
A Two-stage Simulated Annealing-based
Scheduling Algorithm for a Make-and-Pack

Production Plant ?

Vassilios Yfantis ∗ Sven Büscher ∗,∗∗ Christian Klanke ∗

Francesc Corominas ∗∗∗ Sebastian Engell ∗

∗ Process Dynamics and Operations Group, Department of Biochemical
and Chemical Engineering, TU Dortmund University, Emil-Figge-Str.

70, 44227 Dortmund, Germany (e-mail:
vassilios.yfantis@tu-dortmund.de).

∗∗DEAMOS e.K., Marderweg 17, 48683 Ahaus, Germany
∗∗∗ Procter & Gamble, Temselaan 100, 1853 Strombeek-Bever, Belgium

Abstract: Industrial scheduling problems are characterized by their highly combinatorial
nature due to the large number of alternative solutions. The presence of discrete and continuous
decisions in scheduling models usually lead to discrete optimization problems. Although powerful
solvers and algorithms exist for this class of problems, real-life applications often still require pro-
hibitively long computation times, severely hindering their practical deployability. An alternative
way to solve hard discrete optimization problems is the use of metaheuristic algorithms, which
provide approximate solutions in short computation times. In this contribution, a scheduling
algorithm based on simulated annealing is developed and applied to a make-and-pack process
from the consumer goods industry. The algorithm consists of two stages, the first of which
determines the allocation of the orders to the production lines, while the second refines the
schedule by optimizing the sequence within each line. Two different layouts of the plant are
examined, one where the make-and-pack stages are directly coupled and another where a finite
intermediate buffer is used to decouple the two production stages. The generated production
schedules are compared to nominal ones provided by the planners at the plant, underlining the
potential of the proposed approach, both in terms of solution quality and necessary computation
time.
Copyright c© IFAC

Keywords: Scheduling algorithms, Optimization problems, Metaheuristics, Manufacturing
processes, Flexible manufacturing systems

1. INTRODUCTION

The process industry has been increasing its efforts to-
wards making its operations more efficient. In the case
of the consumer goods industry this can be achieved by
minimizing changeover and idle times through efficient
production scheduling. The main challenge is the large
amount of different products processed in the same plant
which is supplying different markets, giving rise to large-
scale optimization problems. The changeover from one
product to another usually leads to downtimes due to
adjustments that have to be made to various pieces of
equipment. Minimizing these changeover times is a highly
combinatorial problem and therefore difficult to perform
manually due to the exponentially increasing number of
possible production sequences with increased number of
orders to be processed (Baumann and Trautmann, 2014).
Furthermore, a large number of constraints like machine

? The work leading to this publication has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 723575 (CoPro, spire2030.eu/copro) in
the framework of the SPIRE PPP.

eligibility, inventory levels and demand satisfaction have to
be respected, rendering the scheduling problems even more
challenging. All of these issues can be addressed by mod-
eling the problems as mixed-integer programs and solving
these by rigorous optimization algorithms (Kopanos et al.,
2011; Méndez and Cerdá, 2002). These approaches lead
to solutions with guaranteed constraint satisfaction and
an exact evaluation of their solution quality in terms of
optimality. However, they may require significant com-
putation times and become computationally intractable
for industrial-sized problems (Harjunkoski et al., 2014).
If the fast generation of good, but not necessarily opti-
mal schedules is the main focus, as e.g. in the case of
online scheduling, metaheuristic techniques can be used
as an alternative (Wang et al., 2000). Metaheuristics are
guided stochastic search techniques which try to find good
solutions to hard optimization problems. The design of
metaheuristics involves a trade-off between covering large
regions of the search space (exploration) and focusing
on regions near promising solutions (exploitation). Even
though these methods provide no guarantee nor even a
measure of closeness to optimality, they have been shown

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10923



Fig. 1. Coupled Layout of the Make-and-Pack Plant.

to be suitable for the fast generation of good schedules
(Sand et al., 2008). In this contribution a two-stage simu-
lated annealing-based algorithm is presented and applied
to a complex make-and-pack production plant that con-
sists of several parallel lines. The first stage of the proposed
algorithm takes the allocation decisions, i.e. decides on
which production line each order will be processed. The
second stage then serves as a refinement step in which the
sequence within a production line is optimized.

