
Distributed Planning
in Mean-Field-Type Games ?

Hamidou Tembine ∗,∗∗

∗ Learning & Game Theory Laboratory, New York University Abu
Dhabi, Saadiyat Campus PO Box 129188, UAE (e-mail:

tembine@nyu.edu).
∗∗ Center on Stability, Instability and Turbulence, New York

University Abu Dhabi, Saadiyat Campus PO Box 129188, UAE

Abstract: In this paper we study the problem of designing a collection of terminal payoff
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objective functionals. We establish some relationships between the proposed framework, optimal
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1. INTRODUCTION

Mean-field-type game theory studies a class of games in
which the payoffs and or state dynamics depend not only
on the state-action pairs but also the distribution of them.
In mean-field-type games, (i) a single decision-maker may
have a strong impact on the mean-field terms, (ii) the
instantaneous expected payoffs are not necessarily linear
with respect to the measure of the state, (iii) the number
of decision-makers is not necessarily infinite.

In this paper we study some probability distribution
steering problems in a mean-field-type game framework
by exploring the role of decentralized strategies. When
steering an initial distribution to a terminal one one aims
to minimize a certain cost functional of mean-field type.
In particular, we are interested on how to design an added
terminal cost so as to provide incentives for decision-
makers, to move collectively as specified and meet the
initial-terminal conditions.

Lions (2009) proposed a planning problem in mean-field
games, in which a central planner would like to steer a
population to a predetermined final configuration while
still allowing individuals to choose their own strategies.
This is a distributed planning problem from the perspec-
tive of the agents. Since then several studies (see Porretta
(2013, 2014); Achdou et al. (2012); Orrieri et al. (2019)
and the references therein) have been conducted in the
context of mean-field games and optimal transport theory
(see Chen et al. (2016, 2018) ). However, it has not been
addressed in the context of mean-field-type games in which
expected objective functional has a non-linear dependence
with respect to the measure of the state. The present work
focuses also on computation in the latter in a semi-explicit
way.
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Our contribution can be summarized as follows.

• We introduce distributed planning problems in mean-
field-type games. We show that the existence can
be re-stored in wide range of cases if the terminal
function can be freely designed.

• We then establish relationships between the proposed
scenario and distributed optimal transport theory
with a more general cost functional

• Particular equilibrium systems are derived in a semi-
explicit way for the case where there are moment
constraints at the final time and non-quadratic costs.

The rest of the paper is structured as follows. Section
2 presents a background on the planning problem in
a deterministic setting. The framework is extended to
distributed planning in subsection 2.2. Section 3 presents
the main problem statement and derives an equilibrium
system. Solutions to the distributed planning problem
under moment constraints are derived in Section 4.

2. BACKGROUND

2.1 Planning Problem

A basic planning problem of a decision-maker 0 is to move
from the point x̄(t0) at time instant t0 to the point x̄(t1)
at time instant t1 while minimizing the energy along the
path with a careful terminal cost design. The goal of the
planner, who is the decision-maker 0, is to choose the
terminal objective function ᾱ(t1)x̄2(t1) and a strategy ū0

such that

inf
ū0

ᾱ(t1)x̄2(t1) +

∫ t1

t0

ū2
0(t)dt

subject to
dx̄ = ū0dt,
x̄(t0) fixed
x̄(t1) fixed,

where x̄(t0) and x̄(t1) are two non-zero real numbers with
the same sign.
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To solve this optimal problem control under initial-
terminal point, decision-maker 0 uses a backward induc-
tion method.

Optimization step Given the coefficient ᾱ(t1), Decision-
maker 0 first solves the optimal control problem given by

L0 := ᾱ(t1)x̄2(t1) +

∫ t1

t0

ū2
0(t)dt

inf
ū0

L0

subject to ˙̄x = ū0, x̄(t0) = x̄0 ∈ R,
ū0(.) ∈ U0 = R unconstrained.

It follows that

inf
ū0∈U0

L0 = ᾱ(t0)x̄2(t0),

state-feedback: ū∗0 = −ᾱx̄,
Riccati: ˙̄α− ᾱ2 = 0, ᾱ(t1) fixed,

=⇒ ᾱ(t) =
1

1
ᾱ(t1) + t1 − t

,

x̄(t) = x̄(t0)e
−
∫ t

t0
ᾱ(t′)dt′

= x̄(t0)

(
1− t− t0

1
ᾱ(t1) + t1 − t0

)
.

