.

Theorem 2. For system (8), define a Lyapunov function

V (t) = E(t) +
1

ρ
W (t), (17)

with ρ = max
{
λmaxM

λmin
C

, 32λ
max
MC−1

}
. Then, for all t > 0,

0 6 V (t) 6 V (0)e−
1
ρ+p t (18)

where constant p = max
{

(λmaxN )2

(λmax
C

λmin
M

)
, 2

λmaxC

λmin
K

}
, with λmaxM

and λminM are the maximum and minimum eigenvalues of
matrix M , respectively. λminC is the minimum eigenvalue
of matrix C, λminK is the minimum eigenvalue of matrix
K, λmax

MC−1 is the maximum eigenvalue of the product of
matrix M and the inverse matrix of C.

Proof. From (12) of the energy functional of system (8),

Ė(t) can be deduced into the following form

Ė(t)=〈Ż,MZ̈〉+〈Ż,∇U(Z)〉=〈Ż,MZ̈+∇U(Z)〉

= −〈Ż,CŻ〉 6 −λminC

∥∥∥Ż∥∥∥2
2
.

(19)

Next, recalling definition (13) of W (t), it is straightforward

to have the functional Ẇ (t) as follows:
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Ẇ (t)=〈MZ̈,Z〉+〈MŻ, Ż〉+1

2
〈CZ, Ż〉+ 1

2
〈CŻ,Z〉

=〈MZ̈ +CŻ,Z〉+ 〈MŻ, Ż〉.
(20)

Substituting (11) into (20), we have

Ẇ (t) = −〈∇U(Z),Z〉+ 〈MŻ, Ż〉. (21)

Considering U(Z) is a convex function. Hence, using
Theorem 25.1 in Rockafellar (2015), we can obtain that
U(Z) satisfies the following inequality, for all Z ∈ Rn+1,

〈∇U(Z),Z〉 > U(Z). (22)

Combining equation (21) and inequality (22), we have

Ẇ (t) 6 −U(Z) + 〈MŻ, Ż〉. (23)

Then, we obtain that E(t) + Ẇ (t) satisfies the following
inequality by combining (12) and (23),

E(t) + Ẇ (t) 6
1

2
〈MŻ,Ż〉+U(Z)−U(Z)+〈MŻ,Ż〉

=
3

2
〈MŻ, Ż〉 =

3

2
λmaxMC−1〈CŻ, Ż〉,

(24)

Noticingρ>3
2λ
max
MC−1, and substituting (19) in (24) gets that

E(t) + Ẇ (t) 6 −ρĖ(t),

that is

E(t) + ρĖ(t) + Ẇ (t) 6 0. (25)

Through the Young inequality with θ = λmaxC , the follow-
ing inequality is obtained from (13)

W (t) 6
‖MŻ‖22
2λmaxC

+ λmaxC ‖Z‖22

6
1

2

(λmaxM )2

λmaxC

‖Ż‖22 + λmaxC ‖Z‖22 .
(26)

where λmaxC is the maximum eigenvalue of the matrix
C. According to definition (10) of the potential energy
function U(Z), we deduce that

U(Z) >
1

2
λminK ‖Z‖22. (27)

Therefore, energy functional E(t) satisfies

E(t) >
1

2
λminM ‖Ż‖22 +

1

2
λminK ‖Z‖22. (28)

Then, there is a positive real number p that satisfies

1

2
pλminM >

1

2

(λmaxM )2

λmaxC

,
1

2
pλminK > λmaxC ,

such that

W (t) 6 pE(t) (29)

The first term of inequality (25) can be decomposed into
(1 − s)E(t) + sE(t), where s ∈ [0, 1]. And by using the
relationship (29) between W (t) and E(t), inequality (25)
can be written as follows

(1− s)E(t) +
s

p
W (t) + ρĖ(t) + Ẇ (t) 6 0, (30)

which can be further factorized into the following form

(1− s− sρ

p
)E(t) +

sρ

p

[
E(t) +

1

ρ
W (t)

]
+ ρ

[
Ė(t) +

1

ρ
Ẇ (t)

]
6 0.

