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Abstract: For robust control and iterative optimization of industrial batch processes with
polytopic uncertainties, this paper proposes a robust output feedback based iterative learning
control (ILC) design in terms of finite frequency range stability specifications. Robust stability
conditions for the closed-loop ILC system along both time and batch directions are first
established based on the generalized Kalman-Yakubovich-Popov lemma and linear repetitive
system theory. To facilitate the ILC controller design with respect to process uncertainties
described in a polytopic form, extended sufficient conditions for the system stability are then
derived in terms of matrix inequalities. Correspondingly, a two-stage heuristic approach is
developed to iteratively compute feasible ILC controller gains for implementation. An illustrative
example is given to demonstrate the effectiveness of the proposed control design.

Keywords: Batch processes, polytopic uncertainties, output feedback, iterative learning
control, finite frequency range design.

1. INTRODUCTION

Batch processes have been widely built up in industrial
applications, such as industrial injection molding (Gao
et al., 2001; Hao et al., 2016) and pharmaceutical crystal-
lization (Nagy, 2009). Over the past decades, many control
methods have been well explored for such processes, see
the survey papers, e.g., Wang et al. (2009) and Ahn et al.
(2007). Among these methods, iterative learning control
(ILC) has attracted considerable attentions since it can
gradually improve the system performance with respect
to trajectory tracking and disturbance rejection by making
use of the historical data.
⋆ This work was supported in part by the NSF China Grants
61903060 and 61633006, the China Postdoctoral Science Foundation
under Grant 2019M651113, the Fundamental Research Funds for
the Central Universities of China (DUT18ZD201), the Foundation
of Key Laboratory of Advanced Process Control for Light Industri-
al (Jiangnan University), Ministry of Education, P. R. China, grant
No. APCLI1807, and National Science Centre in Poland, grant No.
2017/27/B/ST7/01874.

It is well known that frequency-domain specifications are
widely adopted to assess system performance in practi-
cal applications. However, frequency-domain specification-
s are difficult to be converted into tractable conditions
for controller synthesis. In the modern control theory,
this obstacle was overcome by the celebrated Kalman-
Yakubovich-Popov (KYP) lemma (Rantzer, 1996), which
bridged frequency-domain inequalities and tractable linear
matrix inequality (LMI) conditions in the entire frequency
range. It is noted, however, that frequency-domain spec-
ifications in many practical applications are limited to
finite or semi-finite ranges. For example, trial-to-trial error
convergence for ILC system is typically in the ‘low’ fre-
quency range. To extend the applicability of the standard
KYP lemma to a finite frequency range, Iwasaki and Hara
(2005) proposed a generalized KYP lemma. Since then, a
number of finite frequency range control designs have been
explored for continuous or batch operation processes. Li
and Gao (2017) proposed a two-stage heuristic approach
for finite frequency range control design based on output

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1423



feedback. For batch operation processes, finite frequency
range robust ILC designs were proposed for delay-free
systems (Paszke et al., 2013) and state-delay systems (Tao
et al., 2019). However, accurate state measurement must
be available for these ILC designs, which is usually ex-
pensive or unavailable in practice. Although output feed-
back (OF) based ILC was addressed in H ladowski et al.
(2012), the established matrix inequality conditions were
quite conservative due to the introduction of additional
equality constraints. Besides, uncertainties widely exist in
industrial processes due to modeling error or parameter
drifting etc. To the best of our knowledge, robust finite
frequency range OF based ILC design for batch processes
with uncertainties remains open as yet, which motivates
this study.

In this paper, a novel robust OF based ILC design in
terms of finite frequency range specifications is proposed
for batch processes with polytopic uncertainties. Based
on the generalized KYP lemma, together with the matrix
dilatation technique, sufficient conditions are established
to guarantee robust stability of the resulting ILC system
along the pass in a repetitive system setting. The cor-
responding ILC controller gains are iteratively solved by
a two-stage heuristic approach. The effectiveness of the
proposed design is validated by an illustrative example.

