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Abstract: This paper puts forward a distributed dynamic event-triggered strategy to solve
the distributed event-triggered consensus problem of linear multi-agent systems under directed
graphs. Based on dynamic triggering function, each agent can reach consensus asymptotically.
Different from existing static triggering schemes, the proposed dynamic triggering scheme, where
an internal dynamic variable is involved, results in larger inter-event times and also leads to less
communication overheads among agents, which is conducive to guaranteeing that Zeno behavior
is excluded for each agent. In addition, under the proposed strategy, neither controller updates
nor triggering threshold detections require continuous communication. Finally, the effectiveness
of the theoretical analysis is demonstrated by numerical simulations.
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1. INTRODUCTION

In the past decades, the problem of coordinated control
of multi-agent systems (MASs) has received increasing
attention (Olfati et al. [2004], Ren et al. [2008]). Modeling
of MASs originates from social animals such as insects,
fish, and birds, which benefits the accomplishment of the
tasks that are difficult for individuals. MASs also exist in
many engineering fields, such as distributed optimization
(Li et al. [2017]), wireless sensor networks (Ding et al.
[2017]), mobile robot collaboration (Meng et al. [2013]),
drone/satellite formation flight (Anderson et al. [2007],
Marshall et al. [2006]) and so on. Thus, MASs have enabled
many scholars around the world to do a lot of research
work in this field in highly interconnected present world
(see Huang et al. [2019] - Tan et al. [2018] and the
references therein).

In general, designing a suitable control strategy to make all
agents’ states reach a common quantity related to certain
control performance is a pivotal issue on consensus of
MASs. It is worth mentioning that most of the aforemen-
tioned works on consensus problems are obtained under
the assumption that continuous communication among
agents is available. However, it is difficult to maintain
such an environment with continuous communication and
unnecessary communication also leads to a waste of en-
ergy. To this end, distributed controllers with intermittent
communication have been studied recently. In Wen et al.
[2013], a periodic sampling control protocol was studied,
where the sampling is triggered after a fixed time interval.
However, the controller still update periodically even af-
ter the control target has been achieved. In many cases,
due to the limitations of energy supply or communica-
tion bandwidth, it is desired that information exchanges

among agents only occur at some discrete and non-periodic
sampling points, so event-triggered control schemes have
been introduced. By viewing a triggered event as a moment
when a certain measurement error exceeds a pre-designed
threshold, the communication among agents is required
under the event-triggered control strategy only when an
event is triggered. The event-triggered consensus control
problems for MASs with single- or double-integrator dy-
namics were investigated in Dimarogonas et al. [2012] -
Nowzari et al. [2016]. Subsequently, plenty of scholars
conducted research on event-triggered consensus control
of general linear MASs. Event-triggered consensus con-
trol protocols were designed for general linear MASs over
undirected and directed graphs in Zhang et al. [2014] and
Zhu et al. [2014], respectively. However, in the above-
mentioned works, event-triggered functions still need to
continuously access to neighbors’ state information. To
solve this problem, considering general linear MASs under
directed graphs, Yang et al. [2016] designed a triggering
threshold based on on exponential function and Liu et al.
[2018] proposed a triggering threshold related to the sum of
relative state estimations from itself and its neighbors for
each agent. A model-based event-triggered controller and a
dynamic threshold approaching zero in finite time are put
forward in Du et al. [2019] to achieve finite-time consensus
without the requirement on continuous state transmission.

