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Abstract: Sea wave energy converter (WEC) control is a non-causal optimal control problem,
and the control performance relies on the accuracy of the prediction of incoming wave profile
and the fidelity of the control-oriented model. To maximize energy conversion in real scenario,
three issues should be fully considered: (a) the existing wave prediction methods inevitably
introduce prediction errors, which degrades the control performance; (b) the model mismatch
between the linearized state-space model and the hydrodynamic model also affects the control
performance; (c) safe operations with limited power take-off (PTO) should be ensured to rule
out the possibility of device damages. To explicitly deal with these problems, this paper proposes
a novel control scheme to maximize the energy output subject to inaccurate predictions, model
mismatch and multiple constraints. This is achieved by applying a feedback model predictive
control (MPC) to handle the constraints and a compensator to cope with the prediction error
and model mismatch. Due to the extra compensation input, the state and input constraints of
MPC subsystem are further tightened to ensure constraints on both the states and the control
input to be satisfied. Theoretical proof and simulation results show that the proposed controller
is robust to achieve the maximal energy output subject to inaccurate prediction and inaccurate
control-oriented model.

Keywords: Wave Energy Converters (WECs), Model Predictive Control (MPC),
Compensation, Wave Prediction, Model Mismatch.

1. INTRODUCTION

Sea waves provide untapped renewable energy with high
energy density. It is reported that there are roughly 7∼10
gigawatts (GWs) of power in the ocean waves within the
UK and roughly 25 trillion watts (TWs) of power in ocean
waves worldwide (Thorpe et al. (1999)). Many types of
wave energy converters (WECs) have been developed to
harness wave energy, such as point absorbers, overtopping
WECs and attenuators, etc.

It has been long recognized that control plays an impor-
tant role in maximizing energy conversion efficiency. WEC
control is essentially a non-causal control problem (Falnes
(2002); Ringwood et al. (2014)), in which the control input
is determined by not only the current states of a WEC but
also the future information of the wave profile. To achieve
non-causal control of WECs, several prediction methods
have been proposed to provide incoming wave profile for
the controller. The existing wave prediction methods are
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mainly divided into two categories. The first category of
prediction methods are based on the statistical meth-
ods, e.g. the Auto-Regressive (AR) (Garcia-Abril et al.
(2017))and the extended Kalman Filter (EKF) (Fusco
and Ringwood (2010)). The second category of prediction
methods are accomplished by wave elevation measure-
ments with certain distances away from the WEC, e.g. the
deterministic sea wave prediction (DSWP) (Abusedra and
Belmont (2011)), which provides more reliable wave pre-
diction but introduces extra hardware for measurements.
Although these prediction methods have been verified to
be effective, the prediction error is introduced inevitably
(Fusco and Ringwood (2011)) due to the measurement
noise, etc. and needs to be properly coped with.

For the non-causal control method, it has been developed
with a variety of approaches (Faedo et al. (2017)), such
as adaptive control (Davidson et al. (2018); Zhan et al.
(2018)), pseudo-spectral control (Li (2017); Mérigaud and
Ringwood (2017)), constrained optimal control (Zhan and
Li (2018)), etc. Due to its unique ability to handle multiple
constraints, model predictive control (MPC) has also been
widely studied, e.g. Hals et al. (2011); Brekken (2011); Li
and Belmont (2014). Since the control-oriented model is
normally obtained by model order reduction techniques
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Fig. 1. Schematic diagram of the point absorber

and wave force approximations (Yu and Falnes (1995)),
the model mismatch between the control-oriented model
and the hydrodynamic model is unavailable and needs to
be fully considered.

The novelties of the proposed control scheme are as follows:

• The prediction error is explicitly coped with to main-
tain the maximal energy output subject to inaccurate
predictions;
• The model mismatch is handled in a straightforward

manner so that the MPC can be designed based on
a simplified model, which reduces the complexity of
controller design and online computation load;
• Both the state constraints, including the heave posi-

tion and velocity of the float, and the input constraint
are satisfied with guaranteed recursive feasibility;
• The proposed control scheme has low computational

burden so that it can be efficiently implemented in
real-time.