Notations: Z , {1, 2, 3, . . .}. The superscripts “−1”, “⊥”,
“ ∗ ” and “⊤” stand for inverse, null space, conjugate
transpose and transpose of a matrix, respectively. Rn,
Hn, Rn×m and Cn×m denote n-dimensional Euclidean
space, Hermitian matrix space, n × m real matrix space
and complex matrix space, respectively. I or 0 indicates
the identity or zero matrix (vector) with appropriate
dimensions. For any symmetric matrix P ∈ Rn×n, P ≻
0 (≺ 0) indicates a positive (negative) definite matrix,
where “(⋆)” indicates the symmetric elements. For two

integers a and b satisfying a ≤ b, denote I[a, b] , {a, a +
1, . . . , b}. For matrices Φ and P , Φ ⊗ P is the Kronecker
product. For a square matrix A, sym{A} indicates A∗+A.
For G ∈ Cn×m and Π ∈ Hn+m, a function σ : Cn×m ×

Hn+m → Hm is defined by σ(G,Π) ,
[
G
I

]∗
Π

[
G
I

]
.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following batch process with polytopic un-
certainties{

xk(t + 1) = A(θ)xk(t) + B(θ)uk(t),
yk(t) = Cxk(t),
xk(0) = x0, t ∈ I[0, T − 1], k ∈ Z,

(1)

where t and k represent the time and batch indices, respec-
tively; T is time period of each batch; xk(t) ∈ Rn, yk(t) ∈
Rp and uk(t) ∈ Rm are the state, output and input of
the process; x0 is the identical initial condition for each
batch. Matrices G(θ) , (A(θ), B(θ)) are real-valued, time-
invariant, and assumed to belong to a polytopic parametric
domain defined as G , {G(θ)|G(θ) =

∑s
i=1 θiGi, θ ∈ ∆},

where Gi , (Ai, Bi) and ∆ , {θ ∈ Rs|
∑s

i=1 θi = 1, θi ≥
0, i = 1, . . . , s}. Constant matrices Gi, i = 1, . . . , s denote
G(θ) at the s vertices of G, which are assumed to be
known.

In general, the output tracking error in the current batch
is defined as

ek(t) , yk(t)− yr(t), (2)

where yr(t) represents the desired reference trajectory.

For the batch process in (1), a commonly used ILC
updating law takes the following form

uk(t) = uk−1(t) + rk(t), (3)

where rk(t) is referred to as the control update to be
determined, the initial value of uk(t), i.e., u0(t) is usually
reset to zero for batch operation.

It follows from (1)-(3) that

ek(t + 1) = ek−1(t + 1) + Cδxk(t + 1),

δxk(t + 1) = A(θ)δxk(t) + B(θ)rk(t),
(4)

where δxk(t) = xk(t) − xk−1(t). To facilitate practical
applications, the following output feedback (OF) based
iterative learning control (ILC) law is adopted

rk(t) = K1δyk(t) + K2ek−1(t + 1), (5)

where K1 ∈ Rm×p and K2 ∈ Rm×p are learning gains to
be designed. Therefore, an equivalent description of the
discrete linear repetitive system (DLRS) is formulated as{

Xk+1(t + 1) = A(θ)Xk+1(t) + B(θ)ek(t),

ek+1(t) = C(θ)Xk+1(t) +D(θ)ek(t),
(6)

where Xk(t) , δxk(t− 1), and

A(θ) = A(θ) + B(θ)K1C, B(θ) = B(θ)K2,

C(θ) = C(A(θ) + B(θ)K1C), D(θ) = I + CB(θ)K2.

For any fixed θ ∈ ∆, the transfer function from ek to ek+1

is given by

G(ejω , θ) , C(θ)(ejωI −A(θ))−1B(θ) +D(θ), ω ∈ [−π, π]. (7)

Define Ω , [−ωl, ωl] for a low frequency (LF) range,
[ω1, ω2] for a middle frequency (MF) range, and [ωh, π] for
a high frequency (HF) range, respectively, with ω1, ω2, ωl

and ωh in [−π, π]. For the uncertain batch process in (1),
our aim is to design a robust OF based ILC scheme such
that the system output can track the desired reference
trajectory as close as possible over a finite frequency range
Ω against polytopic uncertainties.