It should be pointed out that all aforementioned results
are obtained under the framework of static event-triggered
control mechanisms. However, a new class of dynamic
event-triggered control mechanisms, where internal dy-
namic variables are involved, have several merits with
respect to the commonly studied static one including
the significant larger inter-event time, which is benefi-
cial to prevent Zeno behavior in practical application.
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Therefore, it has been widely investigated that the dy-
namic event-triggered control method has been used to
solve consensus problems of MASs in recent years. Gi-
rard et al. [2015] occupied internal dynamic variables in
event-triggered control for nonlinear systems. Yi et al.
[2017] improved the form of the dynamic event-triggered
mechanism in a distributed manner and extended it to
a single-integrator MAS. Based on this work, Yi et al.
[2019] used internal dynamic variables in self-triggered
control to overcome the drawback of continuous sensing
and listening of the triggering. In Ge et al. [2017], a
dynamic event-triggered communication mechanism was
used to address a distributed resource-efficient formation
control problem of a networked MAS with general linear
system dynamics. In George et al [2018], the dynamic
average consensus problem was solved by the proposed
dynamic event-triggered algorithm, which was robust to
network disruptions. However, all interaction topologies
among agents in the above-mentioned works are assumed
as undirected graphs. In fact, an undirected graph can be
seen as a special case of a directed graph. Therefore, it’s
very meaningful and practical to investigate the consensus
problem over directed graphs. Motived by the previous
works, we discuss the dynamic event-triggered consensus
problem for general linear MASs on directed graphs.

In a word, we will discuss the dynamic event-triggered
consensus problem of general linear MASs under directed
graphs and exhibit Zeno behavior in this paper. The
principal contributions are summarized as follows:

(1) Compared to the static event-triggered mechanism,
such as Zhu et al. [2014]-Liu et al. [2018], the dynamic
event-triggered function with an internal dynamic
variable proposed in this paper yields the larger trig-
gering intervals, which benefits the exclusion of Zeno
behavior in practice. Moreover, the communication
instants are reduced significantly which also saves the
communication energy greatly.

(2) Different from most of the existing works on dy-
namic triggering mechanisms, which mainly focus on
the integrator-type dynamics and undirected graphs
(Girard et al. [2015]-George et al [2018]), this pa-
per investigates the consensus problem with dynamic
event-triggered strategy for general linear MASs on
directed graphs, which in turn poses more challenges
in the consensus stability analysis and Zeno behavior
exclusion due to the more general agents’ models and
more complex communication topologies.

(3) The issue that continuous access to neighbors’ states
is still required in agent’s own triggering detection is
ignored in many existing works on both static and
dynamic triggering mechanisms (see Dimarogonas
et al. [2012], Zhang et al. [2014], Zhu et al. [2014],
Girard et al. [2015]), which brings about a paradox to
the original purpose of saving communication energy
by introducing the event-triggered strategy. In this
endeavor, this paper aims to avoid the continuous
communication in not only the controller update
but also the triggering detection, which poses more
challenges in the triggering function design under the
framework of the dynamic event-triggered strategy.

The rest of this paper is organized as follows. Some prelim-
inaries including useful knowledge and the dynamics are

introduced in Section 2. Section 3 presents the main result
and Section 4 illustrates the result through simulation
examples. Section 5 concludes the paper.

Notation: Let R be the set of real numbers and Rm×n be
the set of m × n real matrices, respectively. I is a set of
positive integers and IN = {1, 2, . . . , N}. 0N and 1N mean
the N×1 column vector of all zeros and ones, respectively.
For a vector x ∈ Rn, x > 0 means that every entry xi > 0
with i = 1, 2, . . . , n. For a symmetric matrix P , P > 0
means that P is positive definite and λmax(P ) (λmin(P ))
means the maximum (minimum) eigenvalues of P . The
superscript T and the symbol⊗ represent the transpose for
matrices and the Kronecker product, respectively. Denote
‖·‖ as the Euclidean norm for vectors and the induced 2-
norm for matrices.

2. PRELIMINARIES

In this section, we introduce some definitions in algebraic
graph theory and the considered MAS briefly.

2.1 Graph Theory

Consider a group of MASs with N agents. A directed
graph G = (V, E ,A) consists of a nonempty finite node set
V = {v1, . . . , vN}, an edge set E ∈ (V ×V) and a weighted
adjacency matrix A = [aij ] ∈ RN×N . The edge (vi, vj) ∈ E
indicates that the node vj can receive information from
the node vi or the node vi can broadcast information to
the node vj . The neighbor set of node vi is denoted by
Ni = {vj ∈ V : (vj , vi) ∈ E}. The adjacency matrix
A of a directed graph is given by aii = 0, aij > 0 if
(vj , vi) ∈ E , and aij = 0 otherwise. The Laplacian matrix

of G is defined as L = [lij ] ∈ RN×N , where lii =
∑N
j=1 aij ,

lij = −aij with i 6= j. If between any pair of distinct nodes
vi and vj in a directed graph G, there exists a directed path
from vi to vj , i, j = 1, 2, . . . , N , G is strongly connected.
For the purpose of drawing forth our main result, we need
the following assumptions and lemmas.

