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Abstract:
Quantum variational algorithms have garnered significant interest recently, due to their
feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices.
We examine the robustness of the quantum approximate optimization algorithm (QAOA),
which can be used to solve certain quantum control problems, state preparation problems,
and combinatorial optimization problems. We demonstrate that the error of QAOA simulation
can be significantly reduced by robust control optimization techniques, specifically, by sequential
convex programming (SCP), to ensure error suppression in situations where the source of the
error is known but not necessarily its magnitude. We show that robust optimization improves
both the objective landscape of QAOA as well as overall circuit fidelity in the presence of
coherent errors and errors in initial state preparation.

Keywords: quantum approximate optimization algorithm, robust control, sequential convex
programming, error mitigation

1. INTRODUCTION

Achievements in quantum information and computing
have boosted prospects towards solving complicated prob-
lems that challenge classical computational resources.
However, the performance of near term quantum devices
can be severely limited by decoherence effects. To leverage
the computational power of near term quantum devices
while also operating within their constraints, a number of
hybrid quantum-classical algorithms have been proposed
in which a quantum component is embedded within a
classical processor. In particular, quantum variational al-
gorithms (QVA), which embed a quantum protocol depen-
dent on some tunable parameters inside a classical opti-
mizer, have received significant amount of attention in the
past few years. Examples of QVA include the variational
quantum eigensolver(McClean et al. (2016)), the quan-
tum approximate optimization algorithm (QAOA)(Farhi
et al. (2014)), and quantum variational autoencoders
(Khoshaman et al. (2018)). The basic idea of QVA is to
parameterize the quantum wavefunctions of interest using
a relatively small set of parameters and to use a quantum
state circuit to prepare the state. For each given parameter
set, corresponding to a parameterized set of gates in the
circuit, the objective function can be efficiently evaluated
on a quantum computer through intrinsically noisy quan-
tum measurements. The parameters are then variationally
adjusted and optimized on a classical computer, according
to the outcomes of the quantum measurements.

In this paper, we focus on the quantum approximate
optimization algorithm (QAOA), which is one such hy-
brid quantum-classical algorithm that provides a compact
variational ansatz for a quantum state evolved under a
time dependent Hamiltonian by acting on a initial state
by switching between two specifically designed control
Hamiltonians. The universality (Lloyd (1995, 2018)) and
optimality of QAOA for certain problems (Yang et al.
(2017)) have led to many applications of this approach in
quantum information processing, ranging from a broad ar-
ray of discrete combinatorial problems (Farhi et al. (2014);
Lloyd (2018); Hadfield (2018)), to more recent extensions
addressing continuous variable problems (Verdon et al.
(2019)).

Finding efficient classical algorithms for the optimization
of parameters in QAOA is currently an active area of
research. Methods under investigation include approaches
using gradient optimization (Zhu and Rabitz (1998); Ma-
day and Turinici (2003)), Pontryagin’s maximum principle
(Yang et al. (2017); Bao et al. (2018)), and reinforcement
learning (Bukov et al. (2018); Niu et al. (2019a)). Due
to the variational nature of the algorithm, first order
changes of parameters may only lead to second order
changes of the fidelity. In this sense, all QVAs are to some
extent naturally resilient to the impact of errors and noise.
The source of error may originate from coupling to the
environment, uncertainty in Hamiltonian parameters or
propagation times, and measurement errors. In this work,
we show that even if only the source of the error and
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its range of magnitude are known, i.e., but not the exact
magnitude, one can nevertheless significantly improve the
fidelity of QAOA based simulation. We employ methods
of robust optimal control, and in particular the sequential
convex programming (SCP) approach (Boyd (2019)) to
improve the overall circuit robustness against errors due
to uncertainty in the QAOA Hamiltonian parameters and
in the initial state specification. Future work will address
mitigation against environmental errors.

Section 2 reviews preliminary concepts and notations
regarding QAOA and the uncertainty in the Hamilto-
nian. We formulate the robust optimization algorithm
for QAOA and present an SCP approach to solve this
in Section 3. In Section 4 we present several numerical
applications of QAOA with the resulting robust control,
including both single-qubit and multi-qubit examples. Sec-
tion 5 concludes and presents an outlook for further work.