To this end, we present the following technical lemmas.

Lemma 1. (Rogers et al., 2005) The uncertain DLRS
described by (6) is robustly stable for all θ ∈ ∆ along
the pass if and only if

i) ρ(D(θ)) < 1,
ii) ρ(A(θ)) < 1,

iii) all eigenvalues of G(ejω, θ), ∀ω ∈ [−π, π] have modu-
lus strictly less than unity.

Lemma 2. (Iwasaki and Hara, 2005) Let Π ∈ H2p, Φ ∈ H2,
Ψ ∈ H2, and the state-space realization of stable G(ejω, θ)
in (7) be given. For arbitrarily fixed θ ∈ ∆, the following
statements are equivalent:

(i) σ(G(ejω, θ),Π) < 0 holds for all ω ∈ Ω.
(ii) There exist matrices P = P⊤, Q ≻ 0 such that[

A(θ) B(θ)
I 0

]⊤
(Φ⊗ P + Ψ⊗Q)

[
A(θ) B(θ)
I 0

]
[
C(θ) D(θ)
0 I

]⊤
Π
[
C(θ) D(θ)
0 I

]
≺ 0,

(8)

where Φ = [1 0; 0 −1] and Ψ is given in the following
table with ωc = (ω1 + ω2)/2 and ωm = (ω2 − ω1)/2.
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Ω [−ωl, ωl](LF) [ω1, ω2](MF) [ωh, π](HF)

Ψ

[
0 1
1 −2cos(ωl)

] [
0 ejωc

e−jωc −2cos(ωm)

] [
0 −1
−1 2cos(ωh)

]
3. A HEURISTIC APPROACH FOR OUTPUT

FEEDBACK BASED ILC DESIGN

For ease of presentation, the parameter θ is omitted in the
following analysis. Note that the matrix inequality in (8)
can be rewritten as

Ẽ⊤Ξ̃Ẽ ≺ 0, (9)

where

Ẽ ,
[
A⊤ I C⊤ 0
B⊤ 0 D⊤ I

]⊤
, Ξ̃ ,

[
Φ⊗ P + Ψ⊗Q 0

0 Π

]
.

To ensure that conditions (i) and (ii) of Lemma 1 hold,
the following inequalities are introduced

A⊤PsA− Ps ≺ 0, Ps ≻ 0, (10)

D⊤PeD − Pe ≺ 0, Pe ≻ 0, (11)

which can be further formulated, respectively, as

Ẽ⊤
s (Φ⊗ Ps)Ẽs ≺ 0, (12)

Ẽ⊤
e (Φ⊗ Pe)Ẽe ≺ 0, (13)

where Ẽs =[A⊤ I]⊤, Ẽe =[D⊤ I]⊤, and Φ is the same as
that in Lemma 2. Moreover, by taking Π = diag{I,−µ2I}
with µ ∈ (0, 1] in (8), condition (iii) of Lemma 1 can be
guaranteed over a finite frequency range Ω using Lemma
2 . Inspired by the work in Li and Gao (2017), it follows
that inequalities in (9), (12) and (13) are, respectively,
equivalent to the dilated matrix inequality conditions
below[

Ẽ

K1C − L1 K2 − L2

]⊤
Ξ

[
Ẽ

K1C − L1 K2 − L2

]
≺ 0, (14)[

Ẽs

K1C − L1

]⊤
Ξs

[
Ẽs

K1C − L1

]
≺ 0, (15)[

Ẽe

K2 − L2

]⊤
Ξe

[
Ẽe

K2 − L2

]
≺ 0, (16)

where L1 ∈ Rm×n, L2 ∈ Rm×p, and

Ξ ,
[
Ξ̃ 0
0 0

]
, Ξs ,

[
Φ⊗ Ps 0

0 0

]
, Ξe ,

[
Φ⊗ Pe 0

0 0

]
. (17)

Next, we give the following condition characterizing the
robust stability of the resulting DLRS along the pass by
using the dilated conditions in (14)-(16).