Assumption 2.1. The directed graph G is strongly con-
nected.

Lemma 1. (Hardy et al. [1952]) The general algebraic
connectivity of a strongly connected graph G associated
with the Laplacian matrix L is defined by

a(L) = min
rT x=0,x 6=0

xT L̃x
xTRx

,

where L̃ = 1
2 (RL + LRT ), R = diag(r1, . . . , rN ) with

r = (r1, . . . , rN )T satisfying rTL = 0N and
∑N
i=1 ri = 1.

Lemma 2. (Hardy et al. [1952]) Given any x, y ∈ RN ,

Young’s inequality states that for any φ > 0, xT y ≤ xT x
2φ +

φyT y
2 .

Lemma 3. (Yu et al. [2010]) For a strongly connected
directed graph G, zero is a simple eigenvalue of L with
the corresponding right eigenvector 1N , that is L1N = 0,
and there exists a positive vector r = (r1, . . . , rN )T satisfy
rT1N = 1 such that rTL = 0N .
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2.2 Multi-Agent System Model

Consider a linear MAS consisting of N identical agents,
indexed by 1, . . . , N . The dynamics of the ith agent is
described by

ẋi(t) = Axi(t) +Bui(t), i ∈ IN , (1)

where xi(t) ∈ Rn is the agent state, ui(t) ∈ Rp is the
control input. A ∈ Rn×n and B ∈ Rn×p.
Assumption 2.2. The matrix pair (A,B) in (1) is stabiliz-
able.

The objective of this paper is to design a distributed
dynamic event-triggered consensus strategy for each agent
such that the states of all agents achieve consensus while
avoiding Zeno behavior.

3. MAIN RESULT

In this section, a dynamic event-triggered control strategy
will be proposed to deal with consensus problems for the
linear MASs under strongly connected directed graphs
without Zeno behavior.

A dynamic event-triggered consensus control protocol is
proposed for each agent as follows:

ui(t) = cKzi(t), (2)

where c > 0, and the feedback gain matrix K ∈ Rp×n is
chosen by K = −BTP with a positive matrix P to be
decided. Moreover,

zi(t) =
∑
j∈Ni

aij(e
A(t−tiki )xi(t

i
ki)− e

A(t−tj
kj

)
xj(t

j
kj

)), (3)

where ki ∈ IN , aij is the ijth entry of the adjacency matrix
A, tiki and xi(t

i
ki

) are the latest event-triggered time and
the latest broadcast state of agent i, respectively. For the

sake of simplicity, we denote eA(t−tiki )xi(t
i
ki

) as x̄i(t), so
the measurement error is defined as

ei(t) = eA(t−tiki )xi(t
i
ki)− xi(t) = x̄i(t)− xi(t). (4)

In addition, closed-loop form of the MAS can be expressed
as

ẋ(t) = (IN ⊗A+ cL ⊗BK)x(t) + (cL ⊗BK)e(t), (5)

where x(t) = [xT1 (t), . . . , xTN (t)]T , e(t) = [eT1 (t), . . . , eTN (t)]T .

Then, we define δi(t) = xi(t)−
∑N
j=1 rixj(t) as a disagree-

ment vector for each agent i, where rj is the jth row of
r defined in Lemma 1. By putting δi in a stack, namely,
δ(t) = [δT1 (t), δT2 (t), . . . , δTN (t)], one has

δ(t) = x(t)− (1NrT ⊗ In)x(t) = (M ⊗ In)x(t)

with M = (IN − 1NrT ). Meanwhile, for agent i, we also
have δ̄(t) = (M ⊗ In)x̄(t).