2. QAOA AND HAMILTONIAN UNCERTAINTY

By iteratively applying two Hamiltonian operators, QAOA
provides control schemes in a hybrid quantum-classical
manner, which can be implemented on near term quantum
devices. Starting from an initial state |ψi〉, QAOA prepares
a state |ψθ〉 using the following ansatz

|ψθ〉 = U(θ) |ψi〉 :=

p∏
j=1

U(HB , θ
B
j )U(HA, θ

A
j ) |ψi〉 . (1)

Here U(H, θ) = e−iHθ (we set ~ = 1). The evolution
operator U(θ) is therefore the product of unitary trans-
formations generated by two Hamiltonian operators alter-
natively, and p is called the depth of QAOA.

QAOA can be rewritten compactly in terms of a time-
dependent Schrödinger equation, with the Hamiltonian
H(t) = s(t)HA + [1 − s(t)]HB . The control parameter
s(t) takes only the values 0 or 1, thus corresponding
to a bang-bang control. The optimization variables are
the sequence of time durations θ = (θA1 , θ

B
1 , · · · , θAp , θBp ).

These variables are usually optimized to minimize the
energy, with cost function equal to the expectation of the
energy in a target state |ψt〉. Here we replace the objective
function by the fidelity, defined as the overlap between |ψθ〉
and |ψt〉, i.e.,

F(θ) = |〈ψi|U(θ)|ψt〉|2. (2)

Previous research suggests that the control landscape of
QAOA can be highly complex (Streif and Leib (2019); Niu
et al. (2019b)). Although the need for error mitigation has
been recognized, most studies of QAOA to date, however,
neglect effects of noise that undermine the robustness of
QAOA control. In this work, we consider a robust QAOA
scheme to improve overall circuit fidelity against uncer-
tainty originating from the Hamiltonian. More specifically,
we assume the Hamiltonian takes the form H(δ) = H̄ +

H̃(δ), where H̄ is the original Hamiltonian operator in the

absence of noise, and H̃ is due to the noise. The unde-
termined value of parameter δ indicates the magnitude of
the noise, with the value of δ only known to within a pre-
scribed range ∆. The goal of robust QAOA optimization
is to find a sequence of angles (pulse times) that achieves
high fidelity for any realization in the uncertainty set ∆,
equivalently a robust bang-bang control.

3. SEQUENTIAL CONVEX PROGRAMMING

The robust QAOA optimization problem can be formu-
lated as the following max-min problem:

maximize
θ

min
δ
F(θ, δ),

subject to θ ∈ Θ, δ ∈ ∆.
(3)

Here
F(θ, δ) = |〈ψi|U(θ, δ)|ψt〉|2, (4)

θ stands for the control protocol within a convex feasible
set Θ, and δ represents the uncertainty. Eq.(3) thus max-
imizes the worst case fidelity within ∆. We do not require
the set of uncertainty parameters ∆ to be convex.

Various methods have been proposed to solve the robust
optimization problem. For instance, b-GRAPE and a-
GRAPE methods (Wu et al. (2019); Ge et al. (2019)) are
variants of the well-known GRAPE method (Khaneja et al.
(2005)), which was designed for quantum control in the
absence of uncertainty. In order to enhance the robustness
of the solutions, b-GRAPE obtains the update of θ with
respect to randomly generated samples δ ∈ ∆, while a-
GRAPE performs optimization with respect to samples
δ ∈ ∆ generated from an adversarial procedure. In this
paper, we utilize sequential convex programming (SCP)
(Kosut et al. (2013); Allen et al. (2017)) to solve the max-
min problem in Eq.(3) and compare the performance with
that of the a- and b-GRAPE variants.

SCP iteratively solves a subproblem, where the objective
function is locally approximated to be a concave function.
For instance, we may approximate F by a function linear
in θ̃:

F(θ + θ̃, δ) ≈ F̃(θ̃; θ, δ) = F(θ, δ) + θ̃T∇θF(θ, δ). (5)

Alternatively, the information of the Hessian can be uti-
lized to obtain a more accurate approximation

F̃(θ̃; θ, δ) = F(θ, δ)+θ̃T∇θF(θ, δ)+
1

2
θ̃THess−(θ, δ)θ̃, (6)

where Hess− represents the negative semidefinite part of

the Hessian of the fidelity, so that F̃(θ̃; θ, δ) is a concave
function. To carry out an approximate optimization for the
original problem, a convex trust region Θtrust is introduced
that guarantees the accuracy of the concave approxima-
tion. The size of the trust region is flexible and updated on-
the-fly via the trust region algorithm (Boyd (2019)). The
minimization over uncertainty is implemented by sampling
realizations {δi : i = 1, · · · , L} from the uncertainty set ∆
to provide a numerical resolution of this. A summary of
the SCP approach is provided in Algorithm.1.

