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Abstract: Polynomial Chaos expansions are among the most popular tools for uncertainty
quantification. In this work, we address surrogate modeling for random dynamical systems
in the frequency domain, where the randomness accounts for uncertainties in system input
parameters. It has been pointed out several times that Polynomial Chaos methods may converge
slowly if such systems operate close to resonances or if the input randomness is large. As a
remedy, we propose to use conformal mappings to enhance the accuracy of Polynomial Chaos
expansions in a certain frequency range. These transformations may enlarge the region of
analyticity of the underlying function to be approximated and hence, improve the cost accuracy
ratio. We will explain the underlying mechanism and derive transformed Polynomial Chaos
expansions which still feature the desired orthogonality properties. The algorithmic development
will be complemented by several numerical examples which demonstrate the effectiveness of the
proposed approach.
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1. INTRODUCTION

Polynomial Chaos (PC) expansions, going back to Wiener
(1938), are powerful tools to propagate uncertainties in
model input parameters to output quantities in engineer-
ing models, see Ghanem and Spanos (2003) as well as
Matthies and Keese (2005). Any second order random
variable can be accurately represented via the Hermite PC
over a family of Gaussian random variables. For different
probability distributions, orthogonal PC basis functions
can be obtained through the Askey scheme, as described in
Xiu and Karniadakis (2002). The convergence properties
of these generalized expansions have been analyzed in
Ernst et al. (2012). For arbitrary densities, generalized
Polynomial Chaos (gPC) can be constructed as outlined
in Soize and Ghanem (2004). Nowadays, sparse, adaptive
gPC schemes have reached a certain level of maturity, en-
abling analysts to handle uncertainties in complex systems
with a growing number of uncertain inputs.

For dynamical systems with random input data, it has
been observed several times that gPC may converge slowly
when the system is operated close to a resonance, i.e., when
variations in random parameters cause strong variations of
the system’s response. This is reflected by large gradients
in the parametric domain which may demand for high
polynomial degrees to achieve a certain level of accuracy.
Several remedies have been proposed in the literature to
overcome these limitations. In Yaghoubi et al. (2017) a
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frequency rescaling technique has been presented. Rational
surrogate modeling, based on a Padé-Legendre expansion
has been put forth in Chantrasmi et al. (2009); Chantrasmi
and Jaccarino (2012). Bayesian updating with rational
surrogate models has been addressed recently in Schneider
et al. (2019). Rational surrogate modeling appears quite
natural for dynamical systems in the frequency domain,
however, constructing Padé-type approximations in mul-
tiple dimensions is non-trivial, as already pointed out in
Chantrasmi et al. (2009). This represents a drawback com-
pared to polynomial methods, where sparsity is a rather
well-understood concept. Other alternatives are given by
wavelet approaches Le Maitre et al. (2004).

In this work we present a method for accelerating the con-
vergence of gPC expansions for surrogate modeling. The
key idea consists of a transformation of the random param-
eter domain via conformal maps. In particular, we employ
a transformation which preserves the PC-orthogonality,
which is a crucial property to obtain immediate access
to statistical measures of interest, such as variance-based
sensitivity indices or statistical moments. We present a
fully non-intrusive realization of the conformally-mapped-
accelerated gPC expansion.

We proceed with an introduction of the dynamical system
with random input data, before describing the accelerated
gPC method in the next section. Numerical results for a
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simple mass-spring benchmark problem will be given at
the end.