2. MAKE-AND-PACK PROCESS

In this paper two different layouts of a consumer goods
production plant will be examined. In the first one the
two production stages of each line are coupled and in
the second one they are decoupled by the use of a finite
intermediate buffer. Both layouts are briefly presented in
the following.

2.1 Coupled Layout

The coupled layout of the plant is shown in Fig. 1. It
consists of several parallel production lines, each with a
formulation and a packing unit directly connected in series.
The production environment can therefore be described as
a single stage process with multiple machines in parallel.
All formulation units of the plant are identical and capable
of processing each production order. However, each pack-
ing unit can only process a subset of orders, depending on
the types of packing. Therefore each line can only process
the subset of orders corresponding to the capability of its
packing unit. Furthermore, the order dependent processing
rates of the two units in each line have to be synchronized
as the process is continuous without the possibility for
intermediate storage. This results in a situation in which
the unit with the lower processing rate becomes the bottle-
neck. Another drawback of this layout is that an entire line
remains idle if either the formulation or the packing section
requires a changeover. This may result in a significant loss
of productivity. The issues of this layout show that efficient
scheduling is necessary to ensure a profitable operation
of the plant. A scheduling approach for this layout of
the plant based on an extension of the precedence based
mixed-integer programming (MILP) model from Kopanos
et al. (2010) was proposed by Elekidis et al. (2019). It
was shown that small problem instances could be solved
directly in reasonable computation times while larger in-
stances required a decomposition strategy to achieve satis-
factory results. Nevertheless, improvements over manually
generated schedules were clearly demonstrated.

2.2 Decoupled Layout

In order to address the limitations of the coupled layout, a
finite intermediate buffer can be employed. This layout

Fig. 2. Decoupled Layout of the Make-and-Pack Plant.

is schematically depicted in Fig. 2. While an order is
being processed in a formulation unit the products are
sent to a shared intermediate buffer before being packed.
In this way both units can operate at their maximum
processing rate since they are no longer directly coupled.
On the one hand, if the formulation is faster, packing can
operate at its maximum rate while the unpacked products
are stored in the buffer. After the formulation finishes,
the remaining products can be packed from the buffer.
On the other hand, if packing is faster the formulation
can start earlier and build up an inventory in the buffer.
Once enough products are available, packing can start
operating. Note that due to the different, unsynchronized
processing rates the formulation stage can not supply
the packing stage directly. The transfer time between the
stages is negligible compared to the processing times. The
only important restriction is that packing can not start
or end before the formulation, as products that have not
been produced yet can not be packed and packing cannot
stop if there are still products that have to be packed.
In addition to the decoupling of the processing rates, the
changeovers are also decoupled. A formulation unit can
be in operation supplying the buffer while a changeover
is being performed in its corresponding packing unit and
vice versa. Overall, this layout can be regarded as a hybrid
flow shop with intermediate buffer. A similar decoupled
layout of the plant in which each formulation unit could
supply each packing unit was examined in Yfantis et al.
(2019). However, in this case a formulation unit could not
supply both the buffer and a packing unit, necessitating
the use of the lower (synchronized) production rates if
the buffer was not used. The scheduling problem was
solved using an MILP model and a decomposition strategy,
since a direct solution was not possible due to the large
model size and complexity. In this paper, we assume that
each formulation line is coupled to one packing line, i.e.
not the full flexibility of an intermediate buffer is used.
Nonetheless, the layout with the buffer already provides
significant room for improvements compared to the layout
without the buffer.