Theorem 3. Let matrices Π = diag{I,−µ2I}, K1, K2,
and the state-space realization of G(ejω, θ) be given with
µ ∈ (0, 1]. For any fixed θ ∈ ∆, the DLRS in (6) is robustly
stable along the pass over the finite frequency range Ω if
there exist matrices P = P⊤, Q ≻ 0, Ps ≻ 0, Pe ≻ 0, X11,
X12, X21, X22, Fs, Fe, L1, L2 and R such that

Ξ + sym{XΣ} ≺ 0, (18)

Ξs + sym{XsΣs} ≺ 0, (19)

Ξe + sym{XeΣe} ≺ 0, (20)

where Ξ, Ξs and Ξe are defined in (17), and

X ,
[
X11 X12 0
X21 X22 0

0 0 R

]
, Xs ,

[
Fs 0
0 R

]
, Xe ,

[
Fe 0
0 R

]
,

Σ ,

−I A + BL1 0 BL2 B
0 CA + CBL1 −I I + CBL2 CB
0 K1C − L1 0 K2 − L2 −I

 ,

Σs ,
[
−I A + BL1 B
0 K1C − L1 −I

]
, Σe ,

[
−I I + CBL2 CB
0 K2 − L2 −I

]
.

Proof. Note that the DLRS in (6) is robustly stable along
the pass over a finite frequency range Ω if matrix inequal-
ities in (14)-(16) are satisfied with Π = diag{I,−µ2I} and
µ ∈ (0, 1]. Thus, it suffices to prove that conditions in (14)-
(16) are equivalent to those in (18)-(20), respectively.

(Sufficiency) By multiplying Σ⊥⊤
, Σ⊥⊤

s , Σ⊥⊤

e and their
transposes on both sides of (18)-(20), it follows that

Σ⊥⊤
ΞΣ⊥ ≺ 0, Σ⊥⊤

s ΞsΣ
⊥
s ≺ 0, Σ⊥⊤

e ΞeΣ
⊥
e ≺ 0. (21)

Moreover, it is noted that Σ⊥, Σ⊥
s and Σ⊥

e can be chosen,
respectively, as

Σ⊥ =

[
Ẽ

K1C − L1 K2 − L2

]
,

Σ⊥
s =

[
Ẽs

K1C − L1

]
, Σ⊥

e =

[
Ẽe

K2 − L2

]
.

(22)

Therefore, it is not difficult to find that inequalities in (21)
are exactly those in (14)-(16), respectively.
(Necessity) Suppose that inequalities in (14)-(16) hold
true, then inequalities in (9), (12) and (13) also hold. Let

Σ̃ =

[
−I A 0 B
0 C −I D

]
, Σ̃s = [−I A] , Σ̃e = [−I D] , (23)

it is easy to get Σ̃⊥ = Ẽ, Σ̃⊥
s = Ẽs, Σ̃⊥

e = Ẽe. Thus, (9),
(12) and (13) can be rewritten as

Σ̃⊥⊤
Ξ̃Σ̃⊥≺0, Σ̃⊥⊤

s (Φ⊗ Ps)Σ̃
⊥
s ≺0, Σ̃⊥⊤

e (Φ⊗ Pe)Σ̃
⊥
e ≺0.

With the help of the Finsler’s Lemma in de Oliveira and
Skelton (2001), it follows that

∃X̃, Ξ̃ + sym{X̃Σ̃} ≺ 0, (24)

∃X̃s, Φ⊗ Ps + sym{X̃sΣ̃s} ≺ 0, (25)

∃X̃e, Φ⊗ Pe + sym{X̃eΣ̃e} ≺ 0, (26)

then, for a sufficiently large ε > 0, there always hold that[
Ξ̃ + sym{X̃Σ̃} (⋆)

[B⊤ B⊤C⊤]X̃⊤ −2εI

]
≺ 0,[

Φ⊗ Ps + sym{X̃sΣ̃s} (⋆)

B⊤X̃⊤
s −2εI

]
≺ 0,[

Φ⊗ Pe + sym{X̃eΣ̃e} (⋆)

B⊤C⊤X̃⊤
e −2εI

]
≺ 0,

(27)

which are further equivalent to

Ξ + sym

{[
X̃ 0
0 εI

]Σ̃

[
B
CB

]
0 −I

}
≺ 0, (28)