Therefore, based on the closed-loop system (5), we can see
the disagreement vector δ(t) satisfies

δ̇(t) = (IN ⊗A+ cL ⊗BK)δ(t) + (cL ⊗BK)e(t), (6)

where we have used the fact that ML = LM = L.

Now, we introduce an internal dynamic variable satisfying

η̇i(t) = −σiηi(t) + ξi(
ε

α∗
‖zi(t)‖2 − ‖ei(t)‖2), (7)

where i ∈ IN , η(0) > 0 and the parameters sat-

isfy σi > 0, ε > 0, α∗ > γ ‖L‖2 and ξi ∈ [0, γ]

with γ = (1 − 1
α ) ‖M‖2 + c

βλmax(LTR2L ⊗ PBBTP ) +

2c
∥∥MTRL ⊗ PBBTP

∥∥, where R defined in Lemma 1.
Moreover, α, β are the Young inequality parameters sat-
isfying 0 < α < 1 and β > 0.

Moreover, inspired by Yi et al. [2019], we assume that the
first triggering time ti1 = 0, so the triggering times {tik}∞k=2
is determined by

tiki+1 = max
r≥ti

ki

{(‖ei‖2 ≤
ε

α∗
‖zi(t)‖2 +

ηi(t)

θi
,∀t ∈ [tiki , r]},

(8)

where θi >
γ−ξi
σi

.

Remark 1. The proposed mechanism (8) is called the
dynamic event-triggered mechanism since it involves an
internal variable ηi(t). If setting ηi(t) ≡ 0, we can get
the static event-triggered mechanism (9). In addition, it
can also be seen a limit case of the dynamic triggering
mechanism (8) when the parameter θi goes larger enough.

tiki+1 = max
r≥ti

ki

{‖ei(t)‖ ≤
√

ε

α∗
‖zi‖ ,∀t ∈ [tiki , r]}. (9)

Compared with (8), (9) does not involve any extra dynamic
variables except xi(t), x̄i(t) and x̄j(t), j ∈ Ni.

Nest, we present the following theorem to cope with the
dynamic consensus problem.

Theorem 4. Consider the linear MAS (1), and suppose
that Assumptions 2.1 and 2.2 hold. Under the proposed
distributed dynamic event-triggered consensus protocol
composed of controller (2)-(3) and the dynamic triggering
mechanism (8), the event-triggered consensus problem can
be solved for any initial states if the parameters c, ε,
α, β are selected such that cβ

1−αλmax(PBBTP ) + ε
1−α <

−λmax(R⊗Q), where Q = PA+ATP−2ca(L)PBBTP <
0. In addition, Zeno behavior can be excluded.

Proof.

According to (7) and (8), one has η̇i(t) ≥ −(σi + ξi
θi

)ηi(t).
So it is easy to get

ηi(t) > ηi(0)e
−(σi+

ξi
θi

)t
> 0. (10)

Therefore, considering the dynamic triggering function, we
choose the following Lyapunov function:

W = δT (R⊗ P )δ +

N∑
i=1

ηi(t). (11)

The time derivative of W along the closed-loop system (6)
is given by

Ẇ =2δT (R⊗ P )δ̇ +

N∑
i=1

η̇i(t)

=δT (R⊗ (PA+ATP )

− c(RL+ LTR)⊗ PBBTP )δ

− 2δT (cRL ⊗ PBBTP )e+

N∑
i=1

η̇i(t). (12)

It follows from Lemma 1 that

−δT c((RL+ LTR)⊗ PBBTP )δ ≤ −2ca(L)δT (R⊗ PBBTP )δ.
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Thus, we can get that

Ẇ ≤δT (R⊗Q)δ − 2δT (cRL ⊗ PBBTP )e+

N∑
i=1

η̇i(t)

≤λmax(R⊗Q)[δ̄ − (M ⊗ In)e]T [δ̄ − (M ⊗ In)e]

− 2[δ̄ − (M ⊗ In)e]T (cRL ⊗ PBBTP )e+

N∑
i=1

η̇i(t),

(13)

where we have used the fact that δ̄ = δ + (M ⊗ In)e.