After introducing a slack variable, f0, which is given by
the infimum of the worst case fidelity over a given set of
L uncertainty relations, the convex problem proposed in
Algorithm 1 can be rewritten in a standard form as

maximize f0,

subject to F̃(θ̃; θ, δi) ≥ f0, ∀i = 1, · · · , L
θ + θ̃ ∈ Θ, θ̃ ∈ Θtrust.

(10)

If F̃(θ̃; θ, δ) is a linear approximation in θ̃, and Θ, Θtrust

are box-constrained sets, Eq.(10) is a linear programming

problem that yields the optimal increment θ̃. In addition,
if Θ and Θtrust are either box- or ball-constrained sets,
then regardless of the approximation chosen for F̃(θ̃; θ, δ),
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Algorithm 1 Robust optimization through sequential
convex programming

Input: initial guess θ0 ∈ Θ, initial trust region Θtrust,
realizations {δi ∈ ∆ : i = 1, · · · , L}; parameters 0 <
η2 < η1 < 1, 0 < γ2 < 1 < γ1, a positive integer tmax,
stop criteria told and tolσ.

Output: optimal control vector θ.
for t = 1, 2, . . . , tmax do

(1) Compute fidelities, gradients and Hessians associ-
ated with each uncertainty realization.
(2) Approximate the fidelity F(θ, δ) by either Eq.(5)

or Eq.(6). Solve increment θ̃ from the convex problem

maximize min
i=1,··· ,L

F̃(θ̃; θ, δi),

subject to θ + θ̃ ∈ Θ, θ̃ ∈ Θtrust.
(7)

(3) Calculate the ratio

σ =
mini F(θ + θ̃, δi)−mini F(θ, δi)

mini F̃(θ̃; θ, δi)−mini F(θ, δi)
. (8)

if σ > 0 then
Update θ = θ + θ̃.

end if
Update d, the diameter of trust region Θtrust by
following rule:

d =

{
γ1d if η1 < σ,
d if η2 ≤ σ ≤ η1,

γ2d if σ < η2.
(9)

if d ∈ (0, told) or σ ∈ (0, tolσ) then
break

end if
end for.

Eq.(10) can always be converted to a quadratic constrained
programming. In both cases, a standard optimizer such as
Gurobi (Gurobi Optimization (2019)) can be utilized to
solve the subproblem very efficiently.

4. ROBUST OPTIMIZATION FOR ERROR
MITIGATION

4.1 Single-qubit system

As a first example, we investigate the use of robust QAOA
to transfer the state of a single qubit under Hamiltonian
uncertainty. Specifically, given an initial qubit state |ψi〉
that is the ground state of Hi = −σz + 2σx, we adopt a
QAOA Hamiltonian ansatz with the following two Hamil-
tonians to transfer the system state to |ψt〉, the ground
state of Ht = −σz − 2σx (Bukov et al. (2018)):

HA(ωA) = −σz + ωAσ
x, HB(ωB) = −σz + ωBσ

x (11)

Here the uncertainty derives from uncertainties in the
parameters ωA, ωB , i.e., δ = (ωA, ωB) ∈ ∆. The reference
control Hamiltonians without uncertainty are assumed
to be those with (ωA, ωB) = (4,−4). We shall study
the optimal solution obtained for various sizes of the
uncertainty set ∆.

