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Abstract: This work presents a novel approach to autonomous decentralized multi-robot frontier
exploration and mapping of an unknown area. A mobile robot team simultaneously explores the
environment, discovers frontier points (points on the border between explored and unexplored space), and
shares information in order to become dispersed throughout the environment. During the exploration,
information exchanged between the mobile robots is limited to data containing mobile robot positions and
current mobile robot target points. The main goal of the approach is to allocate the mobile robots to target
frontier points in a way which minimizes the overall exploration time. Moreover, a mobile robot team at
the same time creates a common map of the environment. The proposed strategy has been implemented
in a simulation environment and compared with a state-of-the-art exploration strategy. Simulation results
demonstrate the advantages of the proposed decentralized multi-robot strategy.

Keywords: Mobile Robot, Multi-Robot System, Frontier Points, Target Point, Decentralized Strategy,
Exploration, Mapping.

1. INTRODUCTION

Application of multi-robot systems to solving core robotics prob-
lems has drawn significant attention in the last few decades. One
example is coordination of a mobile robot team for exploration
of an unknown area, which is encountered in many applications,
such as search and rescue (Murphy (2004)), cleaning (Endres
et al. (1998)), (Pinheiro et al. (2015)), warehousing (Wurman
et al. (2008)) or planetary exploration (Mataric and Sukhatme
(2001)), to name a few. Due to the fact that autonomous multi-
robot systems are entering society and as such will interact with
people on a daily basis, development of efficient coordination
algorithms becomes necessary.

Like in the human society, robots can be more effective when
they work together. Moreover, a robot team can accomplish a
predefined task much quicker than a single robot can (Dias and
Stentz (2000)). Another advantage of mobile robot teams is the
possibility of sensor fusion, which in turn can help to compensate
for sensor uncertainty (Wurm et al. (2008)). If done properly,
multi-robot coordination can lead to i) task accomplishment in
shorter time, ii) increased robustness, iii) higher map quality, and
finally iv) the completion of tasks impossible to be performed
by a single robot (Dias et al. (2006)).

We consider the problem of autonomous multi-robot exploration
and mapping using fast dense frontier detector and a novel
decentralized exploration strategy. Frontier detection results
in points on the border of the explored and unexplored space
in the environment - frontier points shown in Fig. 1. The
exploration strategy described in the paper assigns to each
mobile robot a frontier point that needs to be explored. Strategy
works in a decentralized manner (runs on each robot separately),
while aiming to minimize total exploration time. It does so by
sharing information between robots and taking into account the
characteristics of the so-far explored environment, which enables
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Fig. 1. The environment is represented by a 2D map, with an
occupancy grid that divides the map into cells: white cells
describe explored while grey cells unexplored space. Black
cells define obstacles. Frontier points (red) and filtered
frontier points (green).

the robots to become better dispersed throughout the unexplored
environment. The considered multi-robot system uses a fully
connected communication graph, which can however be relaxed
to include a (not fully) connected communication graph together
with implementation of multi-hop information sharing.

With respect to the existing frontier-based strategies, our strategy
uses different optimization functions and is decentralized and
event-based. We implemented the approach in a realistic ROS-
based simulation and compared its performance to a state-of-the
art method in order to show its advantages.
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Fig. 2. Overall schematic diagram of the decentralized explo-
ration and mapping process for n mobile robots in the
simulator. Google Cartographer SLAM and filter module
(highlighted in red) generate filtered frontier points that are
(currently) the centralized part of exploration and mapping
process. The exploration strategy, path planning and navi-
gation module (highlighted green) are decentralized parts
that generate n outputs and create a common map.

In the next section we describe more thoroughly different parts
of the system, state-of-the-art for each part and algorithms used
in this paper. In Section III we describe the proposed exploration
strategy. Simulation results are presented in Section IV, and in
the final section a conclusion is given.

2. EXPLORATION AND MAPPING OVERVIEW

Overview of the system is given in Fig. 2. The system consists
of a centralized part (Simultaneous Localization and Mapping
(SLAM), frontier detection and frontier points filter), which runs
on a dedicated computer and a decentralized part (Exploration
strategy and navigation), which runs on each robot. In the
folloewing text each part is described separately.