The remaining of this paper is organized as follows. The
WEC dynamic model and a simplified second-order model
are introduced in Section 2, where physical constraints
for WEC optimization problem are stated and a feedback
MPC is briefly revisited. The compensator based MPC
control scheme is proposed in Section 3 with theoretical
proof of stability. Section 4 shows simulation results.
Section 5 concludes this paper.

2. PROBLEM PRELIMINARY

In this section, a state-space model of the point absorber is
introduced. Physical constraints of the point absorber are
presented. The optimization problem of energy maximiza-
tion is formulated. An existing feedback MPC with perfect
prediction and accurate model is briefly introduced, which
solves the optimization problem subject to multiple con-
straints.

2.1 WEC dynamic modelling

A particular type of WEC called single point absorber is
chosen as an example to show the efficacy of the proposed
control method. Fig. 1 shows part of a possible hydraulic
power take-off (PTO) design: a hydraulic cylinder is verti-
cally installed below the float and is fixed to the bottom of
the seabed; one possible realization of this design can be
found in Weiss et al. (2012). zw and zv are the water level
and the height of the mid-point of the float respectively.
The PTO torque is proportional to the force fu acting

on the piston inside the cylinder. The extracted power is
P := −fuv, where the velocity on the piston is v := żv.

According to Newton’s second law, the dynamic equation
(Yu and Falnes (1995)) for the float of the point absorber
is

msz̈v = −fs − fr + fe + fu (1)

where ms is the float mass; the restoring force fs is given
by

fs = kszv (2)

with the hydrostatic stiffness ks = ρgs, and ρ as water
density, g as standard gravity, and s as the cross-sectional
area of the float. fr is the radiation force determined by

fr = m∞z̈v +

∫ ∞
−∞

hr(τ)żv(t− τ)dτ (3)

where m∞ is the added mass; hr is the kernel of the
radiation force that can be computed via hydraulic soft-
ware packages (e.g. WAMIT Lee (1995)). Following Yu
and Falnes (1995), the convolutional term in (3) fR :=∫∞
−∞ hr(τ)żv(t − τ)dτ can be approximated by a causal

finite dimensional state-space model

ẋr = Arxr +Br żv (4)

fr = Crxr ≈
∫ t

−∞
hr(τ)żv(t− τ)dτ (5)

where (Ar, Br Cr, 0) and xr are the state-space realisation
and the state respectively. Following Yu and Falnes (1995),
the wave excitation force fe can be determined by

fe =

∫ ∞
−∞

he(τ)zw(t− τ)dτ (6)

where he is the kernel of the excitation force and the state-
space approximation is given by

ẋe = Aexe +Bezw (7)

fe = Cexe ≈
∫ t

−∞
he(τ)zw(t− τ)dτ (8)

where (Ae, Be Ce, 0) and xe are the state-space realization
and the state respectively.

With the realizations of (4) and (7) and by approximations
of the convolution terms of the radiation force and exci-
tation force, i.e. fR = Dr żv and fe = Dezw with Dr and
De being the radiation coefficient and the excitation coef-
ficient respectively, a second-order model (Li and Belmont
(2014)) can be obtained as follows{

ẋ = Acx+Bucu+Bwcw + ε
y = Ccx

(9)

where

Ac =

[
0 1

−ks
m
−Dr

m

]
Bwc =

[
0
De

m

]
Buc =

[
0
1

m

]
Cc = [0 1]

where m := ms +m∞, and w := zw is the wave elevation
whose prediction is incorporated into the controller design,
y := żv, x := [zv, żv], u := fu. ε represents the matched
modelling mismatch caused by approximations of radia-
tion force (5) and excitation force (8). The continuous-time
model (9) can be converted to a discrete time model{

x(k + 1) = Ax(k) +Buu(k) +Bww(k) + ε(k)
y(k) = Cx(k)

(10)
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where the quadruple (A,Bu, Bw, C) is the discrete-time
form of the quadruple (Ac, Buc, Bwc, Cc).

2.2 Physical Constraints

To ensure safe operations, multiple constraints are con-
sidered in this paper. The state constraints on the heave
position and heave velocity of the float, which can be
expressed by

|zv| ≤ zmax (11)
and

|żv| ≤ vmax (12)
where zmax > 0 and vmax > 0 are maximal heave
displacement and heave velocity respectively, which are
constants.