Matching step In order to determine ᾱ(t1) one can match
the ending point of the ordinary differential equation x(t)
with the required conditions at t = t1. The planning
problem of decision-maker 0 is then reduced to the problem
of finding ᾱ(t1) such that

x̄(0)

(
1− t1 − t0

1
ᾱ(t1) + t1 − t0

)
= x̄(t1),

which means, for x̄(0) 6= 0

ᾱ(t1) =
x̄(t0)− x̄(t1)

x̄(t1)(t1 − t0)
,

satisfies the requirement.

As expected, the optimal velocity has the direction of
x̄(t1)− x̄(t0) with a proper scaling. To connect this result
with the Euclidean distance between x̄(t1) and x̄(t0) we
impose the terminal cost to be zero by adjusting the
system as follows.

inf
u0

∫ t1

t0

u2
0(t)dt

subject to
dx = u0dt,
x(t0) = x̄(t0)− x̄(t1),

(1)

where we set x(t) = x̄(t)− x̄(t1). The optimal cost is

α(t0)x2(t0) = α(t0)[x̄(t0)− x̄(t1)]2,

Next, we present the deterministic distributed planning
problem.

2.2 Distributed Planning Problem

The horizon of the interaction is [t0, t1], t0 < t1. There
are I ≥ 2 decision-makers. The set of decision-makers is
denoted by I = {1, . . . , I}. Decision-maker i has a control

action ūi ∈ Ui = R. The state x̄ is driven by an ordinary
differential with two-point boundary constraint given by

dx̄ = bdt, x̄(t0), x̄(t1)

where
Drift: b : [t0, t1]× R×

∏
i

Ui → R.

The cost functional of decision-maker i is

Li(x̄, x̄(t0), x̄(t1)) = hi(x̄(t1)) +

∫ t1

t0

li(t, x̄, ū)dt,

The goal of the decision-maker i is to choose the terminal
objective function hi and a strategy ui such that

inf
ūi

Li(ū, x̄(t0), x̄(t1))

subject to
dx̄ = bdt,
x̄(t0) fixed
x̄(t1) fixed

The two-point boundary conditions are in general chal-
lenging to meet in a first-order ordinary differential equa-
tion. However, here, each decision-maker has the freedom
to design also its terminal cost hi, which makes the prob-
lem feasible for a wider range of parameters. Notice that
we are not optimizing over the best design of the function
hi, we are optimizing over the strategy ui once the function
hi is chosen.

As an example, consider the distributed planning problem
in the differential game with the following data:

li(t, x̄, ū) = q̄i
x̄2k̄i

2k̄i
+ r̄i

ū2k̄i
i

2k̄i
+ c̄ix̄

2k̄i−1ūi (2a)

+
∑
j 6=i

ε̄ij x̄
2(k̄i−1)ūiūj ,

hi(x̄) = ᾱi(t1)
x̄2k̄i

2k̄i
,

b(t, x̄, ū) = b̄1x̄+
∑
j∈I

b̄2j ūj ,

x̄(t0) fixed,

x̄(t1) fixed, x̄(t1)x̄(t0) > 0

where k̄i ≥ 1, are natural numbers, the coefficients
are time dependent. The coefficient functions q̄i, r̄i, are
nonnegative functions. We solve the distributed planning
problem as follows:

• We first solve the following system

i ∈ I,
inf
ūi

Li(ū, x̄(t0), x̄(t1))

subject to
dx̄ = bdt,
x̄(t0) fixed

Its solution, if any, is given by

ūi = −η̄ix̄, (3a)

0 = −r̄iη̄2k̄i−1
i −

∑
j 6=i

ε̄ij η̄j + b̄2iᾱi + c̄i, (3b)

vi(t, x̄) = ᾱi(t)
x̄2k̄i

2k̄i
, (3c)

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ε̄ij η̄iη̄j
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+ 2k̄iᾱi[b̄1 −
∑
j

b̄2j η̄j ], (3d)