3. SIMULATED ANNEALING-BASED ALGORITHM

In this paper a simulated annealing (SA) algorithm is used
to solve the scheduling problems. The SA algorithm is gen-
erally well suited for industrial applications, as it exhibits
good performance with comparatively low implementation
effort. In the following, the main elements of the algorithm
are presented.

3.1 Principles of Simulated Annealing

SA is based on the analogy of physical annealing of ma-
terials, in which a solid is cooled starting from a high

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10924



Fig. 3. Illustration of the simulated annealing algorithm
for a minimization problem.

temperature, where its particles can move freely and ran-
domly. The temperature is then steadily decreased, lim-
iting the mobility of the particles until reaching a state
of minimum energy (Delahaye et al., 2019). In the SA-
algorithm, a temperature T is defined analogously, deter-
mining the probability that a worse solution with respect
to the objective value of the optimization problem that
was reached by some neighborhood step from the current
solution, is accepted. While the temperature is high, the
probability of accepting a worse solution is high and it
decreases as the temperature decreases. The reasoning be-
hind accepting worse solutions is the possibility to escape
from local optima, thus approaching a globally optimal
solution. The concept of the algorithm is illustrated in
Fig. 3 for a minimization problem, where initially solutions
with higher objective values can be accepted. In order to
accept a worse solution a probability based acceptance
criterion is used,

P (T, k) =



1

if f(xk) < f(xk−1),

exp

(
f(xk−1)− f(xk)

T

)
if f(xk) ≥ f(xk−1).

(1)

In the case of the minimization of a function f(x) the
solution in the current iteration k, i.e. xk, is accepted if the
objective value decreases from the previous iteration k−1.
If the current solution gives a worse objective value, it is
only accepted if the value of the acceptance probability
function is larger than a uniformly distributed random
number between 0 and 1, i.e.

xk accepted, if P (T, k) ≥ rand[0, 1].

The temperature T decreases as the iteration progresses
according to a specified cooling schedule, which can be
based e.g. on the number of iterations or the evaluations of
the acceptance probability function. In this paper the next
temperature is computed after each iteration according to

T = T0 ·Ah, (2)

where T0 is the initial temperature, 0 < A < 1 is a constant
parameter and the exponential factor h is increased by 1

after a specified number of iterations. The SA-algorithm
terminates when a temperature threshold is reached, as it
evolves into a random search, once the temperature is too
low.
One of the main challenges for the use of metaheuristics in
scheduling is the treatment of complex constraints in the
problem formulation. In the case of exact approaches, like
mathematical or constraint programming, the constraints
are included explicitly in the optimization model and
the used algorithms guarantee feasibility with respect to
these constraints, if a solution is found. In the case of
metaheuristics, like SA, constraints can also be included
explicitly as parts of the objective function, penalizing
their violation. This however may lead to unintuitive
solutions, as the choice of the corresponding weights for
the violations or the form of the objective function in
general is not trivial. Another possible approach is to check
the feasibility of a generated solution and discard it if
it violates any of the constraints. Even though the final
generated solution would be feasible, it might be very
challenging to even find such a feasible solution. Simply
discarding an infeasible solution does not provide any
feedback with regard to the direction in which the search
should focus. Therefore instead of completely discarding
the schedule, various repair heuristics have been proposed
that attempt to modify the infeasible schedule in a way
that it satisfies the constraints (Coelle Coello, 2002). All of
the approaches mentioned above can be computationally
demanding. In this contribution, an approach similar to
the one in Bousonville (2002) is employed, in which the
actual algorithm has only a limited number of degrees of
freedom which are then provided to a ”scheduler”. This
scheduler generates a feasible schedule based on a process
model. To be more precise, the SA-algorithm determines
the allocation of a set of orders I to a set of units J and
the sequence of orders Ij therein. 1 In the following both
elements of the algorithm, the schedule generation and the
SA-algorithm are introduced.