The fidelity for state transfer obtained by robust QAOA in
this single-qubit control problem is displayed in Fig.1 for
several values of ∆ and for the uncertainty-free Hamilto-
nian (blue dots). Panel a) shows that the fidelity increases
as the depth, i.e., number of layers p in the QAOA it-
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Fig. 1. Robust QAOA for the single-qubit system. (a)
Optimal worst-case fidelity as the function of QAOA
depth. Different curves correspond to different uncer-
tainty models, ∆1 ⊂ ∆2 ⊂ ∆3. (b) The landscape of
the infidelity − log10(1−F).

eration, increases. This agrees with the fact that a solu-
tion associated with greater depth includes that of lower
depth, with the extra entries set to zero. Furthermore,
since the uncertainty sets are increasing in size, namely
∆1 ⊂ ∆2 ⊂ ∆3, the numerical results in Fig.1(a) also
demonstrate that the robustness of QAOA decreases as the
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system becomes less certain, leading to a lower achievable
fidelity. Starting from optimal QAOA sequences without
uncertainty, contour maps of fidelity on the uncertainty set
are shown in Fig.1(b). These exhibit multi-peak patterns
not centered at the uncertainty-free point (4,−4). This
confirms that the robust optimization modifies the control
without uncertainty to values that are optimal for the
worst-case fidelity (max-min). The distinct terrain struc-
tures evident in Fig.1(b) also show that different optimal
control solutions are obtained with different ranges of un-
certainty ∆. This single-qubit example shows that robust
optimization of a QAOA control protocol with sufficient
depth enables high fidelity of quantum state transfer to be
consistently attained for all uncertainty realizations. The
multi-peak patterns also give an indication of how different
system designs can affect robustness.

4.2 Multi-qubit system (I)

We now consider the robust QAOA for a multi-qubit
system with the following Hamiltonian,

H(h;ω1, ω2) =− (1 + ω1)σz1σ
z
2 − (1 + ω2)σz2σ

z
3

−
N−1∑
j=3

σzjσ
z
j+1 −

N∑
j=1

[
σzj + hσxj

]
.

(12)

Here the uncertainty parameters ω1, ω2 affect the cou-
plings of the first two pairs of qubits. The spin operator
σz is coupled to a constant external field to avoid the
antiferromagnetic-paramagnetic phase transition (Bukov
et al. (2018)). The configuration of the chain is controlled
by the tunable magnetic field h. Previous work has in-
vestigated the optimal control problem in the absence
of uncertainty using reinforcement learning (RL) (Bukov
et al. (2018)). In that approach a RL agent makes a
decision on a boolean action space h ∈ {−4,+4} within
each time interval. To improve the robustness of QAOA
with control Hamiltonians taking h = −4 or + 4 against
uncertainty in the couplings ω1 and ω2, we employ the
robust optimization algorithm to further adjust the control
angles over uncertainty samples. The initial state |ψi〉and
target state |ψt〉 are set to be the ground states at field
values h = −2 and + 2 respectively in the absence of
uncertainty.

Results of robust control for this multi-qubit system using
SCP, b-GRAPE and a-GRAPE are shown in Fig.2. The
objective functions in a-GRAPE and SCP calculations are
the worst-case fidelity, while the objective function of b-
GRAPE is the average fidelity. The optimized controls
in each case are then used to evaluate the fidelity of the
other kind. We observe that the fidelity generally decreases
as the system size, i.e., the number of qubits N in the
chain, is increased, despite a simultaneous increase of the
QAOA depth p. Comparison of the relative performance of
the three different optimization algorithms shows that in
nearly all cases, the worst-case fidelity obtained using SCP
surpasses that achieved using b-GRAPE or a-GRAPE.
Furthermore, in the situations where one of the GRAPE
algorithms gives similar fidelities as SCP, the SCP algo-
rithm is found to be more efficient, as illustrated by the
timing data shown in Tab.B.1(b).
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Fig. 2. Robust QAOA for multi-qubit system (I) for
different system sizes, QAOA depths and uncertainty
sets.

4.3 Multi-qubit system (II)

Here we consider a second state transfer problem for a
multi-qubit system. Similar to binary sequences in a clas-
sical computer, the model is defined on a one-dimensional
chain consisting of N qubits (Niu et al. (2019b)). The
notation |k̄〉 = |0〉1 · · · |1〉k · · · |0〉N means that the kth site
is excited with respect to the z-basis. The goal of the
control is to move an excitation all the way along the
chain, namely, |1̄〉 → |N̄〉. The following two Hamiltonians
are utilized as the ansatz for QAOA iteration:

HA(δ) =

N−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1) + δσzbN2 c−1

σxbN2 c
σzbN2 c+1

HB =
1

2
(σzN + IN ).

(13)
Here HB projects onto the target state, and HA(0), the
off-diagonal Hamiltonian without uncertainty, introduces
a swap operation between neighboring qubits. The three-
qubit coupling term whose strength can take values within
a bounded set δ ∈ ∆ provides a Hamiltonian uncertainty
and the time evolution operator is thus dependent on this
uncertainty.