Since the PTO has its limitation, the control input con-
straint is

|fu| ≤ umax (13)
where umax > 0 denotes the maximal force produced by
the PTO mechanism.

Hypothesis 1. The wave elevation and the prediction error
at each step are bounded, i.e. |w| ≤ wmax and |w̃| ≤ w̃max

with wmax > 0 and w̃max > 0 being constants. The
model mismatch ε is norm bounded, i.e. ‖ε‖ ≤ ξmax with
ξmax > 0 being constant.

To formulate the MPC design, these constraints are rep-
resented as follows

x ∈ X, u ∈ U, ε ∈M, w ∈W, w̃ ∈ W̃ (14)

with

X := {x ∈ Rnx : |x1| ≤ zmax, |x2| ≤ vmax}
U := {u ∈ R : |u| ≤ umax}, M := {ε ∈ Rnx : ‖ε‖ ≤ ξmax}
W := {w ∈ R : |w| ≤ wmax}, W̃ := {w̃ ∈ R : |w̃| ≤ w̃max}

2.3 Energy Maximization Problem Formulation

The constrained optimal WEC control problem without
considering prediction error and model mismatch is

min
u

lim
N→∞

1

N
ΣN−1

k=0

{
y(k)u(k) +

1

2
x(k)>Qx(k) +

1

2
Ru2(k)

}
(15)

subject to

x(k + 1) = Ax(k) +Buu(k) +Bww(k) (16)

x(k) ∈ X, u(k) ∈ U, w(k) ∈W, ∀k ∈ I≥0
To minimize the first term y(k)u(k) is to maximize the
power output, and the last two terms 1

2x(k)>Qx(k) +
1
2Ru

2(k) is to penalise the state and control input.

This constrained optimal control problem has been solved
by a feedback non-causal model predictive control (Zhan
et al. (2019, 2017)), which is briefly introduced in the next
subsection.

2.4 Feedback Non-causal MPC With Perfect Prediction
and Accurate Model

As proposed in (Zhan et al. (2019)), the solution of the
optimal problem (15) without considering prediction error
and model mismatch is

u(k) =

{
Kxx(k) +KdE

kwk,np
+ v(k), k ∈ I[0,np−1]

Kxx(k), k ∈ I≥np

(17)

where Kx and Kd are constant vectors determined by the
method proposed in (Zhan and Li (2018)), and v(k) is
to cope with constraints and is solved by the following
optimization problem

v∗[0,np−1] = arg min
v[0,np−1]

Σ
np−1
k=0 v2(k) (18)

subject to
x̄(k + 1) = Ax̄(k) +Buū(k)

ū(k) = Kxx̄(k) +KdE
kwk,np

+ v(k)

x̄(0) = x(0)

x̄(k) ∈ Xk, ū(k) ∈ Uk,∀k ∈ I0,np−1, x̄(np) ∈ XT

with x̄(k) and ū(k) as state and input of the auxiliary
system x̄(k + 1) = Ax̄(k) + Buū(k), E is the translation
matrix defined by

E :=

[
0(np−1)×1 Inp−1

0 01×(np−1)

]
and the tightened constraint sets are

Ek := Σk−1
i=0A

i
KBwW, Xk := X ∼ Ek (19)

Uk := U ∼ KxEk, XT := Σ ∼ Enp
(20)

where Σ is the maximal output admissible set (MOAS)
(Kolmanovsky and Gilbert (1995)) of the system (16) with
terminal controller u = Kxx is

Σ :=

x(0) ∈ X :

x(k + 1) = AKx(k) +Bww(k),

x(k) ∈ X,Kxx(k) ∈ U,
w(k) ∈W,∀k ∈ I≥0

 (21)

where AK := A+BuKx.

Based on this result, the prediction error and the model
mismatch caused by wave approximations are considered
and explicitly handled in this paper, which lead to a new
constrained optimal WEC control problem as follows

min
u

lim
N→∞

1

N
ΣN−1

k=0

{
y(k)u(k) +

1

2
x(k)>Qx(k) +

1

2
Ru2(k)

}
(22)

x(k + 1) = Ax(k) +Buu(k) +Bwŵ(k) +Bww̃(k) + ε(k)

x(k) ∈ X, u(k) ∈ U, ε(k) ∈M, ∀k ∈ I≥0
w(k) ∈W, w̃ ∈ W̃, ∀k ∈ I≥0

3. PREDICTIVE CONTROL WITH PREDICTION
ERROR TOLERANCE

In this section, a novel compensator based model predic-
tive control scheme is proposed to tackle the problems of
prediction error and model mismatch.

