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Universitat Politècnica de Catalunya (UPC), Rambla Sant Nebridi, 10,
08222, Terrassa, Spain, (e-mail: eugenio.alcala@upc.edu,

vicenc.puig@upc.edu)

Abstract: This paper proposes a solution for the integrated longitudinal and lateral control
problem of autonomous vehicles. A mixed model including kinematic and dynamic behaviour of
the vehicle is used to design a single controller to achieve stability and tracking performances.
The proposed solution is based on the Linear Parameter Varying (LPV) control approach, where
an output-feedback dynamical controller is designed based on Linear Matrix Inequalities (LMIs).
The control synthesis is carried on using the gridded-based approach to reduce the conservatism.
Simulation results show the stabilization of the vehicle with robustness in tracking performances,
in the presence of the road friction coefficient disturbances.
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1 INTRODUCTION AND MOTIVATION

The field of autonomous vehicles has been expanding
rapidly in the last decade, in order to meet road safety and
environmental objectives. Autonomous driving aims to
avoid accidents, reduce fuel consumption, improve traffic
flow (Németh et al. (2017)). It also provides passenger
comfort in critical situations and make it possible to
car travelling for everyone regardless of their abilities or
conditions. However, control of autonomous vehicles is not
trivial since they are equipped with many sensors and
actuators (Navas (2018)).

Several models (linear or not) can be considered for control
design objectives. For example, in Paden et al. (2016),
the authors neglect the dynamics of the vehicle for path-
planning design. In Navas (2018), an LTI model is used
including the dynamics of the vehicle, whereas in Alcala
et al. (2018) and Alcala et al. (2019), the authors prefer to
use a Linear Parameter Varying (LPV) bicycle model to
track normal and racing car references, respectively. How-
ever, in the field of heavy vehicles, the vertical dynamics
cannot be neglected, as observed in Vu et al. (2016). In
our work, a more complete model, considering kinematic
and dynamic equations, rewritten in the LPV form, is
proposed. In addition to increasing accuracy, the LPV
approach represents the nonlinear model without using lin-
earization, allowing to use linear-like control design tools
(see Sename et al. (2013)). In Wit et al. (2004) and Alcala
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et al. (2018), the authors design a cascaded control scheme
for the kinematic and the dynamic controls. This strategy
adds some limitations and constraints into the control
design. In this paper, the model is improved by mixing
the kinematic and the dynamic bicycle models which will
simplify the control scheme.

Vehicle control methodologies that include the vehicle,
the path, and the driver are currently being developed
at several research centers and automotive suppliers. The
importance of the used control strategy lies in its simplicity
and the achieved performance. The main objective in this
work is to track an offline trajectory safely by minimizing
the external disturbances and noises (from the driver,
sensors, etc.), and dealing with uncertainties due to some
neglected (or unmodeled) dynamics or fixed parameters.
Referring to these demanded performances, robust control
is a suitable technique to achieve our goal where it is able
to deal with model uncertainties and disturbance rejection,
see Scherer (2001). In Alcala et al. (2018), the authors
use the LMI-based LPV-LQR/H2 cascaded controllers
with an LPV UIO observer to estimate the road friction
force and achieve less tracking error. The controller is
computed offline using the polytopic approach. Moreover,
in Alcala et al. (2019), the authors apply the LPV-
MPC approach, for a racing car, where the controller is
computed online with reducing the computational cost.
The main contributions of this study are as follows:

• Extend the work done in Alcala et al. (2018) by
combining the kinematic and the dynamic bicycle
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Fig. 1. Vehicle bicycle model

models which helps in simplifying the control scheme
compared to the cascade form.
• Formulate a quasi-LPV model of the combined vehicle

model with a parameter-varying input matrix and
show why the gridded-based LPV approach is more
preferable to be used than of the polytopic one.
• Design an LPV/H∞ control for the combined model

to achieve tracking and disturbance/noise rejection
performances. Unlike the existing works, the gridded-
based approach, is considered using a parameter-
dependent Lyapunov function that decreases the pos-
sibility of conservatism.
• Simulation results, in normal and critical situations,

are shown to ensure the vehicle stability.