Ξs + sym

{[
X̃s 0
0 εI

] [
Σ̃s B
0 −I

]}
≺ 0, (29)

Ξe + sym

{[
X̃e 0
0 εI

] [
Σ̃e CB
0 −I

]}
≺ 0, (30)
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where Ξ and Ξs are defined in (17). By taking

X̃ =

[
X11 X12

X21 X22

]
, X̃s = Fs, X̃e = Fe,

R = εI, L1 = K1C, L2 = K2,

(31)

it is easy to find that inequalities in (28)-(30) are exactly
those in (18)-(20), respectively. The proof is complete. �
Remark 4. It is not difficult to find from the proof of
Theorem 3 that L1 and L2 can be viewed as learning gains
of a state feedback (SF) based ILC law, i.e.,

rk(t) = L1δxk(t) + L2ek−1(t + 1), (32)

for the considered batch process in (1), which has been well
developed and also recognized as the base of the two-stage
heuristic algorithm for the OF based ILC design.

Remark 5. The results in Theorem 3 can be easily extend-
ed to parameter-dependent matrix inequalities by replac-
ing X11, X12, X21, X22, Fs, Fe, P , Q, Ps and Pe as X11(θ),
X12(θ), X21(θ), X22(θ), Fs(θ), Fe(θ), P (θ), Q(θ), Ps(θ)
and Pe(θ), respectively. Besides, it is noted that R, L1

and L2 are set to be parameter-independent due to the
independence of ε,K1,K2 and C in (31) with respect to θ.

The following result gives a parametrization of the desired
OF based ILC gains.

Theorem 6. Let the matrix Π = diag{I,−µ2I} and the
state-space realization of G(ejω, θ) be given with µ ∈ (0, 1].
The uncertain DLRS in (6) is robustly stable along the
pass over the finite frequency range Ω for any θ ∈ ∆ if
there exist matrices P (θ) = P⊤(θ), Q(θ) ≻ 0, Ps(θ) ≻ 0,
Pe(θ) ≻ 0, X11(θ), X12(θ), X21(θ), X22(θ), Fs(θ), Fe(θ),

L1, L2, R, K̂1 and K̂2 such that the following inequalities
are satisfied

Ξ(θ) + sym{Λ(θ)} ≺ 0, (33)

Ξs(θ) + sym{Λs(θ)} ≺ 0, (34)

Ξe(θ) + sym{Λe(θ)} ≺ 0, (35)

where Γ7 , K̂1C −RL1, Γ8 , K̂2 −RL2, and

Λ(θ) ,

−X11(θ) Γ1(θ) −X12(θ) Γ2(θ) Γ3(θ)
−X21(θ) Γ4(θ) −X22(θ) Γ5(θ) Γ6(θ)

0 Γ7 0 Γ8 −R

 ,

Λs(θ) ,
[
−Fs(θ) Γ9(θ) Fs(θ)B(θ)

0 Γ7 −R

]
,

Λe(θ) ,
[
−Fe(θ) Γ10(θ) Fe(θ)CB(θ)

0 Γ8 −R

]
,

Γ1(θ) , X11(θ)(A(θ) + B(θ)L1)

+ X12(θ)C(A(θ) + B(θ)L1),

Γ2(θ) , X11(θ)B(θ)L2 + X12(θ) + X12(θ)CB(θ)L2,

Γ3(θ) , X11(θ)B(θ) + X12(θ)CB(θ),

Γ4(θ) , X21(θ)(A(θ) + B(θ)L1)

+ X22(θ)C(A(θ) + B(θ)L1),

Γ5(θ) , X21(θ)B(θ)L2 + X22(θ) + X22(θ)CB(θ)L2,

Γ6(θ) , X21(θ)B(θ) + X22(θ)CB(θ),

Γ9(θ) , Fs(θ)A(θ) + Fs(θ)B(θ)L1,

Γ10(θ) , Fe(θ) + Fe(θ)CB(θ)L2.