3.1 Overall strategy

Define the prediction error of the wave elevation as

w̃ = w − ŵ (23)

where ŵ is the predicted wave elevation. The error of np-
step-ahead prediction is w̃k,np

:= [w̃k, w̃k+1, ..., w̃k+np−1]
with np being a positive integer. The continuous-time
state-space model (9) can be rewritten as

ẋ = Acx+Bucu+Bwcŵ +Bwcw̃ + ε (24)

where the term of Bwcw̃ + ε is unavailable. The nominal
model which only involves available information is as
follows

ż = Acz +Bucun +Bwcŵ (25)

where z is the nominal state and un is the nominal input.
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Fig. 2. Diagram of the proposed control strategy

The discrete-time form of (25) is

z(k + 1) = Azz(k) +Buun(k) +Bwŵ(k) (26)

As shown in Fig. 2, the basic idea of the proposed control
strategy is to design a compensator that fully eliminates
the unavailable term of Bwcw̃ + ε so that a MPC can be
designed based on the nominal model (26) by only using
the available information.

The control input is proposed as

u = uCOM + uMPC (27)

The first term of the controller uCOM is to compensate
for the prediction error and the model mismatch, and the
second term of the controller uMPC is to maximize the
energy output subject to multiple constraints.

3.2 Design of Compensator

To compensate for the prediction error and the model
mismatch, a compensator is designed as follows

uCOM = −ρsign (σ) (28)

where ρ calculated by

ρ =
‖GBwc‖
‖GBuc‖

w̃max +
‖G‖
‖GBuc‖

ξmax + 2np‖Kd‖w̃max + α

(29)
with α as a positive constant and σ is a sliding variable
designed as

σ =G[x(t)− x(t0)−
∫ t

t0

(Acx(τ) +BucuMPC

+Bwcŵ(τ)− npBuc‖Kd‖w̃maxsign(σ))dτ ]

(30)

with G as a matrix such that GBuc is invertible and t0
represents the initial time instant, which is a non-negative
constant.

Theorem 2. The prediction error and model mismatch can
be compensated for by the proposed compensator (28) so
that the closed-loop dynamics of (24) approximates the
closed-loop dynamics of (25).

The proof is omitted due to page limits.

3.3 Design of MPC

Since the addition control uCOM is introduced in the
controller, two issues need to be fully considered for the
MPC design:

• the input constraint for MPC subsystem can be
further tightened in order to ensure the constraint
of the total input to be satisfied;

• the state constraint for MPC subsystem can be fur-
ther tightened to rule out the possibilities of con-
straint violations caused by prediction error and mod-
el mismatch.

MPC is designed based on the nominal model (26), which
can be rewritten as

z(k + 1) = Azz(k) +BuuMPC(k) +Bwŵ(k) (31)

by applying the nominal control input as MPC, i.e. un =
uMPC , where available but inaccurate information are
used. The dual-mode control policy is applied as follows.

uMPC(k) =

{
Kxz(k) +KdE

kŵk,np + vn(k), k ∈ I[0,np−1]
Kxz(k), k ∈ I≥np

(32)
where vn(k) is introduced to cope with the constraint.

The system (31) with the dual-mode control (32) is

z(k + 1)

=


AKz(k) +BuKdE

kŵk,np +Buvn(k)+ Bwŵ(k),

k ∈ I[0,np−1]
AKz(k) +Bwŵ(k), k ∈ I≥np

(33)

Following (Chisci et al. (2001)) and (Zhan et al. (2019)),
the feasibility is ensured by introducing an auxiliary pre-
diction system and the tightened constraint as follows.

A. Auxiliary prediction model Define an auxiliary pre-
diction model for k ∈ I[0,np−1] as

z̄(k + 1) =Az̄(k) +BuūMPC(k)

ūMPC(k) =Kxz̄(k) +KdE
kŵk,np + vn(k)

z̄(0) =z(0) = x(0)

(34)

where z̄ and ūMPC are auxiliary state and input.