(31)

Now, set s = p
p+ρ , which implies 1− s− sρ

p = 0. Thus,

ρ

ρ+ p

[
E(t) +

1

ρ
W (t)

]
+ ρ

[
Ė(t) +

1

ρ
Ẇ (t)

]
6 0. (32)

which can be rewritten as V (t)/(ρ + p) 6 −V̇ (t), by
recalling definition of Lyapunov function given in (17).
Therefore, we obtain

V (t) 6 V (0)e−
1
ρ+p t (33)

By applying (16), the Lyapunov function V (t) satisfies

V (t) = E(t) +
1

ρ
W (t) > (1− 1

ρ

λmaxM

λminC

)E(t). (34)

Notice ρ = 3
2max

{
λmaxM

λmin
C

, λmax
MC−1

}
, we have 0 < 1 −

1
ρ
λmaxM

λmin
C

< 1. Recalling the definition (12), we obtain that

E(t) > 0. Therefore, V (t) satisfies that

V (t) > 0. (35)

By combining (33) and (35), we obtain inequality (18),
and the proof of Theorem 2 is completed. 2

Inequalities (18) and (34) in the prove process of Theo-
rem 2, we obtain the following corollary.

Corollary 3. Let κ = V (0)/
(

1− 1
ρ
λmaxM

λmin
C

)
, then the energy

functional E(t) satisfies

0 6 E(t) 6 κe−
1
ρ+p t, for all t > 0, (36)

where V (0) and ρ are given in Theorem 2.

Remark 4:

(1) Lyapunov-based stability criterion (18) of the sys-
tem (8) is obtained during Theorem 2. It is illustrated
that the function V (t) exponentially tends to zero.

(2) Combining (36) in Corollary 3 and (18) in Theorem 2
it is demonstrated that the energy functional E(t)
also obeys the exponential convergence condition. In
other words, the vibration energy of approximation
system (8) is dissipated by the NES to zero in an
exponent form.

Theorem 2 and Corollary 3 show that the conveying fluid
pipe-NES system (5)-(6) is globally exponentially stable.

5. SIMULATION RESULTS

In this section, we will discuss a computational simulation
example to validate the stability proof results of conveying
fluid pipe-NES system in Section 3. The system model was
firstly transformed into an ODE form from a fourth-order
PDE form (5)- (6) during Galerkin method. No analytic
solutions are available to get the transient dynamics.
Therefore, it must be rely on the numerical methods. The
Galerkin method in Section 3 can be well approximated
the amplitude of the displacement y(x, t) (see Yang et al.,
2014; Nechak et al., 2017). Many studies (such as Holmes,
1978; Javadi et al., 2019) have shown that two-order
approximation of equation (7) can ensure its sufficient
accuracy for the conveying fluid pipe simply supported at
both ends. So we take three-term Galerkin approximation,
that is n = 3 in (7) in this section. The initial conditions
of simulation examples are

q̇1(0) = A, q1(0) = q̇2(0) = q2(0) = q̇3(0) = q3(0) = 0,

˙̄y(0) = ȳ(0) = 0
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where a is a constant. And, the boundary conditions of the
conveying fluid pipe are

y(0, t) = ẏ(0, t) = 0, y(1, t) = ẏ(1, t) = 0.

The simulation parameters of conveying fluid pipe and
NES are shown in table 1.

Table 1. The system parameters in simulation

Parameter Description Value

α
The dimensionless viscoelastic coefficient

of pipe
0.001

β
The mass ratio of the mass of fluid in pipe

and the total mass of fluid and pipe
0.8

ε
The mass ratio of the controller
and the total mass of the system

0.1

σ The dimensionless damping of the controller 0.1
k The dimensionless stiffness of the controller 8000

d
The dimensionless installation location

of the controller
0.4

v The dimensionless velocity of fluid in pipe 2

A
The initial distributed velocity

in simulations
0.3

Based on the above initial conditions, boundary conditions
and system parameters, we first show the vibration control
effective of NES.
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(a) without NES
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(b) with NES

Fig. 2. The displacement response y(x, t) of the pipe under
different conditions at fluid velocity v = 2.

The vibration control effective of NES is intuitive validated
by some simulation. Fig. 2(a) show the displacement y(x, t)
of the pipe without control at fluid velocity v = 2. The
result shows that the peak of response after 60s (0.0022)
is still 5.8% of the maximum peak (0.0384). This illustrates
that the pipe is difficult to reach a steady state after
being excited. The displacement response of the pipe with

1

0.8

0.5
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00

10

20

30-0.04

-0.02

0.00

0.02

0.04

R
e
sp

o
n

se

Time(s)
Length

Fig. 3. Visualized comparison of several section displace-
ment response of the conveying fluid pipe under dif-
ferent conditions at v = 2.