2 MODEL FORMULATION

This section focuses on vehicle modelling for control de-
sign. The main dynamics which are usually considered in
the vehicle model are the longitudinal, lateral and vertical
dynamics which are well described in Pacejka (2005) and
Rajamani (2011). Simplified models are used for control
design such as the bicycle model (two-wheels model). How-
ever, to achieve the tracking performance at high speeds,
the kinematic and the dynamic equations are required.

From Fig. 1 and referring to Pacejka (2005), Rajamani
(2011), and Alcala et al. (2019), the kinematic and dy-
namic models are derived below.

2.1 Kinematic Model

The kinematic model assumes that the tire-slip of the
vehicle with the ground is null. This kind of model is
mainly used at low speed systems such as mobile-robots
as well as for the vehicles in automatic parking tasks, also
it is very useful for motion planning (Paden et al. (2016)).
It is derived geometrically where no forces are considered,
as if the vehicle is a point-object at the vehicle’s center of
mass. It is based on the velocity vector movement in order
to compute longitudinal and lateral velocities referenced
to the global inertial frame. The kinematic equations are
expressed as:  ẋ = vx cos θ

ẏ = vx sin θ

θ̇ = w,
(1)

where x, y and θ specifies the position in meters (m)
and the orientation in radians (rad) respectively, with
respect to the global frame (x, y). vx and w represents

the longitudinal velocity in m
s and the yaw rate in rad

s ,
respectively.

2.2 Dynamic Model

The consideration of the tire-slip in the model is vital
for high speed vehicles and especially in the racing one.
Thus, in such vehicles, the dynamic model is used to
introduce the side-slip angle with the applied forces on
the wheels (see Fig. 1). This model can better use the
vehicle’s capabilities for executing aggressive maneuvers
that will be significant in planning motions with high
accelerations and jerks. The dynamic model is derived
using physical concepts by applying Newton’s second law
to the longitudinal and lateral motions of the vehicle
(Pacejka (2005)), leading to:

v̇x =
−Fyf sin δ−µmg

m + wvy + a

v̇y =
Fyf cos δ+Fyr

m − wvx
ẇ =

Fyf lf cos δ−Fyrlr
I ,

(2)

where vx, vy and w are the longitudinal, lateral and
rotational velocities in the vehicle’s frame. δ and a are
the control inputs, the steering angle of the front tire
and the longitudinal acceleration respectively. Fyf and
Fyr are the lateral forces applied to the front and rear
tires, respectively. I, m, lf and lr are the vehicle’s inertia,
mass and the distance from the center of gravity to the
front and rear wheel axes respectively. µ and g are the
friction coefficient and the gravity acceleration constant
respectively.

Fyf and Fyr can be modelled using Pacejka’s tire model
(Pacejka (2005)) as follows:

Fyf = c3 sin(c2 tan−1(c1αf )); αf = δ − tan−1(
vy
vx

+
lfw
vx

),

Fyr = c3 sin(c2 tan−1(c1αr)); αr = − tan−1(
vy
vx
− lrw

vx
),

(3)
where c1, c2 and c3 are constants that should be empiri-
cally determined. It is worth mentioning that the above
tire model shows a nonlinear-dependency of Fyf and Fyr
with respect to α. Thus, assuming small α, the equations
can be reduced to:

Fyf = Cf (δ − vy
vx
− lfw

vx
),

Fyr = Cr(− vyvx + lrw
vx

),
(4)

where Cf and Cr represent the stiffness of the front and
rear wheel-tires respectively.

The specifications of the racing car and the road used in
this work are shown in the following table:

lf = 0.902 m Cf = 17974 N
rad

lr = 0.638 m Cr = 24181 N
rad

m = 196 Kg µ = 0.5
I = 93 Kg.m2 g = 9.81 m

s2

2.3 LPV Model Formulation

There are many possibilities to formulate a nonlinear
system as an LPV state-space representation, where one
should first choose the parameters of the system. The
parameters can be state-dependent (that results in quasi-
LPV system), or they can be time-dependent (Boyd et al.
(1994)).
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In this paper, the kinematic-error model is used for the
control design to achieve tracking performance. Since the
equations in (1) were derived in the global frame, the
following rotation matrix is used to write them in terms
of the vehicle’s frame as follows:[