ᾱi(t1) fixed, (3e)

for all i ∈ I with

x̄(t) = [x̄(t0)] e

∫ t

t0

[
b̄1−
∑

j
b̄2j η̄j

]
dt′

, (3f)

whenever the above coefficient system admits a
unique solution. �

• Then, we compute the terminal point x̄(t1) as a
function of ᾱi(t1), i ∈ I via the coefficients ηi(t1), i ∈
I

• The distributed planning problem is then to design
ᾱi(t1) as degrees of freedom such that the constraints
are met at the specified times:

x̄(t1) = x̄(t0)e

∫ t1

t0

[
b̄1−
∑

j
b̄2j η̄j

]
dt

The later equation offers several choices for the vector
ᾱ(t1).

3. PLANNING IN MEAN-FIELD-TYPE GAMES

The horizon of the interaction is [t0, t1], t0 < t1. There
are I ≥ 2 number of decision-makers. The set of decision-
makers is denoted by I = {1, 2, . . . , I}. Decision-maker
i ∈ I has a control action ui ∈ Ui = R. The state x is
driven by Drift-Jump-Diffusion of mean-field type given
by

dx = bdt+ σdB +

∫
Θ

µ(., θ)Ñ(dt, dθ),

x(t0) ∼ m(t0, .), x(t1) ∼ m(t1, .),

where
Drift: b,
Diffusion: Brownian motion B,
Jump process: N(dt, dθ),

Compensated Jump: Ñ(dt, dθ) = N(dt, dθ)− ν(dθ)dt,

b, σ, µ(., θ), : [t0, t1]× R× P(R)×
I∏
j=1

Uj → R.

The performance functional of decision-maker i is

Li(u,m0) = hi(x(t1),m(t1)) +

∫ t1

t0

li(t, x, u,m)dt,

where m(t, dy) = Px(t)(dy) is the probability measure of
the state x(t) at time t.

The risk-neutral mean-field-type game is given by

(I, Ui,Ui,E[Li])i∈I .

A risk-neutral Nash Mean-Field-Type Equilibrium is a
solution of the following fixed-point problem:

i ∈ I,
E[Li(u

∗,m0)]

= inf
ui∈Ui

E[Li(u
∗
1, . . . , u

∗
i−1, ui, u

∗
i+1, . . . , u

∗
I ,m0)].

Let V̂i(t,m) be the optimal cost-to-go from m at time
t ∈ (t0, t1) given the strategies of the others.

V̂i(t,m) = inf
ui

E[hi(x(t1),m(t1))

+

∫ t1

t

li(t, x, u,m)dt′|m(t) = m].

Let V̂i,m be the Gâteaux derivative of V̂i(t, .) with the
respect to the measure m. Introduce the integrand Hamil-
tonian as

Ĥi(x,m, V̂m, V̂xm, V̂xxm)

= inf
ui∈Ui

{
li + b V̂i,xm +

σ2

2
V̂i,xxm

+

∫
Θ

[V̂i,m(t−, x+ µ)− V̂i,m − µV̂i,xm]ν(dθ)

}
.

Denote the jump operator J as

J [φi] :=

∫
Θ

[φi,m(t−, x+ µ)− φi,m − µφi,xm]ν(dθ),

and J∗ be the adjoint operator of J :

〈J [φ],m〉 = 〈φ, J∗[m]〉.
A sufficiency condition for a risk-neutral Nash equilibrium
system is given by the following (backward-forward) par-
tial integro-differential system

i ∈ I, (4a)

0 = V̂i,t(t,m) (4b)

+

∫
Ĥi(t, x,m, V̂m, V̂xm, V̂xxm)m(dx),

V̂i(t1,m) =

∫
m(dy)hi(y,m), (4c)

(4d)

We refer the reader to Bensoussan et al. (2020) for a
derivation of the equilibrium system. The system (4) is
an infinite PIDE system in m and it provides the Nash
equilibrium values of the mean-field-type game. Notice
that the PIDE system satisfied by {V̂i,m}i∈I is not the

equilibrium value {V̂i}i∈I in (4). We use (4) to find risk-
neutral Nash mean-field-type equilibrium.