B. Tightened constraints The MOAS Σn of the system
(31) with terminal controller uMPC = Kxz is

Σn :=

z(0) ∈ X :

z(k + 1) = AKz(k) +Bwŵ(k),

z(k) ∈ X,Kxz(k) ∈ UMPC ,

ŵ(k) ∈ Ŵ, ∀k ∈ I≥0


(35)

From (27) and (28), the input constraint for MPC subsys-
tem is

UMPC := {uMPC ∈ R : |uMPC | ≤ umax − ρ} (36)

From (42) and Hypothesis 1, the set Ŵ can be obtained
as

Ŵ := {ŵ ∈ R : |ŵ| ≤ wmax + w̃max} (37)

The tightened constraints for MPC subsystem are

z̄(k) ∈ Zk, ūMPC(k) ∈ UkMPC (38)
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Table 1. WEC parameters of accurate model
and physical constraints

Description Notation values

Stiffness ks 6.39 × 105 N/m
Float mass ms 7 × 103 kg
Added mass m∞ 1 × 103 kg
Total mass m 8 × 103 kg
Radiation coefficient Dr 2 × 105kg/s
Excitation coefficient De 4 × 103kg/s2

Input force limit umax 21 kN
Float heave limit zmax 1 m
Heave velocity limit vmax 3 m/s

Table 2. WEC parameters of inaccurate model

Description Notation values

Stiffness ks 5.5 × 105 N/m
Float mass ms 6.5 × 103 kg
Added mass m∞ 0.5 × 103 kg
Total mass m 7 × 103 kg
Radiation coefficient Dr 1.8 × 105kg/s
Excitation coefficient De 4.6 × 103kg/s2

with
Êk := Σk−1

i=0A
i
KBwŴ, Zk := X ∼ Êk (39)

UkMPC := UMPC ∼ KxÊk, ZT := Σn ∼ Ênp (40)

The constraint-handling term vn(k) is solved by the fol-
lowing optimization problem

v∗n[0,np−1]
= arg min

vn[0,np−1]

Σ
np−1
k=0 v2n(k) (41)

subject to (34) and

z̄(k) ∈ Zk, ūMPC(k) ∈ UkMPC ,∀k ∈ I0,np−1, z̄(np) ∈ ZT

4. SIMULATION RESULTS

The parameters of the WEC model and the hydrodynamic
coefficients are adopted from those used in (Zhan et al.
(2019, 2017)) for comparison purpose. The simulations
based on a reduced-order model is provided for geomet-
ric visualisation of the satisfaction of recursive feasibility.
The simulation based on a higher-order model of WEC is
omitted due to page limits. The coefficients and physical
constraints are listed in Table 1. The model of the predic-
tion error is

w̃(k + 1) = λw̃(k) + ξk, k = 1, ..., N (42)

where N > 0 is the prediction step, λ = 1.01 is taken,
making the filter unstable, to match with realistic pre-
diction errors that grows with the prediction time. Both
ξk ∼ N (0, 0.1) and w̃(1) ∼ N (0, 0.8) are Gaussian white
noises. The parameters of the uncertain model that con-
sidered the modelling mismatch is listed in Table 2. The
control horizon of MPC is set to be 5 steps.

It can be found in Fig. 3 that the prediction error and
model mismatch degrade the control performance of con-
ventional feedback MPC by 14.2% of energy loss, while
with the compensation, the energy output is barely affect-
ed by only 0.3% of energy loss. Therefore, the proposed
controller can effectively cope with both the prediction
error and the model mismatch. The tightened constraints
on both states and input are shown in Fig. 5. From Fig. 4,
it can be seen that state constraints on heave position and
velocity are satisfied, which ensures safe operations in large
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Fig. 3. Generated power and energy output vs time
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Fig. 5. Tightened constraints
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Fig. 6. PTO force (i.e. control input) vs time

wave conditions. Fig. 6 shows that the input constraint
is active when the proposed compensator based feedback
MPC is applied. Therefore, the ability of handling con-
straints is verified.

5. CONCLUSION

This paper aims to cope with the prediction error and
model mismatch in non-causal WEC control problems.
The proposed compensator based feedback MPC scheme
maintains the energy output and simultaneously handle
multiple constraints to ensure safe operations. Simulation
results show that the control performance degradation is
significantly reduced by the proposed controller.
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