As in the previous problems, for each instance of δ, the
fidelity is defined using the overlap between target state
and the state generated by QAOA iteration,

F(θ, δ) = |〈N̄ |U(θ, δ)|1̄〉|2. (14)

Since the length of the chain N varies, we shall always
consider QAOA with depth p = N + 1. We set the
parameter set of Hamiltonian uncertainty to be ∆ =
[−0.15, 0.15].

Fig. 3(a) shows a comparison between the optimal con-
trol variables in the absence of uncertainty θw.o. and the
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Fig. 3. Robust QAOA for multi-qubit system (II). (a)
Comparison of control protocols of five-qubit chain
and six-depth QAOA. Left: optimal bang-bang proto-
col solving optimization problem without uncertainty,
which is used as initial guess in SCP. Right: optimal
bang-bang control obtained through SCP with sam-
ples from ∆. (b) Optimal fidelity of five-qubit chain
and six-depth QAOA as a function of uncertainty
set ∆ = [−0.15, 0.15],∆/2,∆/4,∆/8. (c) Optimal
fidelities of qubit chains with different sizes but fixing
∆ = [−0.15, 0.15].

corresponding robust optimal control variables that are
generated by a subsequent robust optimization from the
initial guess θw.o.. This reveals significantly different struc-
tures, and thus implies that a distinct control protocol is
produced after introducing uncertainty. Fig. 3(b) shows
that when the uncertainty set is contracted from ∆ to
∆/8, the corresponding optimal control protocol converges
to θw.o.. However, partially sampling uncertainty realiza-
tions from a subset of points in ∆ does not account for
all possible situations: it is evident from this plot that
using control directly, without any robust optimization can
result in a dramatic decrease of fidelity over large regions
of the uncertainty set. When the length of the qubit chain
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Fig. 4. Robust QAOA for seven-qubit chain with un-
certainty in initial state preparation. In the figure,
circles stand for control angles θscp optimized by SCP.
Triangles stand for the control angle θw.o. optimized
in the absence of uncertainty until infidelity below
1e-7 and data are calculated by directly turning on
uncertainty in the system controlled by θw.o.. Both
θscp and θw.o. are obtained by starting from the same
initial guess.

increases, the performance of the robust protocol for a
fixed uncertainty set ∆ also decreases (Fig. 3(c)).

In addition to studying the robustness to uncertainty in
the control Hamiltonians, we also consider the uncertainty
when preparing the initial state. To model such uncer-
tainty, we parameterize the initial state as follows:

|ψi(ω2, ω3)〉 =
√

1− ω2
2 − ω2

3 |1̄〉+ ω2|2̄〉+ ω3|3̄〉. (15)

Here ωi stands for the error contribution from the ith

excited state. Assuming that the control Hamiltonians
are uncertainty free, the fidelity of the problem is given
by F(θ, δ) = |〈ψt|U(θ)|ψi(δ)〉|2 where δ = (ω2, ω3) ∈
∆. Robust optimization is then performed to find the
optimal control vector as a function of the uncertainty in
initial state preparation. To demonstrate the non-trivial
contribution of robust optimization, we undertake another
optimization from the same initial value of the control
variables θ0, but without turning on uncertainty, until the
infidelity attains 10−7. The resulting control variable are
labelled θw.o.. Fig.4 compares the performance of θscp and
θw.o.. We see that the fidelity is significantly improved by
robust optimization for all values of uncertainty ∆.