xe
ye
θe

]
=

[
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

][
xd − x
yd − y
θd − θ

]
(5)

where xd, yd and θd specify the position and the yaw
angle of the plan to be tracked, respectively. xe, ye and
θe represent the longitudinal, lateral and rotational errors,
respectively, in the vehicle’s frame. From (1), and using
the non-holonomic constraint of the rear wheels of the
form: ẋsin(θ) = ẏcos(θ), the derivative of (5) gives the
kinematic-error model differential equations as follows: ẋe = wye + vxd

cos θe − vx
ẏe = −wxe + vxd

sin θe
θ̇e = wd − w,

(6)

where vxd
and wd are the desired longitudinal and rota-

tional velocities to be reached by the vehicle, respectively.

To avoid a cascaded kinematic and dynamic controls
scheme, both models are mixed to formulate the following
quasi-LPV state-space representation, considering ρ(t) =

[vx w δ θe vxd ]
T

:

G(ρ)

{
ẋ(t) = Alpv(ρ)x(t) +Blpv(ρ)u(t) + Ev(t)
y(t) = Cx(t) +Du(t)

(7)

where:

x(t) =


vx
vy
w
xe
ye
θe

 , u(t) =

[
δ
a

]
, Blpv(ρ) =


B11 1
B21 0
B31 0
0 0
0 0
0 0

 ,

Alpv(ρ) =


A11 A12 A13 0 0 0
0 A22 A23 0 0 0
0 A32 A33 0 0 0
−1 0 0 0 w 0

0 0 0 −w 0 vxd

sin(θe)
θe

0 0 −1 0 0 0

 , E =


0 0
0 0
0 0
1 0
0 0
0 1

 ,

v(t) =

[
vxd

cos(θe)
wd

]
,

(8)
and:

A11 = −µg
vx

, A12 =
Cf sin δ
mvx

+ w, A13 =
Cf lf sin δ
mvx

,

A22 = −Cr+Cf cos δ
mvx

, A23 = −Cf lf cos δ−Crlr
mvx

− vx,

A32 = −Cf lf cos δ−lrCr

Ivx
, A33 = −Cf l

2
f cos δ+l2rCr

Ivx
,

B11 = −1
m Cfsin(δ), B21 = 1

mCfcos(δ),

B31 = 1
mCf lfcos(δ).

(9)

Notice that the system is not affine with respect to the
varying parameters. An affine model could be obtained
but with the price of reaching 11 varying parameters. The
choice of parameter’s extremums is done depending on the

Fig. 2. Control scheme

specifications of the vehicle and the objectives in terms of
trajectory tracking. Here, they are selected as follows:

vx, vxd
∈ [1, 18] , w ∈ [−2.5, 2.5] ,

δ ∈ [−0.3, 0.3] , θe ∈ [−0.06, 0.06] .
(10)

3 LPV/H∞ CONTROL DESIGN

The LPV/robust control approach is well known in the
literature and it is used in several systems, as seen in
Mohammadpour and Scherer (2012) and Sename et al.
(2013). Fig. 2 introduces a two-degree-of-freedom con-
trol scheme which presents an output-feedback parameter
varying controller K(ρ) designed by solving an LPV/H∞
control problem of the LPV model G(ρ). The first step
is to choose the required performances using frequency
domain weighting functions. For tracking, We is usually
introduced on the tracking error. Another weight Wu is
used to minimize the control effort (see Fig. 2). The signals
in y are used to be available measurements in vehicles by
making use of sensors like GPS, IMU and wheel encoders.
However, the lateral velocity vy is not directly available by
a sensor. Notice that:

r = [vxd
wd]

T
, u = [δ a]

T
, q = [vx w]

T
,

y = [vx w xe ye θe]
T
, d = [d1 d2]

T (11)

3.1 Tracking specification (using We)

Considering that the variables to be controlled are the lon-
gitudinal velocity vxd

and the yaw rate wd, two weighting
transfer functions are chosen of the form:

We(s) =
s
Ms

+ wb

s+ wbε
(12)

where the parameters Ms, wb and ε are tuned as follows:

• Ms =2, to ensure robustness at any frequency.
• wb ≥ 10, to get fast tracking (short rise-time).
• ε ≤ 10−4, it represents the steady-state tracking error.