2.1 SLAM

The laser scan and odometry sensor measurements of each mo-
bile robot represent input data for a Simultaneous Localisation
and Mapping (SLAM) module. Most exploration approaches in
the literature use the ROS ’gmapping’ package for generating the
map and localizing mobile robots (Keidar and Kaminka (2012),
Umari and Mukhopadhyay (2017)). The ’gmapping’ package
implements a SLAM algorithm that uses a Rao-Blackwellized
particle filter (Grisetti et al. (2007)).

In this paper, we use a submap-based graph SLAM method
- Google Cartographer (Hess et al. (2016)) for map building,
which in our case generates the ground truth map. This map is
used in simulations to obtain the mobile robot poses (perfect
localization) from the Stage simulator (Vaughan et al. (2012)),
allowing us to eliminate the SLAM algorithm uncertainty in
simulations for algorithm comparison.

2.2 Frontier Detection

In order to determine frontier points we use frontier detection
according to Orsulic et al. (2019). This method, which is an
extension to Google Cartographer, has achieved good results in
terms of wall-time per frontier update, which greatly speeds up
our exploration and mapping process.

Another detection method, based on Rapidly Exploring Random
Trees (RRTs) is given in Umari and Mukhopadhyay (2017).

The RRT algorithm is biased towards unexplored regions and
provides a general approach which can be extended to higher
dimensional spaces. However, the method has proved not to be
fast enough for a given scenario in instances when larger parts
of the environments were explored, so we opted to use a dense
frontier detection method from Orsulic et al. (2019).

2.3 Filter Module

The filter module receives frontier points from the frontier
detector, clusters the points and stores only the centre of each
cluster (Umari and Mukhopadhyay (2017)). The clustering
process reduces the number of frontier points that are close to
each other. In that manner we avoid unnecessary consumption of
computational resources, without significant loss of information
about the frontier. For clustering we use the Hierarchical
Agglomerative Clustering algorithm (Scikit-learn (2019)), which
does not require a predefined number of clusters. We only need
to set a distance threshold parameter, above which clusters will
not be merged. Taking into consideration a given scenario and a
laser range, the distance threshold parameter is set to 1 meter.

2.4 Exploration strategy

The term exploration strategy considered here includes algo-
rithms for assigning robots to target (frontier) points for en-
vironment exploration. Such algorithms can be grouped into
centralized and decentralized algorithms. In the centralized
approach, each mobile robot receives tasks from a single central
leader which runs the overall planning algorithm, and afterwards
the mobile robot sends its info back to the leader. Centralized
assignment may be less practical due to communication limits
(Dias and Stentz (2000)), robustness issues (Dias et al. (2006)),
or time required for algorithm execution and scalability (Juliá
et al. (2012)). An advantage of centralized approach is that
optimal plans can be found (Z. Yan and Cherif (2011)).

In contrast to centralized approaches, in a decentralized ap-
proach, the mobile robots are completely independent through-
out the exploration process. Each mobile robot has its own
local knowledge of the world and can decide its future actions
by taking into account its current context and tasks, its own
capacities and the capacities of the other mobile robots, through
a negotiation process (Yan et al. (2013)). Moreover, it typically
has better reliability, flexibility, adaptability and robustness (Zlot
et al. (2002)). Our approach is a hybrid one - the robots can inde-
pendently decide towards which target point to navigate using an
optimization procedure, while having common knowledge of all
target frontier points and sharing information on their position
and current goals.

Two frontier-based exploration approaches are introduced in
Yamauchi (1998) and Singh and Fujimura (1993). Both ap-
proaches are uncoordinated in a sense that robots head to the
closest frontier point. Approaches cover homogeneous and
heterogeneous multi-robot systems, respectively. Authors in Zlot
et al. (2002) use a market-based approach and allow robots to
visit a set of goal points (a tour) while continuously negotiating
with other robots. One approach similar to ours is given in
Burgard et al. (2005), which is a centralized approach that takes
into account the costs of reaching a target and the utility of
reaching that target.