5. SUMMARY

Quantum variational algorithms, such as QAOA, can
possibly be realized on near term quantum computing
machines in a number of scientific applications. Developing
robust realizations of these algorithms that allow control
and mitigation of errors on near term devices to the
extent that a quantum enhancement is asserted, will
have significant impact on both the quantum computing
community and its potential users.
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In this work we have investigated how robust optimiza-
tion, in particular SCP, can robustly assist the design of
quantum control protocols. Since the performance of near
term quantum devices is severely limited by decoherence,
exploiting the computational capability of quantum cir-
cuits requires that these be relatively robust against both
parameter uncertainties and noise. We demonstrated here
that while the achievable fidelity of QAOA may decrease
in the presence of Hamiltonian uncertainties, the perfor-
mance of QAOA under these conditions can be signifi-
cantly enhanced by obtaining the optimal parameters from
solution of a max-min problem in the framework of robust
optimization. Here we have assumed that the Hamiltonian
parameters remain constant in time, as in robust quantum
control of pulse design compensating for spatial inhomo-
geneities (Pravia et al. (2003); Li and Khaneja (2009);
Zhang et al. (2014)). An intriguing question for further
study is the extent to which robustness of the unknown but
constant parameters determined here by SCP is preserved
if the parameters fluctuate in time. This relates to robust
control of pulse sequences under fluctuating classical noise
Gorman et al. (2019). In future work we shall address
application of these ideas to mitigate errors in implemen-
tation of the QAOA algorithm deriving from coupling of
qubits to their environment.
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Appendix A. NUMERICAL ENVIRONMENTS AND
DETAILS

All experiments are performed on an Intel Core 4 Quad
CPU at 2.30 GHZ with 8 GB of RAM. All codes are
written in MATLAB R2018b. For each optimization model
presented in this paper, we first found a control vector θ0

that can achieve a fidelity of 0.999 without uncertainty by
GRAPE method. Then we served θ0 as an initial guess
for robust optimization. Since for single-qubit system, the
quality of robust solution is largely dependent on the
choice of initial guess, we performed each algorithm 10
times starting from 10 different initial values and chose
the best solution.

Throughout the numerical experiments, we utilized the
first-order approximation Eq.(5) for SCP. The parameters
for Algorithm 1 are set as follows: η1 = 0.5, η2 = 0.1, γ1 =
2, γ2 = 0.2, told =1e-6. tmax is set to be 500 for single-
qubit system, 2e3 for multi-qubit system (I), and 2e4 for
multi-qubit system (II). tolσ is 1e-6 for single-qubit system
and 1e-8 for multi-qubit systems. We performed b-GRAPE
for a fixed number of iterations with Batchsize = 1 and
momentum parameter λ = 0.9, which are best parameters
adopted by the original author of b-GRAPE method. The
number of iterations is set to be 2e4 for single-qubit system
and 5e4 for multi-qubit systems. We implemented the best-
response version of a-GRAPE. We performed 15 rounds of
a-GRAPE training for single-qubit system and multi-qubit
system (II). While for multi-qubit system (I), the number
of rounds is set to be 25. We would like to note here that
for b-GRAPE and a-GRAPE, a larger number of iterations
will slightly improve the quality of the solution, but cost
more computational resources. The numbers of iterations
we chose here are designed to minimize the CPU time while
maintaining a high performance.

Appendix B. COMPARISON OF ALGORITHMS

In this section, we will compare SCP, b-GRAPE and a-
GRAPE on single-qubit system and multi-qubit systems.
The descriptions of these systems have been provided in
Sec.4. Here we provide the pseudo-codes of b-GRAPE and
a-GRAPE in Algorithm 2 and Algorithm 3 respectively for
completeness.

Algorithm 2 b-GRAPE method

Input: initial guess θ0, a positive integer tmax, momen-
tum parameter λ > 0, batch size nb.

Output: control vector θtmax
.

Set initial momentum g0 = 0.
for t = 1, 2, . . . , tmax do

Choose training samples δi ∈ ∆, 1 ≤ i ≤ nb randomly.
Update θ via

gt =
1

nb

nb∑
i=1

∂F(θ, δi)

∂θ
+ λgt−1,

θt = θt−1 + βgt,

where β is the learning rate.
end for

Algorithm 3 a-GRAPE method

Input: initial guess θ0, a positive integer tmax, a set
memory size s = 10.

Output: control vector θtmax .
Set initial uncertainty set B0 = {0}.
for t = 1, 2, . . . , tmax do

(1) Find an approximate optimal control θt over the
uncertainty set Bt−1 by GRAPE method

θt ≈ argmax
θ

∑
δ∈Bt�1

F(θ, δ).

(2) Generate an approximate adversarial noise in-
stance by

δt ≈ argmin
δ∈∆

F(θt, δ).