In the distributed planning problem, the goal of the
decision-maker i is to choose the terminal objective func-
tion hi and a strategy ui such that

inf
ui

ELi(u,m(t0),m(t1))

subject to

dx = bdt+ σdB +

∫
Θ

µ(., θ)Ñ(dt, dθ),

x(t0) ∼ m(t0, .), fixed
x(t1) ∼ m(t1, .) fixed

(5)

The distributed planning problem (5) extends the clas-
sical optimal transport problem and also the classical
Schrödinger bridge problem (see Chen et al. (2016, 2018)
and the references therein). That is, for a distribution of
mass m(t0, dy), we wish to transport the mass in such a
way that it is transformed into the distribution m(t1, dy)
on the same space. The optimal transport theory is the
study of optimal transportation and allocation between
measures. The optimal transport problem was first intro-
duced by Monge (1781) and formalized by Kantorovich
(1942), leading to the so called Monge-Kantorovitch trans-
portation problem.

In the distributed planning the equilibrium terminal cost
of decision-maker i must satisfy

V̂i(t1,m) =

∫
m(t1, dy)hi(y,m(t1)),

where the equality is in a functional sense. The distributed
planning problem is then to choose hi such that the termi-
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nal distribution matches with the prescribed distribution
m(t1, dy).

i ∈ I, (6a)

0 = V̂i,t(t,m) (6b)

+

∫
x

Hi(x,m, V̂m, V̂xm, V̂xxm)m(dx),

V̂i(t1,m)=

∫
m(t1, dy)hi(y,m), (6c)

In some problems, the planning is to satisfy some variance
or moment constraints. This is illustrated in the next
section.

4. GAMES WITH MOMENT CONSTRAINTS

We will investigate the mean-field-type game with the
following data:

li(t, x, u,m) = qi
(x− x̄)2ki

2ki
+ ri

(ui − ūi)2ki

2ki
+ ci(x− x̄)2ki−1(ui − ūi)
+

∑
j∈I\{i}

εij(x− x̄)2(ki−1)(ui − ūi)(uj − ūj)

+ q̄i
x̄2k̄i

2k̄i
+ r̄i

ū2k̄i
i

2k̄i
+ c̄ix̄

2k̄i−1ūi

+
∑
j 6=i

ε̄ij x̄
2(k̄i−1)ūiūj , (7a)

hi(x,m) = αi(t1)
(x− x̄(t1))2ki

2ki
+ ᾱi(t1)

x̄(t1)2k̄i

2k̄i
,

(7b)

b(t, x, u,m) = b1(x− x̄) + b̄1x̄

+
∑
j∈I

[
b2j(uj − ūj) + b̄2j ūj

]
, (7c)

σ(t, x, u,m) = (x− x̄)σ̃, (7d)

µ(t, x, u,m, θ) = (x− x̄)µ̃(., θ), (7e)

x̄(t) =

∫
ym(t, dy), (7f)

ū(t) =

∫
u(t, y,m)m(t, dy), (7g)

where ki ≥ 1, k̄i ≥ 1, are natural numbers, the coefficients
are time dependent. The coefficient functions qi, ri, q̄i, r̄i,
are nonnegative functions. αi(t1), ᾱi(t1) are to be deter-
mined below.

In the distributed planning problem, the goal of decision-
maker i is to choose the terminal weights αi(t1), ᾱi(t1) and
a strategy ui such that

inf
ui

ELi(u,m(t0), d, x̄(t1))

subject to

dx = bdt+ σdB +

∫
Θ

µ(., θ)Ñ(dt, dθ),

x(t0) ∼ m(t0, .), fixed

E[(x(t1)−
∫
ym(t1, dy))2ki ] = c̄i, fixed∫

ym(t1, dy) = x̄(t1), fixed

(8)

Proposition 1. A risk-neutral Nash mean-field-type equi-
librium is given in a semi-explicit way as follows:

unei = −ηi
(
x−

∫
ym(dy)

)
− η̄i

∫
ym(dy), (9a)

0 = −riη2ki−1
i −

∑
j 6=i

εijηj + b2iαi + ci, (9b)

0 = −r̄iη̄2k̄i−1
i −

∑
j 6=i

ε̄ij η̄j + b̄2iᾱi + c̄i, (9c)

V̂i(t,m) = αi

∫
x

(x−
∫
ym(dy))2ki

2ki
m(dx)