With respect to the mentioned approaches our approach is
hybrid and uses slightly different objective functions for frontier
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points assignment, which are a combination of frontier point
cost, utility of reaching the target point and frontier occupancy
function. We also cluster frontier points to get a problem
of manageable size and thus enable application of known
optimization algorithms. Our approach is hybrid in a manner
that target point assignment process and navigation are fully
decentralized and event-based, that is, each robot team member
makes an individual decision on the next target point each time
it reaches the previous one. On the other side, SLAM extended
with frontier detection and filter module are a centralized part of
the exploration and mapping process (Fig. 2). There are several
approaches that tackle decentralization of the SLAM for mobile
robots (Jiménez et al. (2018), Atanasov et al. (2015)), but this is
out of the scope of the paper. We assume that communication
range is unlimited, however, one approach for dealing with
limited communication range might be to take into account the
last target points, such as in Burgard et al. (2005). Another
workaround might be to implement a multi-hop communication
network.

With respect to the previous approaches we conduct a realistic
ROS-based simulation suitable for straightforward experimental
deployment. We use state-of-the art frontier detection and map
building software, and provide data to allow for future compar-
isons of different exploration strategies. Software architecture is
modular, allowing components to be easily changed or extended,
without affecting the remaining processes. Simulation results
given at the end of the paper have shown that the proposed
approach achieves better performance than the state-of-the art
approach selected for comparison.

3. DECENTRALIZED EXPLORATION STRATEGY

At the core of our paper is a decentralized strategy for multi-
robot exploration and mapping. The mobile robots exchange
information about frontier points under the assumption of a
fully connected graph and event-based communication. We
define a mission as a process that starts by getting a target point
and finishes by reaching the target point. Then, event-based
communication is triggered by mission accomplishments, since
all mobile robots communicate with each other in the moments
when the mission for a single mobile robot s over. It means that
the rest of mobile robots should send the data even though their
missions are in progress and they are still navigating to the goal.

The exploration is performed by a team of n mobile robots
R = {1,2, ...,N}, where the mobile robots do not have prior
knowledge about the environment, i.e., the position of the
boundaries and obstacles. Every mobile robot i gets the list
of frontier points Y = {1,2, ...,M} from the filter module (Fig.
2) in the moments when any of the mobile robots reaches the
target point (when a mission is over). Each frontier point j is
defined with its position in the environment, denoted as y j ∈ R2.

We define the weight of a mobile robot performing a visit to
frontier point Wi j as a function of cost C, utility U and frontier
occupancy F . Cost function C: (R×Y )→R

+ returns a positive
real number. If i is the index of the mobile robot, and j is the
index of the frontier point, then C(i, j) (denoted in the remaining
text as Ci j) describes the cost of ith robot to visit the jth frontier
point. The cost can be a function of time, energy or, like in our
case, the estimated distance travelled by mobile robot to reach
the target frontier point. The estimated distance is approximated
using Euclidean distance between the mobile robot position pi

and the frontier point position y j:

assigned
frontier point
position ya

ROBOT 1

path

 frontier point
position yj

rf ROBOT 2

Fig. 3. Illustration of the value of the frontier occupancy function
F being different from zero. The mobile robot 1 is assigned
to visit a frontier point a (at position ya), and follows the
path to reach it. When mobile robot 2 calculates weight
for all the current frontier points (green), F for the frontier
point j is different from zero because j is inside the radius
r f .

Ci j = d(pi,y j) =
√

(pix − y jx)2 +(piy − y jy)2. (1)

The utility function U j: (Y ×M )→ R
+ returns a positive real

number. The cells of the occupancy grid M may be marked
as explored space, unexplored space or obstacle. The utility
function is proportional to the number of the unexplored cells k j

within a fixed distance from the frontier point j in the previously
defined radius r:

U j = λuk j, (2)

where λu is a constant determined experimentally. When the
function U j is taken into account, the mobile robot will prefer
frontier points that are surrounded by more unexplored space
even if they are a little bit further. It is assumed that the mobile
robot will detect all unexplored cells around the assigned frontier
point after reaching it.