Moreover, if the above matrix inequalities are feasible,
then the OF based ILC gains can be computed by

K1 = R−1K̂1, K2 = R−1K̂2. (36)

Proof. By replacing X11, X12, X21, X22, Fs, Fe, P , Q,
Ps and Pe as X11(θ), X12(θ), X21(θ), X22(θ), Fs(θ), Fe(θ),

P (θ), Q(θ), Ps(θ), Pe(θ) and letting K̂1 = RK1, K̂2 =
RK2, we have X(θ)Σ(θ) = Λ(θ), Xs(θ)Σs(θ) = Λs(θ)
and Xe(θ)Σe(θ) = Λe(θ). Besides, it follows from (34)
that −R − R⊤ ≺ 0, which implies that R is invertible.
Based on Theorem 3, the OF based ILC law with K1 =
R−1K̂1, K2 = R−1K̂2 ensures the robust stability of
the resulting DLRP in (6) along the pass over the finite
frequency range Ω. The proof is complete. �

It is observed that conditions in (33)-(35) are obviously
infinitely dimensional with respect to θ. To circumvent this
issue, the following extended sufficient condition is given
in terms of a finite number of matrix inequality conditions.

Corollary 7. Let the matrix Π = diag{I,−µ2I} and the
state-space realization of G(ejω, θ) be given with µ ∈ (0, 1].
The uncertain DLRS in (6) is robustly stable along the
pass over the finite frequency range Ω for any θ ∈ ∆ if
there exist matrices Pi = P⊤

i , Qi ≻ 0, Ps,i ≻ 0, Pe,i ≻ 0,
X11,i, X12,i, X21,i, X22,i, Fs,i, Fe,i, i = 1, . . . , s, L1, L2,

R, K̂1 and K̂2 such that the following inequalities hold for
1 ≤ i ≤ j ≤ s

Θi,j , Ξi + Ξj + sym{Λi,j + Λj,i} ≺ 0, (37)

Θs,i,j , Ξs,i + Ξs,j + sym{Λs,i,j + Λs,j,i} ≺ 0, (38)

Θe,i,j , Ξe,i + Ξe,j + sym{Λe,i,j + Λe,j,i} ≺ 0, (39)

where Ξi, Ξs,i and Ξe,i are Ξ, Ξs and Ξe in Theorem 3
with P , Q, Ps and Pe replaced by Pi, Qi, Ps,i and Pe,i,
respectively, Λi,j , Λs,i,j and Λe,i,j are Λ, Λs and Λe in
Theorem 6 with X11(θ), X12(θ), X21(θ), X22(θ), Fs(θ),
Fe(θ) replaced by X11,i, X12,i, X21,i, X22,i, Fs,i, Fe,i and
A(θ), B(θ) replaced by Aj , Bj , respectively.

Proof. By taking P (θ), Q(θ), Ps(θ), Pe(θ), X11(θ),
X12(θ), X21(θ), X22(θ), Fs(θ), Fe(θ) as matrix functions
linearly dependent on θ, we have

Ξ(θ) + sym{Λ(θ)} =

s∑
i=1

θ2i
(
Ξi + sym{Λi,i}

)
+

s−1∑
i=1

s∑
j=i+1

θiθj
(
Ξi + Ξj + sym{Λi,j + Λj,i}

)
,

Ξs(θ) + sym{Λs(θ)} =
s∑

i=1

θ2i
(
Ξs,i + sym{Λs,i,i}

)
+

s−1∑
i=1

s∑
j=i+1

θiθj
(
Ξs,i + Ξs,j + sym{Λs,i,j + Λs,j,i}

)
,

Ξe(θ) + sym{Λe(θ)} =
s∑

i=1

θ2i
(
Ξe,i + sym{Λe,i,i}

)
+

s−1∑
i=1

s∑
j=i+1

θiθj
(
Ξe,i + Ξe,j + sym{Λe,i,j + Λe,j,i}

)
.