By the Lemma 2, one has

λmax(R⊗Q)[δ̄ − (M ⊗ In)e]T [δ̄ − (M ⊗ In)e]

≤ λmax(R⊗Q)[(1− α)δ̄T δ̄ + (1− 1

α
)eT (MTM ⊗ In)e],

(14)

where 0 < α < 1.

Given β > 0, the second term in (13) can be handled
according to the Lemma 2 as well

− 2[δ̄ − (M ⊗ In)e]T (cRL ⊗ PBBTP )e

≤cβλmax(PBBTP )δ̄T δ̄ + [
c

β
λmax(LTR2L ⊗ PBBTP )

+ 2c
∥∥MTRL ⊗ PBBTP

∥∥] ‖e‖2 .
(15)

Thus, substituting (7), (14) and (15) into (13) yields that

Ẇ ≤ [λmax(R⊗Q)(1− α) + cβλmax(PBBTP )]
∥∥δ̄∥∥2

+

N∑
i=1

(γ − ξi) ‖ei(t)‖2 +

N∑
i=1

ξi
ε

α∗
‖zi(t)‖2 −

N∑
i=1

σiηi(t).

(16)

Since the fact that z = (L ⊗ In)x̄ = (L ⊗ In)δ̄, we

have ‖z‖2 ≤ ‖L‖2
∥∥δ̄∥∥2. Then, according to the triggering

function (8), (16) can be rewritten as

Ẇ ≤[λmax(R⊗Q)(1− α) + cβλmax(PBBTP )

+ ε]
∥∥δ̄∥∥2 − N∑

i=1

(σi −
γ − ξi
θi

)ηi(t) < 0. (17)

Therefore, we can conclude that the disagreement vector
δ → 0 as t → ∞, which means the MAS (1) can achieve
the consensus asymptotically.

Now, we prove that Zeno behavior is strictly ruled out
for each agent. Firstly, suppose that Zeno behavior is
existed, which implies that there exists an agent i, such
that lim

ki→+∞
tiki = T0, where T0 is a positive constant.

Let ε0 = 1
2‖A‖ ln( 1

$

√
ηi(0)
θi

e
− 1

2 (σi+
ξi
θi

)T0 + 1) > 0, where

$ = ‖A‖
cρ‖BK‖ . Then according to the property of limits,

there exists a positive integer N(ε0) such that

tiki ∈ [T0 − ε0, T0],∀ki ≥ N(ε0). (18)

Noting that (10) holds, we can conclude that one sufficient
condition to guarantee that the inequality in (8) holds is

‖ei(t)‖ ≤

√
ηi(0)

θi
e
− 1

2 (σi+
ξi
θi

)t
(19)

It follows from the fact that the interval between two
consecutive triggering events is bounded, so it is apparent

that eA(t−tiki ) is bounded for ∀t ∈ [tiki , t
i
ki+1). In light of

(5), it is not challenging to verify that (rT ⊗ e−At)x is
an invariant quantity. Therefore, deriving from xi = δi +∑N
j=1 rixj , we obtain that x(t) is finite for any finite t.

Thus, we can get that for ∀t ∈ [tiki , t
i
ki+1), the triggering

error e(t) = x̄i(t) − xi(t) = eA(t−tiki )xi(t
i
ki

) − xi(t) is also
bounded. According to the fact z = (L⊗In)(x+e) = (L⊗
In)(δ + e), we know z is bounded. Thus, we use ρ to
denote the upper bound of ‖zi(t)‖. Based on (1), it can
be obtained that

ėi(t) = Aei(t)− cBKzi(t). (20)

Next, based on the fact that the measurement error is
reset to zero once an event is triggered, the solution of (20)
follows that

‖ei(t)‖ ≤c ‖BK‖
∫ t

ti
ki

∥∥∥eA(t−s)zi(s)
∥∥∥ ds

≤c ‖BK‖
‖A‖

ρ(e‖A‖(t−t
i
ki

) − 1).