Let the frequency domain dynamical system be given by
(—w’M(€) + iwD(€) + K(§)) x(w.§) =f, (1)
where ¢ denotes the imaginary unit, w the angular fre-
quency and M, D, K refer to the mass, damping and stiff-
ness matrix, respectively. Also, € refers to the realization
of a random vector with £ € T' ¢ RY. For simplicity,
we assume that the random vector £ only takes values in
a bounded domain I'. Such a system may originate from
a finite element discretization of a mechanical structure
or represent a discrete mass-spring-damper system with
multiple degrees of freedoms. We assume that the joint
probability distribution of the random vector is known
and given as fe(§) = fe, (&1)fe,(&2) -+ fen (En), iee., the
input random variables are independent. Much interest
has recently been devoted to construct gPC expansions in
the case of dependent input parameters, see for instance
Jakeman et al. (2019), yet, we do not consider such a
setting here, for simplicity. We also restrict ourselves to
a single input single output system, where u represents
the scalar input such that f(u) and y = g(x) denotes the
output quantity which depends both on w and &. The goal
of the numerical method outlined in the following is to
approximate the frequency response function

|ul
which implicitly depends on the random parameter &
through the dynamical system. Hence, in addition to a
frequency response approximation technique a method for

approximating the &-dependence is required.

2. POLYNOMIAL CHAOS WITH CONFORMAL
MAPPINGS

We proceed by recalling the standard gPC expansion,
before giving an extension in terms of conformal mappings
in the subsequent subsection.

2.1 Polynomial Chaos

We consider the space of all second order random variables
onT,ie., Y € L*(T',B(T), fedf), with Borel sigma-algebra
B(T'). In the following, we will simply write L2, for short.
Note that Y € L? ensures that the variance of Y is finite.
Every Y € L? can be represented using gPC as

Y(§) = Z%"h(ﬁ)v (3)

where ¢ = (i1,42,...,ix) denotes the polynomial degree
multi-index such that W is a tensor product polynomial of

degree ¢; in dimension j = 1,...,N. Also, ¥; denotes a
multivariate global polynomial on I" which satisfies
JRZCIAGRACIE (4)

i.e., which are normalized and orthogonal in L?. The
infinite sum in (3) is truncated to obtain computable
expressions as

Y(€) ~ Yro(§) = Y uiTi(é), (5)
\

i|<p

where |t = i1 +i2 + -+ + iy and p refers to the
total polynomial degree. The basis coefficients can be
determined by Galerkin projection or non-intrusively by
stochastic collocation, regression or discrete projection,
see Xiu (2010) for an overview. Such methods converge
spectrally, i.e., exponentially fast, if the map & — Y (&) is
analytic.

In the context of approximating the frequency response
function F with PC, as already mentioned, the conver-
gence may be reduced due to strong variations of the
system’s response. This observation has been analyzed
quantitatively in Pagnacco et al. (2017) for a one degree of
freedom mass-spring-damper system. In particular, the au-
thors of this paper have introduced a parameter -, where
1, o refer to the mean value and standard deviation of the
uncertain input parameter (the stiffness in their setting)
and 7 is proportional to the damping. Multiple modes in
the solution’s probability density function may occur if this
parameter exceeds a specific threshold, which then results
in an increased computational effort associated with PC
approximations. Hence, for low damping (small 7) and
high input uncertainty (large o) PC expansions may be
difficult to apply without dedicated efforts for convergence
acceleration.

2.2 Conformal Mappings

Conformal mappings have been used in a couple of ref-
erences to accelerate numerical methods, in particular
quadrature. The idea was introduced in Hale and Tre-
fethen (2008) and used in Jantsch and Webster (2018) and
recently by Georg et al. (2020) to accelerate sparse grid
quadrature and interpolation. A more detailed derivation
of the convergence acceleration of PC expansions with
conformal mappings can be found in Georg and Romer
(2019). Here, we will briefly present the main steps and
investigate the approximation properties for random fre-
quency responses.