Another important component is the frontier occupancy function
Fi j: (R×Y )→ R

+, the 2-dimensional Gaussian function with
the position of the mean in a frontier point and with the standard
deviation σ = [r f r f ]

T . If the frontier point j, for which the
mobile robot i is calculating the weight, is in the range of radius
r f from the position of an another mobile robot assigned point
(ya); the value of the frontier occupancy function is calculated
by Gaussian function, and zero otherwise:

Fi j =







λ f e
−

[

(y jx−yax)
2

2σ2
x

+
(y jy−yay)

2

2σ2
y

]

if d(y j,ya)< r f ,

0 otherwise

(3)

where λ f is an experimentally determined constant. An example
of the frontier point position y j, assigned point position ya and
Gaussian function values inside the radius r f is shown in Fig.
3. The function Fi j is used to prevent assigning frontier point to
the mobile robot B if that point is close to a point that is already
assigned to mobile robot A.

For each frontier point j, the weight Wi j of the i-th mobile robot
is calculated as:

Wi j =Ci j −U j +Fi j. (4)

The weight matrix W (N ×M) is formed for N mobile robots
and M frontier points:
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Algorithm 1: Decentralized strategy for mobile robot i

1 while Unexplored do
2 if Request then
3 Send position and current target point to the other

mobile robots;

4 if Mobile robot i has reached the previous target
point then

5 Request positions and current target points from
other mobile robots;

6 Calculate the weight matrix W ;
7 Hungarian algorithm (W );
8 return Mobile robot i is assigned to frontier

point;

W =

























W11 W12 . . . W1 j . . . W1M

W21

. . .
...

...
. . .

...

Wi1

. . .
...

...
. . .

...
WN1 . . . . . . . . . . . . WNM

























. (5)

Since mobile robots have the same set of frontier points, the
only information mobile robots share is their position and
current target point, needed to calculate (1)-(3). The amount
of exchanged data is thus reduced, which enables easier and
faster communication. The weight matrix W represents the input
into the Hungarian algorithm that finds an optimal assignment so-
lution in polynomial time. The Hungarian algorithm is described
in Kuhn (1955) and tested in Kulich et al. (2015). Initially, the
Hungarian algorithm assumes that the number of frontier points
is the same as the number of mobile robots. Due to the fact that
there are usually fewer mobile robots than frontier points, virtual
mobile robots are added and then skipped during the process of
assignment and exploration.

Let the matrix X be the matrix of zeros and ones, where Xi j = 1
iff the mobile robot i is assigned to the frontier point j. Then the
optimal task assignment has weight:

min
X

(

∑
i

∑
j

Wi j Xi j

)

, (6)

anticipating that minimisation of sum will ensure the dispersion
of the mobile robots in the environment.

All frontier points are visible to all mobile robots. When mobile
robot i is assigned to a frontier point according to line 8 in
Algorithm 1, the mobile robot starts to follow the planned path
and navigates to the target frontier point. At the moment when
the mobile robot i reaches the target point (mission is over), a
request is sent to other mobile robots to get their positions and
current target points, and to fill in the weight matrix W , which is
an input to Hungarian algorithm. The described process executes
until the whole environment is explored and a complete map of
the environment is generated. The Fig. 4 illustrates the described
steps and algorithm lines for a mobile robot team.

To summarize with respect to the coordinated strategy from
Burgard et al. (2005), the cost function described in (1) is
the same (probability is taken into account through frontier

Calculate the matrix
W

Hungarian algorithm

Request positions
and current target

points from the
others

Path planning
and navigation

Robot i reached
target point 

YES

NO

Target point

Fig. 4. Execution of the decentralized part of the Fig. 2. Every
mobile robot explores the environment following the steps
from Algorithm 1. The blue robot accomplished the mission
and requests weights from other team members (red). The
algorithm is the same for all mobile robots and always
executes in the moment when a robot reaches a target point.

(a)

(b)

Fig. 5. Maps used for simulation experiments. (a) Original map:
Map from Haehnel (2014). (b) Google Cartographer map:
The map generated using Google Cartographer SLAM
algorithm.

points) and the utility of a frontier point, in contrast to (2),
depends on the number of mobile robots that are moving to that
point. Component (3) is introduced in this paper. Event-based
approach that we use results in less frequent target changes, thus
minimizing the need for re-planning.