Therefore, conditions in (33)-(35) hold true if conditions
in (37)-(39) are satisfied, which ensure the robust stability
of the resulting ILC system over the finite frequency range
Ω by Theorem 6. The proof is complete. �
Remark 8. Differing from the work in Li and Gao (2017),
where only Lyapunov matrices are parameter-dependent,
additional free-weighting matrices, e.g., X11, X12, X21,
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X22, Fs, are also considered to be parameter-dependent
due to the independence of C with respect to θ.

With given L1 and L2, conditions in (37)-(39) are ob-
viously linear with respect to Pi, Qi, Ps,i, Pe,i, X11,i,

X12,i, X21,i, X22,i, Fs,i, Fe,i, i = 1, . . . , s, R, K̂1 and

K̂2. The following heuristic algorithm is therefore sum-
marized to design the OF based ILC law by Corollary
7, where I , diag{I2n+2p, 0m}, Is , diag{I2n, 0m} and

Ie,diag{I2p, 0m}.

Algorithm 1 (Design of OF based ILC law)

1. Given a specified tolerance δ > 0, the initial SF
based ILC gains L1

1 and L1
2 are chosen such that

the resulting DLRS is robustly stable over the finite
frequency range Ω for all θ ∈ ∆. Set k = 1.

2-1. Solve the following LMI problem to obtain ϵk1

min ϵk1 = ϵ

s.t.

{
Θi,j ≺ ϵI, Θs,i,j ≺ ϵIs,
Θe,i,j ≺ ϵIe, 1 ≤ i ≤ j ≤ s,

for Pi = P⊤
i , Qi ≻ 0, Ps,i ≻ 0, Pe,i ≻ 0,

X11,i, X12,i, X21,i, X22,i, Fs,i, Fe,i,

R, K̂1, K̂2, ϵ,

with fixed L1 = Lk
1 and L2 = Lk

2 .

(40)

If ϵk1 ≤ 0, then K1 = R−1K̂1 and K2 = R−1K̂2 are
the desired OF based ILC gains, and exit; otherwise,
denote Xk

11,i = X11,i, Xk
12,i = X12,i, Xk

21,i = X21,i,

Xk
22,i = X22,i, F k

s,i = Fs,i, F k
e,i = Fe,i, i = 1, . . . , s

and Rk = R, go to the next step;
2-2. Solve the following LMI problem to obtain ϵk2

min ϵk2 = ϵ

s.t.

{
Θi,j ≺ ϵI, Θs,i,j ≺ ϵIs,
Θe,i,j ≺ ϵIe, 1 ≤ i ≤ j ≤ s,

for Pi = P⊤
i , Qi ≻ 0, Ps,i ≻ 0, Pe,i ≻ 0,

L1, L2, K̂1, K̂2, ϵ,

with fixed X11,i = Xk
11,i, X12,i = Xk

12,i,

X22,i = Xk
22,i, X21,i = Xk

21,i, R = Rk,

Fs,i = F k
s,i, Fs,i = F k

e,i, i = 1, . . . , s.

(41)

If ϵk2 ≤ 0, then K1 = R−1K̂1 and K2 = R−1K̂2 are
the desired OF based ILC gains, and exit; otherwise,
set Lk+1

1 = L1 and Lk+1
2 = L2, go to the next step;

2-3. If |ϵk1 − ϵk2 |/ϵk2 < δ, then no desired OF based ILC
gains can be found, and exit; else, set k ← k + 1, and
go back to Step 2-1.

Remark 9. It is easy to find from Algorithm 1 that ϵk1 and

ϵk2 satisfy ϵk1 ≥ ϵk2 ≥ ϵk+1
1 for all k = 1, 2, . . . , which means

that both ϵk1 and ϵk2 are non-increasing.

To find the initial SF based ILC law in Algorithm 1, the
following theorem is established.