3.2 Specification on the control input limitations ( Wu)

Additionally two weighting transfer functions are included
for the control inputs δ and a to minimize the actuator
control effort. A second order weighting function Wu is
used to achieve the trade-off between control action and
sensitivity to noises:

Wu(s) =

(
s+

wbu√
Mu√

εus+ wbu

)2

. (13)

The parameters Mu, wbu and εu are chosen as follows:
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Fig. 3. General control configuration

• Mu =∆umax

∆rmax
, represents the limitations on the maxi-

mum allowed effort of the actuators.
• wbu , is related to the actuator bandwidth.
• εu ≤ 10−2, it establishes the noise rejection from the

control inputs at high frequencies.

3.3 Generalized Plant

From the previous steps, the general configuration is
obtained as shown in Fig. 3. The state vector of Σ(ρ) is

xΣ = [x xWe
xWu ]

T
, and the controlled output z=[e1 e2]T

represents the objective function to be optimized when
designing the controller. The state-space representation of
the parameter-varying generalized plant Σ(ρ) is structured
as follows:

ẋΣ

e1

e2

y
r

 =


AΣ(ρ) BΣ11

(ρ) BΣ12
(ρ) BΣ2

(ρ)
0 We 0 −WeG(ρ)
0 0 0 Wu

0 0 0 G(ρ)
0 I2×2 0 0


xΣ

r
d
u

 .
(14)

The controller K(ρ) chosen here is an LPV Dynamic
Output-Feedback Controller.

Three popular LPV control approaches can be found in
the literature which are: 1) Linear Fractional Transforma-
tion (LFT) approach (see Packard (1994)); 2) Polytopic
approach which is defined in Apkarian et al. (1995) as
a convex combination of the LTI systems defined at the
vertices of the polytope obtained by the varying parameter
bounds; and 3) Grid-based approach which characterizes a
set of LTI models that are linearized at different operating
points. Although the polytopic approach is considered to
be more popular than the others, however the grid-based
approach is used instead because of the following points:

• As can be seen in (8), the control matrix Blpv is
parameter-dependent that can not be handled when
using the polytopic approach. A fast pre-filter must
be used to shift the input parameter varying functions
to the state matrix as explained in Apkarian et al.
(1995)
• The usage of the polytopic approach shall require the

affinity of the system with respect to the parameters,
which can be obtained at the cost of 11 varying
parameters.
• Singularities are present in the polytopic domain

at ρ = [vx, w = 0, δ, θe = 0, vxd ]
T

, which prevent
finding a constant Lyapunov function, that solves the
LPV/H∞ LMIs.

Finally, as explained in (Wu (1995)) the gridding ap-
proach considers a parameter dependent Lyapunov func-
tion, which is less conservative.

Fig. 4. 2-D grid space of two parameters

3.4 Implementation of the Gridded-based LPV Approach

The grid-based LPV model of a system is a group of
linearized systems along the grid-points (see Fig. 4), i.e. at
each grid-point ρi, there exist a corresponding LTI system[
Ai Bi
Ci Di

]
.

The implementation of this approach is done either by
using LPV ToolsTM or by solving the LMI equations in
Theorem 4.3.1 in Wu (1995). LPV ToolsTM is a MATLAB
toolbox dedicated to LPV systems. The toolbox contains
data structures that can represent both LFT and gridded-
based approaches (Hjartarson et al. (2015)). For this ap-
proach, the rate-bounds of the parameters are considered
to be used as shown below:

v̇x, v̇xd
∈ [−4, 4] , ẇ ∈ [−3, 3] ,

δ̇ ∈ [−0.6, 0.6] , θ̇e ∈ [−0.1, 0.1]
(15)

Moreover, a basis function is chosen that describes the de-
pendency of the Lyapunov function on the parameters (lin-
ear, polynomial, exponential,...). A linear dependency is
chosen to limit the problem complexity, i.e. the parameter-
varying Lyapunov function is introduced as:

P (ρ) = P0 + vxP1 + wP2 + δP3 + θeP4 + vxd
P5 (16)

where P0, P1, P2, P3, P4 and P5 are constant matrices to
be obtained from the LMI equations.