We first represent the parameter domain through the
product of univariate intervals as

I'= [_171]N7 (6)
assuming that each parametric interval is mapped to
[-1,1]. For instance, the (inverse) CDF-transform { =
—1 + 2F¢(&) could be used to that end. Then, we con-
sider conformal mappings that preserve this domain, i.e.,
g9([-1,1]) = [-1,1]. An example is given by

1 5
g(s) = == (403205 +67205% +30245° +-18005" 4-12255"),

~ 53089
(7)

which represents a Taylor expansion to the inverse sin-
function and, due to its visual appearance, is called a
sausage mapping in the literature. This is illustrated in
Fig. 1, where the mapping is applied to a Bernstein ellipse.
Such Bernstein ellipses arise in the convergence analysis of
polynomial-based methods, cf. Hale and Trefethen (2008).
In particular, for functions with an analytic continuation
on a large Bernstein ellipse, fast convergence can be ex-
pected. The mapping g is designed to map these Bernstein
ellipses to straighter regions, which can be observed in
Fig. 1. Such a region may be better suited for parametric
problems, where the derived regions of analyticity often
resemble strips, see Babugka et al. (2007).
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Fig. 1. Conformal map of a Bernstein ellipse, from Georg
et al. (2020).

The transformation g gives rise to a new density

; fe(g(s))
fe(s) = ——= : (8)
7 e ()]
We then introduce the mapped generalized PC basis by
setting up an orthogonal basis with respect to fg, denoted

{®,}; which is then transformed as

U, =d;0g9 " (9)
The intuition behind this construction is that the polyno-
mial basis U; exploits a larger region of analyticity if F has
poles close to the imaginary axis. It is important to note
that the W¥; remain orthogonal to fe, which means that
many important statistical quantities (moments, variance-
based sensitivities) can still be derived by simple post-
processing steps. In higher dimensions, we simply employ
conformal mappings in each dimension and construct the
multivariate polynomial via tensor product constructions,
as usual.

Numerical methods for quadrature can equally be acceler-
ated using conformal maps, by transforming the quadra-
ture nodes and rescaling the weights. The interested reader
is refered to Hale and Trefethen (2008) for details. Such
quadrature methods are useful to directly compute statis-
tical moments and are used here in the context of pseudo-
spectral projection, to compute the PC coefficients.

3. NUMERICAL EXAMPLE

We consider a mass-spring-damper system introduced in

Lohmann and Eid (2007). The geometry is depicted in

Fig. 2. We employ two beta-distributed random parame-

ters &1, & with joint probability density function
0, else.

(10)

These are used to represent an uncertain stiffness ¢; =
(27 +4¢) Nm~! and mass m; = (1 +£0.1&) kg.

Fig. 3 presents the frequency response for w € [5.5, 7]s71.
In particular, the nominal value, the mean value as well
as a 20 band arround the mean value are shown. It can
observed that for frequencies close to the resonance, the
uncertain parameters have a large impact on F. At each
of 51 frequency sample points w;, we construct repeatedly
gPC and mapped gPC approximations of increasing order,
until a discrete approximation of the L'-norm with a cross-
validation sample of size 1000 indicates an absolute error
below 0.05. In all cases, the coefficients of the (mapped)
gPC expansions of total degree p are computed by pseudo-
spectral projection using (mapped) quadrature of the same
degree. Fig. 4 depicts the respective numbers of model
evaluations needed for the prescribed accuracy. It can be
observed that for frequencies close to the resonance, the
mapped approach outperforms gPC, while otherwise the
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Fig. 2. Mass-spring-damper system with random parame-
ters as proposed by Lohmann and Eid (2007).
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Fig. 3. Frequency response: Nominal value, mean value and
20-band.

standard gPC achieves a better efficiency. Hence, confor-
mal mappings may serve as a suitable convergence accel-
eration technique for dynamical systems, in particular, as
the response close to resonances is often of primary interest
in applications.

The improved convergence order is further illustrated in
Fig. 5 for w = 6.2s7', where we depict the error in
the expected value. The reference solution for the mean
value is obtained up to machine accuracy by Gaussian
quadrature of order 100. The gPC approximation of E[F]
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Fig. 4. Computational cost to compute a surrogate model
with a prescribed accuracy, w.r.t. the frequency w.
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Fig. 5. Convergence of mean value for w = 6.2s71.

is simply given by o, i.e., the first polynomial coefficient,
due to the orthonormality of the basis.
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