Theorem 10. Let the matrix Π = diag{I,−I} and the
state-space realization of G(ejω, θ) be given. The uncertain
DLRS in (6) is robustly stable along the pass over the finite
frequency range Ω for any θ ∈ ∆ under the SF based ILC

law in (32) if there exist matrices S̄i ≻ 0, P̄i ≻ 0, Q̄i ≻ 0,
i = 1, . . . , s, W̄ , L̄1 and L̄2 such that for all i = 1, . . . , s[

S̄i − W̄ − W̄⊤ φi

(⋆) −S̄i

]
≺ 0, (42)

Ξ̄11,i Ξ̄12,i − W̄⊤ 0 0
(⋆) Ξ̄22,i + sym{φi} BiL̄2 φ⊤

i C
⊤

(⋆) (⋆) −I I + CBiL̄2

(⋆) (⋆) (⋆) −I

 ≺ 0, (43)

where φi = AiW̄ + BiL̄1, Ξ̄11,i = −P̄i,

Ξ̄12,i =

Q̄i, (LF),

ejωcQ̄i, (MF),

−Q̄i, (HF),

Ξ̄22,i =

P̄i − 2cos(ωl)Q̄i, (LF),

P̄i − 2cos(ωm)Q̄i, (MF),

P̄i + 2cos(ωh)Q̄i, (HF).

Moreover, if the above LMIs are feasible, then the SF based
ILC gains can be computed by

L1 = L̄1W̄
−1, L2 = L̄2. (44)

Proof. The proof of this theorem follows immediately
from that of Theorem 5 in Paszke et al. (2013) and
therefore is omitted here. �

4. CASE STUDY

Consider an injection molding process with the following
parameters (Shi et al., 2006; Hao et al., 2019)

A =

[
1.607 + λ1 1
−0.6086 + λ2 0

]
, B =

[
1.239
−0.9282

]
, C =

[
1
0

]⊤
,

where the uncertain parameters λ1 and λ2 belong to the
intervals [−0.0804, 0.0804] and [−0.0304, 0.0304], respec-
tively. Therefore, there are four vertices for this case. For
illustration, the desired output trajectory

yr(t) =


200, 0 ≤ t ≤ 100,

200 + 5(t− 100), 100 < t ≤ 120,

300, 120 < t ≤ 200,

(45)

together with its frequency spectrum are plotted in Fig. 1.
Note that the initial part of yr(t) is smoothed by a user-
specified prefilter Gf (z)=(z−1+z−2)/(3−z−1) for practical
implementation. It is seen from Fig. 1 that the important
frequency range is from 0 to 0.1 Hz. So Ψ in Algorithm
1 can be taken as that in Lemma 2 with ωl = 0.6283.
By solving the LMI conditions in Theorem 10, the SF
based ILC gains can be obtained as L1 = [−1.2725 −
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Fig. 1. Desired trajectory and its frequency spectrum
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0.7982] and L2 = −0.4184. Moreover, parameters σ and
µ in Algorithm 1 are taken as σ = 10−4 and µ = 0.5.
By running the Algorithm 1 with the computed L1 and
L2 as initial values, a feasible OF based ILC law can
be computed as K1 = −0.9699, K2 = −0.8195. For the
nominal case, the output feedback based ILC proposed in
H ladowski et al. (2012) is also performed for comparison,
where the learning gains are obtained as K1 = −0.9257,
K2 =1.3335×10−7 and K3 =0.2946 by solving the condition
given therein. The tracking results are shown in Fig. 2,
while the output tracking error in terms of the averaged

tracking error (ATE(k) =
∑T

t=1 |ek(t)|/T ) is plotted in
Fig. 3. It is seen that perfect tracking is achieved by almost
3 cycles, while almost 15 cycles are needed to achieve the
same performance by the ILC method given in H ladowski
et al. (2012). For the presence of the above polytopic
uncertainties, the corresponding ATE is recorded in Fig. 4.
It is shown that the tracking performance is improved
gradually from batch to batch by the proposed design.
Note that the ILC method in H ladowski et al. (2012)
cannot be applied any more under such uncertainties.

5. CONCLUSION

In this paper, a novel OF based ILC scheme has been
proposed for batch processes with polytopic uncertainties.

A two-stage heuristic approach is developed to iteratively
compute the ILC gains based on a pre-designed state
feedback based ILC gains. Robust stability conditions are
established for the resulting closed-loop ILC system, along
with an extended sufficient condition with respect to a
finite number of matrix inequalities to facilitate the ILC
design. An illustrative example of injection molding pro-
cess has well demonstrated the effectiveness and advantage
of the proposed design.
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