Thus, it can be concluded that one sufficient condition to
guarantee that the above inequality holds is

c ‖BK‖
‖A‖

ρ(e‖A‖(t−t
i
ki

) − 1) ≤

√
ηi(0)

θi
e
− 1

2 (σi+
ξi
θi

)t
. (21)

Now suppose that tiN(ε0+1) denote the next triggering time

determined by (8). Then one gets

tiN(ε0+1) − t
i
N(ε0)

≥ 1

‖A‖
ln(

1

$

√
ηi(0)

θi
e
− 1

2 (σi+
ξi
θi

)T0 + 1)

= 2ε0,

which contradicts to (18). Therefore, Zeno behavior is
excluded for each agent.

Thus, the proof is accomplished.

Remark 2. For arbitrary (A,B) satisfying Assumption 2.2,
one can always find a positive definite matrix P such
that Q < 0 holds. Moreover, the existence of parameters
in Theorem 4 can be guaranteed by selecting parame-
ters more conservatively off-line as long as they satisfy
their bounds. Therefore, the proposed dynamic triggering
scheme is implementable.

4. SIMULATION EXAMPLE

In this section, we demonstrate the theoretical result by
the following numerical example and make the comparison
between the dynamic event-triggered control strategy and
traditional static one. Consider a group of 6 agents with
general linear dynamics (1) with A = [0 7;−1 1], B =
[2; 1]. The directed graph is shown in Fig. 1.

The initial states are given by x1(0) = [−30; 20], x2(0) =
[15; 60], x3(0) = [10; −26], x4(t) = [3; 43], x5(t) =
[13; 65], x6(t) = [28;−30]. Choose the feedback gain ma-
trix K = [−0.9850 − 0.7367]. And the parameters are
selected as c = 3.7788, α∗ = 100, ε = 1. Moreover,
according to the dynamic triggering scheme (8), we choose
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η1(0) = η3(0) = η4(0) = η6(0) = 8, η2(0) = 3, η5(0) = 5,
σi = ξi = 60, and θi = 2, where i = 1, 2, . . . 6.

The simulation results are shown in Figs.2-5. Fig. 2 depicts
state evolutions under the dynamic triggering scheme and
the static one, respectively. The trajectories of dynamic
variable ηi(t) is present in Fig. 3. Fig. 4 shows the evo-
lution of each agent’s triggering error with respect to the
threshold under the proposed dynamic triggering scheme.
These two figures imply that the dynamic variable, track-
ing errors and corresponding thresholds all converge to
zero asymptotically. The corresponding triggering instants
under dynamic and static triggering schemes are shown in
Fig. 5. For a clearer comparison, we record the triggering
numbers for each agent with the dynamic and static trig-
gering schemes in Table 1, which can be obtained that the
triggering numbers are greatly reduced under the proposed
dynamic triggering scheme.

1 2
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6

5

1

1

1

1

1

1

1

1

1

1

1

Fig. 1. The communication graph among the agents
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(a) State evolutions of MAS under dynamic triggering scheme (8)
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(b) State evolutions of MAS under static triggering scheme (9)

Fig. 2. State evolutions under two event-triggered schemes
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Fig. 3. The dynamic variable ηi(t) given in (7) for dynamic
trigging scheme (8)

Fig. 4. Triggering errors and thresholds for each agent
under dynamic triggering scheme (8)
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(a) Triggering times under dynamic triggering scheme (8)
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(b) Triggering times under static triggering scheme (9)

Fig. 5. Triggering times for each agent under two schemes
and comparison with the case without event-triggered
strategy

5. CONCLUSION

The consensus problem for linear MASs under directed
graphs has been investigated. A distributed dynamic
event-triggered control strategy along with a dynamic trig-
gering function has been addressed. Under the proposed
dynamic event-triggered control strategy, there is no need

Table 1. Triggering numbers on each agent
under different triggering schemes

Agent index i 1 2 3 4 5 6

Dynamic triggering scheme 22 38 28 18 34 25

Static triggering scheme 59 47 109 30 40 34
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for continuous communication in either controller update
or triggering condition monitoring. In addition, each agent
does not exhibit Zeno behavior by proving the event time
interval is strictly positive. Our future research will be de-
voted to extending the event-triggered consensus problem
for heterogenous MASs under directed graphs. At the same
time, it is also necessary to further consider the case when
MASs contain some uncertainties or external disturbances.
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