(3) Update uncertainty set B by following rules:
if |Bt−1| < s then

Bt = Bt−1 ∪ {δt},
else

Bt = {δt−s+1, . . . , δt}.
end if

end for

The numerical results are displayed in Tab.B.1. We see
the advantages of our proposed method in both accuracy
and CPU time. The control protocols obtained by SCP
have the lowest worst-case infidelity in most cases and
are close to the best one in the other situations. As
to the speed, a-GRAPE and b-GRAPE are 2-5 times
slower than SCP in general. Besides, although we design
the optimization objective function Eq.(3) in order to
maximize the worst-case fidelity, SCP can nonetheless
attain a satisfying average fidelity in practice. Thus, it
is evident that finding a robust QAOA control via SCP
is efficient and accurate. We ascribe these advantages to
the trust-region scheme and sample tactic utilized in SCP.
Adaptively adjusting the size of trust region on the fly and
rejecting unsatisfying updates guarantee the efficiency of
SCP. Moreover, approximating the uncertainty via finite
samples provides a simple but accurate way to deal with
optimization over the bounded uncertainty set.
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Table B.1. Numerical results for single-qubit and multi-qubit systems in Sec.4. Here w-c and
avg stand for worst-case and average infidelity respectively. Time is the CPU time in second
taken by each optimization. The best results (in terms of accuracy or timing) are in boldface.

(a) Numerical results for single-qubit system in Sec.4.1.

QAOA depth p
Uncertainty set ∆

SCP b-GRAPE a-GRAPE
w-c avg time(s) w-c avg time(s) w-c avg time(s)

p = 5
∆1 8.83e-04 5.91e-04 2.06e+02 1.72e-02 3.13e-03 3.71e+02 9.00e-03 3.37e-03 4.52e+02
∆2 1.26e-03 4.48e-04 1.65e+02 1.12e-02 3.11e-03 3.63e+02 5.80e-03 1.31e-03 4.45e+02
∆3 2.90e-02 2.19e-02 1.12e+02 7.32e-02 1.33e-02 3.63e+02 3.84e-02 2.25e-02 4.40e+02

p = 6
∆1 1.87e-04 7.86e-05 2.44e+02 8.94e-03 2.13e-03 4.36e+02 3.82e-03 1.97e-03 5.38e+02
∆2 1.54e-03 8.20e-04 2.40e+02 3.01e-02 5.16e-03 4.35e+02 6.66e-03 2.46e-03 5.33e+02
∆3 1.30e-02 7.12e-03 2.14e+02 6.93e-02 1.86e-02 4.35e+02 3.34e-02 1.68e-02 5.33e+02

p = 7
∆1 7.83e-05 3.38e-05 2.86e+02 1.06e-02 2.60e-03 5.01e+02 2.88e-03 9.15e-04 6.16e+02
∆2 5.20e-04 1.09e-04 2.68e+02 1.65e-02 2.57e-03 5.42e+02 8.87e-03 2.05e-03 6.56e+02
∆3 4.14e-03 1.30e-03 2.78e+02 5.03e-02 1.11e-02 4.95e+02 1.86e-02 7.15e-03 6.06e+02

p = 8
∆1 2.49e-05 8.37e-06 3.10e+02 1.49e-02 2.44e-03 5.66e+02 2.43e-03 7.65e-04 6.97e+02
∆2 7.88e-05 2.81e-05 3.04e+02 1.55e-02 2.11e-03 5.71e+02 4.52e-03 2.42e-03 7.04e+02
∆3 6.88e-04 3.45e-04 3.30e+02 3.66e-02 9.27e-03 5.76e+02 1.33e-02 6.89e-03 7.08e+02

p = 9
∆1 2.12e-06 9.08e-07 3.48e+02 3.70e-03 8.41e-04 6.43e+02 1.05e-03 2.99e-04 7.84e+02
∆2 1.92e-05 6.43e-06 3.79e+02 1.29e-02 1.91e-03 6.40e+02 7.50e-03 1.83e-03 7.85e+02
∆3 1.69e-04 9.04e-05 3.63e+02 2.95e-02 6.68e-03 6.47e+02 1.23e-02 5.19e-03 7.97e+02

(b) Numerical results for multi-qubit system (I) in Sec.4.2.