+ ᾱi
(
∫
ym(dy))2k̄i

2k̄i
, (9d)

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
j 6=i

εijηiηj

+ 2kiαi[b1 −
∑
j∈I

b2jηj ] + 2ki(2ki − 1)αi
1

2
σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ), (9e)

αi(t1) to be determined, (9f)

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ε̄ij η̄iη̄j

+ 2k̄iᾱi[b̄1 −
∑
j

b̄2j η̄j ], (9g)

ᾱi(t1) to be determined, (9h)

for all i ∈ I with∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt
, (9i)

whenever the above coefficient system admits a unique
solution. �

Proof. This proof is presented in the Appendix. �

The uniqueness of the coefficient system (9) in η requires a
stronger condition. For example for k = 1, the determinant
must be non-zero. When the determinant is zero, the
resulting control strategies become non-admissible and the
costs become infinite.

To solve the distributed planning problem it remains to
determine αi(t1), ᾱi(t1), i ∈ I. ᾱi(t1) is determined from
the evolution equation of the expected value and the
constraint

∫
ym(t1, dy) = x̄(t1). The function z1(t) =∫

ym(t, dy) satisfies

ż1 = z1

b̄1 −∑
j∈I

b̄2j η̄j)


z1(t1) = x̄(t1), fixed,

(10)

from which we deduce a system satisfied by ᾱi(t1), i ∈ I.
It remains to determine αi(t1). To do so, we establish the
dynamics of E[(x(t) −

∫
ym(t, dy))2ki ] as time varies. Let

yki(t) = E[(x(t)−
∫
ym(t, dy))2ki ].
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ẏki = yki

2ki(b1 −
∑
j∈I

b2jηj)

+ki(2ki − 1)σ̃2 +

∫
Θ

ν(dθ)[(1 + µ̃)2ki − 1− 2kiµ̃]

}
yki(t1) = c̄i ≥ 0, fixed

(11)
from which we deduce the elements αi(t1), i ∈ I. This
system is underdetermined when the size of ranges of ki
is smaller than the cardinality of the number of decision-
makers. Another way is to consider several moment con-
straints.

MULTI-MARGINAL DISTRIBUTED PLANNING

The methodology presented here can be used to plan a
path at multiple time instance t0 < t 1

n
< t 2

n
< . . . <

tn
n

= t1 such that x(t k
n

) ∼ m(t k
n
, .), where the n + 1

marginal measures m(t k
n
, .) are prescribed. The multi-

marginal distributed planning problem becomes the design
of a terminal objective functions hi and a strategy ui such
that

inf
ui

ELi(u, (m(t k
n
, .))k)

subject to

dx = bdt+ σdB +

∫
Θ

µ(., θ)Ñ(dt, dθ),

x(t0) ∼ m(t0, .), fixed
x(t k

n
) ∼ m(t k

n
, .), k ∈ {1, . . . , n− 1}, fixed

x(t1) ∼ m(t1, .) fixed

(12)

We solve the multi-marginal problem, we decompose into
subproblems as follows.

inf
ui

Ehi(x̄(t k
n

)) +

∫ t k
n

t k−1
n

li(t, x̄, ū)dt,

subject to

dx = bdt+ σdB +

∫
Θ

µ(., θ)Ñ(dt, dθ), t ∈ (t k−1
n
, t k

n
)

x(t k−1
n

) ∼ m(t k−1
n
, .), fixed

x(t k
n

) ∼ m(t k
n
, .), fixed

(13)
Each of the subproblems is solved using the same method
as above.

CONCLUSION

In this paper we have studied planning problems in mean-
field-type games with perfect and complete information.
We have provided semi-explicit solutions for a class of
mean-field-type games with polynomial cost and moment
constraints. In our future work we plan to investigate
planning problems under incomplete information and or
imperfect measurement.
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Appendix A. PROOF OF PROPOSITION 1

We aim to solve the PIDE system (4): We start with the
following guess functional of decision-maker i as

V̂i(t,m) = αi(t)

∫
x

(x−
∫
ym(dy))2ki

2ki
m(dx)

+ ᾱi(t)
(
∫
ym(dy))2k̄i

2k̄i
,

where the coefficient functions αi, ᾱi need to be deter-
mined. We compute the key terms V̂i,m(t,m), V̂i,xm(t,m),

V̂i,xxm(t,m).