As a result, the controller K(ρ) is designed offline and an
array of controllers is obtained from the lpvsyn function
from LPV ToolsTM . At each control iteration, the instan-
taneous dynamic controller is linearly interpolated in the
gridded space domain of parameters.

4 SIMULATION RESULTS

Simulations have been performed using the nonlinear ve-
hicle model (1)-(2)-(3). Indeed, the nonlinear tire model
(3) considers a more accurate model, where parameters
c1, c2, and c3 define the shape of the semi-empirical curve.
Moreover, a more accurate computation of the tire-slip
angles is given. Fig. 5 shows the chosen scenario, this plan
is integrated to a racing vehicle and is obtained by inte-
grating the longitudinal and lateral accelerations. In Fig.
6, the steady-state tracking errors are observed to be very
small which ensures a perfect tracking performance. Notice
that the noise in the longitudinal velocity error is caused
by a noisy longitudinal velocity reference. Moreover, the
control inputs δ and a are represented in Fig. 7 and Fig.
8. It is observed that both control actions are smooth and
limited to be applied for real actuators.

4.1 Comparison Between LTI and LPV Controls

The trade-off between the accuracy of LPV systems
and the simplicity of using LTI systems encouraged us
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to compare both results. An LTI controller is designed
at a specific grid point of the gridded space ρLTI =

[7, 0.5, 0.1, 0, 7]
T

. The chosen values of the parameters
are considered to be the approximation mean, which re-
sults the most reliable LTI controller. The error of the
LTI control scheme is clearly observed in Fig. 5, unlike
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Fig. 9. LTI longitudinal and lateral errors
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Fig. 10. Varying friction road coefficient µ

the LPV system which is exactly covering the reference.
Fig. 9 shows the longitudinal and the lateral errors of the
simulated LTI system (at ρLTI) to prove how significant
the errors are when using LTI control.

4.2 Disturbance Rejection Analysis

This analysis observes the behaviour of the vehicle when
being disturbed by road friction coefficient (µ) uncertainty.
To do this, a simulation is done with a varying µ, then
compare it with the constant µ case, following the scenario
in Fig. 10.

As shown in Fig. 11 and 12, the controller achieves success-
fully the demanded tracking performance. The small lon-
gitudinal error represents how the controlled vehicle is re-
specting the demanded longitudinal distance, whereas the
negligible lateral error ensures that the vehicle is always on
the demanded lane especially at the strict maneuvers. As
a result, the controller perfectly rejects the disturbance
caused by different road conditions. It preserves vehicle
stability with good lateral performance.

4.3 Stability Relative To Side-Slip Motion

This part of the section discusses the stability of the vehicle
relative to its side-slip motion. As usual in automotive
applications, the analysis of a phase-plane (α − α̇) is
performed to observe the stability of the vehicle. The
stability criterion is formulated as:

X < 1,
Where X = |2.49α̇+ 9.55α| (17)

X is called the ”Stability Index”, see (Doumiati et al.
(2013)). Notice that α is hard to be measured by sensors,
so it is usually estimated. This work doesn’t focus on the
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estimation, it uses X only to analyse the vehicle’s stability
from the resulting side-slip motions. Regarding Fig. 13, it
is clear that the side-slip motion of the vehicle is always
within the stability boundaries, which ensures that there
is no unstable slipping of the vehicle during the whole
trajectory. Notice that, for the LTI controller, the side-slip
motion does not respect the stability limits.

5 CONCLUSIONS

In this paper, an LPV controller has been designed for
an autonomous vehicle task, considering a mixed kine-
matic and dynamic model, and using the grid-based design
method. The frequency domain analysis and time-domain
simulations on a non-linear model have shown the effi-
ciency and interest of the proposed approach. The results
are very attractive comparing them with the results shown
in the literature when using a cascaded polytopic approach
controller or even MPC (Alcala et al. (2019)).
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