System size N
Uncertainty set ∆

SCP b-GRAPE a-GRAPE
w-c avg time(s) w-c avg time(s) w-c avg time(s)

N = 3

∆1 = [�0.01, 0.01]2 6.40e-04 2.06e-04 2.46e+01 4.92e-03 8.83e-04 5.08e+01 8.73e-04 2.82e-04 1.39e+02
∆2 = [�0.02, 0.02]2 1.31e-03 4.72e-04 4.69e+01 9.13e-03 2.01e-03 4.70e+01 2.43e-03 1.01e-03 1.39e+02
∆3 = [�0.05, 0.05]2 1.68e-03 8.98e-04 1.04e+02 1.62e-02 3.10e-03 4.67e+01 5.05e-03 1.59e-03 1.37e+02
∆4 = [�0.1, 0.1]2 3.54e-03 2.18e-03 8.35e+01 3.66e-02 4.46e-03 4.67e+01 8.56e-03 4.97e-03 1.37e+02

N = 4

∆1 = [�0.01, 0.01]2 2.26e-03 7.20e-04 3.20e+01 5.99e-03 1.51e-03 1.09e+02 2.33e-03 6.11e-04 2.98e+02
∆2 = [�0.02, 0.02]2 3.07e-03 1.09e-03 1.18e+02 8.46e-03 2.15e-03 1.09e+02 5.82e-03 1.84e-03 2.99e+02
∆3 = [�0.05, 0.05]2 6.19e-03 2.18e-03 2.00e+02 2.50e-02 6.01e-03 1.08e+02 1.50e-02 5.38e-03 3.00e+02
∆4 = [�0.1, 0.1]2 1.18e-02 6.78e-03 8.89e+01 7.02e-02 1.48e-02 1.08e+02 2.79e-02 1.13e-02 3.00e+02

N = 5

∆1 = [�0.01, 0.01]2 5.63e-03 1.97e-03 1.80e+02 1.21e-02 2.80e-03 3.79e+02 5.73e-03 1.78e-03 1.40e+03
∆2 = [�0.02, 0.02]2 1.42e-02 5.01e-03 2.75e+02 2.32e-02 6.68e-03 3.79e+02 1.67e-02 5.66e-03 1.41e+03
∆3 = [�0.05, 0.05]2 3.26e-02 1.23e-02 3.50e+02 9.02e-02 2.22e-02 3.83e+02 5.77e-02 2.07e-02 1.40e+03
∆4 = [�0.1, 0.1]2 1.50e-01 9.76e-02 2.28e+02 3.40e-01 7.49e-02 3.83e+02 1.46e-01 7.72e-02 1.39e+03

N = 6

∆1 = [�0.01, 0.01]2 1.25e-02 3.63e-03 4.01e+02 2.32e-02 5.05e-03 2.79e+03 1.19e-02 3.55e-03 9.79e+03
∆2 = [�0.02, 0.02]2 2.07e-02 7.38e-03 1.10e+03 5.54e-02 1.26e-02 2.80e+03 2.63e-02 8.69e-03 9.75e+03
∆3 = [�0.05, 0.05]2 8.39e-02 3.38e-02 1.27e+03 1.46e-01 4.46e-02 2.80e+03 7.90e-02 2.94e-02 9.77e+03
∆4 = [�0.1, 0.1]2 2.35e-01 1.46e-01 1.24e+03 4.11e-01 1.06e-01 2.78e+03 2.69e-01 1.26e-01 9.77e+03

(c) Numerical results for multi-qubit system (II) in Sec.4.3 in which uncertainty involves in the initial state.

Uncertainty set
SCP b-GRAPE a-GRAPE

w-c avg time(s) w-c avg time(s) w-c avg time(s)

∆1 = [0, 0.01]2 5.00e-05 1.74e-05 1.01e+02 1.05e-04 5.47e-05 6.72e+02 5.02e-05 1.74e-05 7.27e+02
∆2 = [0, 0.05]2 1.25e-03 4.34e-04 1.10e+02 1.36e-03 4.73e-04 6.79e+02 1.26e-03 4.34e-04 7.32e+02
∆3 = [0, 0.1]2 5.03e-03 1.74e-03 1.06e+02 5.52e-03 1.79e-03 6.76e+02 5.03e-03 1.74e-03 7.45e+02
∆4 = [0, 0.2]2 2.04e-02 7.01e-03 1.01e+02 2.12e-02 7.05e-03 6.69e+02 2.05e-02 7.01e-03 7.38e+02
∆5 = [0, 0.5]2 1.46e-01 4.72e-02 6.76e+01 1.62e-01 4.68e-02 6.73e+02 1.48e-01 4.73e-02 7.27e+02
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