NES as a comparison is shown in Fig. 2(b). Based on
the numerical results, we obtain that the peak response
(0.00164) of the pipe has decayed to less than 5% of the
maximum peak (0.036) after 8.1s and the maximum peak
response is also reduced by 6.25% (0.0384 to 0.036). These
results manifests that the introduction of NES not only
accelerate the pipe to reach a steady state but also reduce
the maximum response peak of it. In addition, to explain
the vibration control effect of NES more intuitively, we
compared the displacement of several sections as shown in
Fig. 3. In Fig. 3, the color of the line is used to distinguish
different sections (green line is x = 0.2, red line is x = 0.5
and blue line is x = 0.8) and apply line type to indicate
different conditions (dotted lines denote the response of
pipe without control and the solid lines are the response
of it with NES).

 

Time(s)

 0.025e-0.3t

 Lyapunov Function V(t)

 Energy Functional E(t)

 Disturbance Functional W(t)

Fig. 4. V (t), E(t) and W (t) of the conveying fluid pipe-
NES system at fluid velocity v = 2.

Then, to explain the fast convergence of the displacement
response (as showed in Fig. 2(b) and the solid lines in
Fig. 3), the stability in Section 4 will be examined intu-
itively and analyzed during numerical simulation. Fig. 4
shows the simulation results of the energy functional E(t),
disturbance functional W (t) and Lyapunov function V (t)
of system (8), which are built in Section 4. It is easy to
get the following results from Fig. 4:

(1) Verification of Theorem 2. Based on the hypothe-
ses in Theorem 2, an exponential function (such as
0.025e−0.3t) can be easily built as shows by the pur-
ple dot dash line in Fig. 4. And, it can intuitively
get 0 6 V (t) 6 0.025e−0.3t through the simulation
results, and as the black dotted line and the purple
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dot dash line in Fig. 4. That is, the Lyapunov function
V (t) exponentially tends to 0.

(2) Verification of Corollary 3. It is easy to obtain that
0 6 E(t) 6 V (t) from Fig. 4 and its partial enlarged
view (see the red solid line and the black dotted
line). Namely, the energy functional of the conveying
fluid pipe-NES system also satisfies 0 6 E(t) 6
0.025e−0.3t.

(3) It shows that V (t) and E(t) exponentially tend to 0
as t > 0. After 9 seconds, E(t) and V (t) are very close
to 0 (E(9) = 2.84× 10−5 is 1

792 of E(0) = 0.0225 and

V (9) = 2.8442× 10−5 is 1
868 of V (0) = 0.0247).

These simulation results visually verify the stability. That
is, the approximation system (8) is exponential stability.

6. CONCLUSION

In this paper, we first proved that global stability of the
conveying fluid pipe-NES system with finite dimension-
al approximation was exponentially stable. In order to
achieve the stability, the Galerkin approximation approach
was used to convert the fourth-order PDE model into a
standard nonlinear autonomous form. Then, energy and
disturbance functionals of the approximation system were
carefully constructed relied on a convex function related to
this system. The global exponential stability of the approx-
imate conveying fluid pipe-NES model was obtained based
on the first-order character of the convexity and energy
disturbances technique under the framework of Lyapunov
stability theory. Combining the Galerkin approximation
approach and Remark 4, it can know that the vibration
energy of the original system decays exponentially, that
is, the conveying fluid pipe-NES system can be regard as
exponentially stable. Finally, numerical simulations were
used to verify the results of theoretical.
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Päıdoussis, M.P. and Issid, N. (1974). Dynamic stability of
pipes conveying fluid. Journal of Sound and Vibration,
33(3), 267–294.

Preumont, A. (2018). Vibration control of active struc-
tures: an introduction, volume 246. Springer.

Rockafellar, R.T. (2015). Convex analysis. Princeton
university press.

Semler, C. and Paıdoussis, M. (1996). Nonlinear analysis
of the parametric resonances of a planar fluid-conveying
cantilevered pipe. Journal of Fluids and Structures,
10(7), 787–825.

Siami, A., Cigada, A., Karimi, H., Zappa, E., and Sab-
bioni, E. (2017). Using inerter-based isolator for pas-
sive vibration control of michelangelos rondanini pietà.
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