The Integrand Hamiltonian is strictly convex in (ui−ūi, ūi)
and the best-response strategy is the unique minimizer of

ri
(ui − ūi)2ki

2ki
+ ci(x− x̄)2ki−1(ui − ūi)

+
∑
j 6=i

εij(x− x̄)2(ki−1)(ui − ūi)(uj − ūj)

+

[
V̂i,xm(t,m)−

∫
V̂i,xm(t,m)(x)m(dx)

]∑
j∈I

b2j(uj − ūj)

+ r̄i
ū2k̄i
i

2k̄i
+ c̄ix̄

2k̄i−1ūi +
∑
j 6=i

ε̄ij x̄
2(k̄i−1)ūiūj

+

[∫
V̂i,xm(t,m)(x)m(dx)

]∑
j

b̄2j ūj . (A.1)

By strictly convexity and by orthogonality between (ui −
ūi) and ūi the following system holds:

i ∈ I,
0 = ri(ui − ūi)2ki−1 + ci(x− x̄)2ki−1
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+
∑
j 6=i

εij(x− x̄)2(ki−1)(uj − ūj)

+

[
V̂i,xm(t,m)−

∫
V̂i,xm(t,m)(x)m(dx)

]
b2i, (A.2a)

0 = r̄iū
2k̄i−1
i + c̄ix̄

2k̄i−1 +
∑
j 6=i

ε̄ij x̄
2(k̄i−1)ūj

+

[∫
V̂i,xm(t,m)(x)m(dx)

]
b̄2i. (A.2b)

The linear state-and-mean-field-type feedback strategy
ui = −ηi(x −

∫
ym(dy)) − η̄i

∫
ym(dy), i ∈ I solves the

system if the coefficients satisfy

i ∈ I,
0 = −riη2ki−1

i −
∑
j 6=i

εijηj + b2iαi + ci, (A.3a)

0 = −r̄iη̄2k̄i−1
i −

∑
j 6=i

ε̄ij η̄j + b̄2iᾱi + c̄i. (A.3b)

The integrand Hamiltonian of i becomes

Ĥi =

[
qi + riη

2ki
i − 2kiciηi

+ 2ki
∑
j 6=i

εijηiηj

]
(x−

∫
ym(dy))2ki

2ki

+ 2kiαi

b1 −∑
j∈I

b2jηj

 (x−
∫
ym(dy))2ki

2ki

+ 2ki(2ki − 1)αi
1

2
σ̃2 (x−

∫
ym(dy))2ki

2ki

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ)
(x−

∫
ym(dy))2ki

2ki

+

q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ε̄ij η̄iη̄j

 (
∫
ym(dy))2k̄i

2k̄i

+ 2k̄iᾱi

b̄1 −∑
j

b̄2j η̄j

 (
∫
ym(dy))2k̄i−1

2k̄i
+ ε̃2.

(A.4)

By identification the coefficients αi solve the following
ordinary differential equation:

0 = α̇i + qi + riη
2ki
i − 2kiciηi + 2ki

∑
j 6=i

εijηiηj

+ 2kiαi[b1 −
∑
j∈I

b2jηj ] + 2ki(2ki − 1)αi
1

2
σ̃2

+ αi

∫
Θ

[(1 + µ̃)2ki − 1− 2kiµ̃]ν(dθ), (A.5a)

αi(T ) = to be determined, (A.5b)

0 = ˙̄αi + q̄i + r̄iη̄
2k̄i
i − 2k̄ic̄iη̄i + 2k̄i

∑
j 6=i

ε̄ij η̄iη̄j

+ 2k̄iᾱi[b̄1 −
∑
j

b̄2j η̄j ], (A.5c)

ᾱi(T ) = to be determined. (A.5d)

The aggregate mean-field term
∫
ym(t, dy) can be derived

in a semi-explicit way by taking the expected value of the

state dynamics. It follows that∫
ym(t, dy) =

[∫
ym(0, dy)

]
e

∫ t

0

[
b̄1−
∑

j
b̄2j η̄j

]
dt′

.

This completes the proof. �
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