4. SIMULATION RESULTS

The proposed strategy is implemented and compared with the
coordinated strategy (Burgard et al. (2005)), one of the first
coordinated approaches which achieved enviable results and is
easy to implement. The frontier detector and filter module are
the same for both algorithm implementations - coordinated and
our decentralized.

4.1 Simulation Setup

Simulations were carried out in well-known robot operating
system (ROS) using the Stage 2D simulator (Vaughan et al.
(2012)), which simulates robot movement and lidar perception
inside a loaded environment map. The ROS Navigation stack is
used to control and direct the mobile robots towards exploration
goals.
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The scenario used in the simulation is the Belgioioso Castle,
available in Haehnel (2014) and shown in Fig. 5. It is a
challenging and a typical office-like scenario with a free space
area of approximately 225 m2. For the simulation, we use a
model of Pioneer P3-DX with maximum speed of 1.3 m/s, laser
range 20 m and 360◦ laser scan window. The algorithms were
tested with teams of two, three and five mobile robots. In our
case, the number of mobile robots was limited because of the
complex simulation setup and computational requirements.

The robots started off in random positions within this world, but
the initial positions are the same for both algorithms to allow
for comparison. The results are presented as averages of 10 runs
for each set. Constants λu, λ f , r and r f were experimentally
determined considering map dimensions and mobile robot laser
ranges and set to 0.9, 1.2, 0.5, 3.0 respectively. The constant
values are set to give more importance to the frontier occupancy
function than the utility function.

4.2 Simulation Results

The exploration process is visualized using the RViz visualiza-
tion tool shown in Fig. 6. During the exploration and mapping
process, the covered area as a function of time was recorded. The
comparison of the coordinated and our decentralized strategy is
shown using the Coverage Ratio (CR) indicator which shows the
percentage of the accessible terrain covered by the mobile robot

team. It is calculated as:
explored cells·100

accessible cells
, where accessible cells

represent free cells. We report the time it took to cover 50, 75,
90 and 98 percent of the environment. Box plots for coverage
ratio in time measured during exploration are shown in Fig. 7.
As can be observed, the decentralized strategy has an advantage
over the coordinated strategy.

When we compare the average exploration time for both strate-
gies, we conclude that adding mobile robots to exploration team

(a)

(b)

Fig. 6. Decentralized exploration with five mobile robots. In
(a), the mobile robots focused on different frontier points
according to the exploration strategy. For instance, instead
of choosing the closest frontier point, the mobile robot 1
navigated to the frontier point that minimized equation
(4). Following the same reasoning as mobile robot 1,
other mobile robots chose their target points. In (b), the
exploration is completed and paths traversed by each
mobile robot are shown.

reduces exploration time. Using our decentralized strategy, it
took 7.8%, 15.3% and 32.6% less time for two, three and five
mobile robots respectively to explore the environment compared
to coordinated strategy. This result shows that our decentralized
strategy (within described setup) performs significantly better
than coordinated, especially for five mobile robots. However,
depending on the area size and configuration, adding of more mo-
bile robots might not pay off in terms of shorter exploration time
due to overcrowding. Additionally, openly available source code
of this work can be found on Github 1 . It includes developed and
implemented decentralized multi-robot exploration strategy as
well as our implementation of the coordinated algorithm. Video
recordings for simulation with multiple mobile robots can be
found on YouTube 2 .

5. CONCLUSION AND FUTURE WORK

In this paper, a modular approach to autonomous decentralized
multi-robot exploration and mapping was presented. This ap-
proach is not only restricted to Google Cartographer SLAM and
dense frontier detection, but may also be applied to different
multi-robot systems. This strategy has resulted in improved
behaviour in terms of exploration time compared to a state-of-
the-art strategy in terms of exploration time.

Even though the goals of this paper were shown to be achieved,
the algorithm is open towards improving. Future research
should consider decentralized map creating. Also, a significant
improvement to this strategy would be a simpler simulator, that
would allow for simulation of more robots.

Another research direction can be an extension to the algorithm
to cope with a limited communication range of the mobile robots.
Future work should also consider a multi-robot system which
uses a (not fully) connected communication graph. Finally, we
would like to take into consideration scenarios in which the
robots may fail as well as time-varying environment scenarios.
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