3.2 Sequence-based Schedule Generation

The goal of the schedule generation is to provide a feasible
schedule, given a totally ordered set of orders Ij allocated
to each unit j ∈ J . Each order is characterized by an
ordered amount Di that has to be produced to satisfy the
customer demand and a processing rate vi. From these
input parameters the processing time for each order can
be calculated by

pi = Di/vi. (3)
Based on the processing time and the changeover time
between two consecutive orders coi,i+1 the start and end
times of processing of each order Si and Ei can be calcu-
lated recursively in each line j as

Si = 0, for i = Ij [1], (4)
Ei = Si + pi, ∀i ∈ Ij , (5)

Si+1 = Ei + coi,i+1, ∀i ∈ Ij , (6)
where Ij [1] denotes the first order of the sequence Ij . The
objective is to minimize the makespan, i.e. the largest end
time,

min max
∀i∈I

Ei. (7)

1 The order of the elements in the sets Ij determines the sequence
in the schedule.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10925



Fig. 4. Example of the computation of a start time in the
packing stage.

It should be noted that other objective functions like the
total completion time can easily be incorporated as well,
e.g.

Cj = max
∀i∈Ij

Ei, (8)

min
∑
∀j∈J

Cj . (9)

3.3 Modifications for the Decoupled Layout

In the decoupled layout, the start and end times of the
processing tasks have to be calculated for both, the formu-
lation and the packing stages. The variables in equations
(3)-(6) are defined for each stage l ∈ L = {f, p}, i.e. Sl

i,
El

i, p
l
i, v

l
i and coli,i+1. The variables corresponding to the

formulation stage (l = f) are computed by equations (3)-
(6). The timing of the packing stage is restricted by the
formulation stage, as packing can not start or end before
the formulation. Furthermore, packing can not start before
the changeover from the previous packing task has elapsed.
The start time of packing of order i is therefore computed
by

Sp
i = max {Sf

i , E
f
i − ppi , E

p
i−1 + copi−1,i}. (10)

An example, in which the changeover time determines the
start time, is shown in Fig. 4. Once the start time is known,
the end time can be computed by Eq. (5). In addition to
the interaction of the timing decisions, the amount stored
in the intermediate buffer has to be computed. This is
achieved by discretizing the time horizon into finitely many
time intervals t ∈ TH and employing a simple material
balance to compute the stored amount Invt,

Invt+1 = Invt +
∑
∀i∈I

(Y f
it · v

f
i − Y p

it · v
p
i ), (11)

where the binary variables Y l
it are set to one if order i is

being processed in stage l at time t.

3.4 Two-stage Simulated Annealing Algorithm

The SA-algorithm is divided into two stages. The first
stage determines the allocation of orders to the units while
the second stage performs a refinement of the schedule
by determining the sequencing within each line. They can
also be regarded as an initial exploration and a subsequent
exploitation stage. In each iteration in both stages of the
algorithm, a set of sequences Ij is generated which is used
to generate a schedule using Eq. (4)-(6) for the coupled
layout, while additionally Eq. (10)-(11) are used for the

decoupled layout. The general scheme of the algorithm,
which is conceptually identical in both stages, is illustrated
in Fig. 5. In each iteration a permutation of the sequence
is performed resulting in a new schedule, the objective
value of which is evaluated. If the schedule is better than
the current solution, the current one is overwritten. If
additionally the schedule is better than the best solution
found so far, the best solution is overwritten as well. If
however the schedule is worse than the current solution,
the acceptance probability function (1) is evaluated. If the
condition is satisfied, the current solution is overwritten.
After each iteration the temperature T is recomputed by
(2), where h is increased by one after a fixed number of
iterations. The main difference between the two stages is
the permutation which generates a new solution. In the
first stage, each order i is randomly allocated to a feasible
line j ∈ Ji, i.e. a unit that can process order i, according
to the current sequence. This allocation results in a new
sequence for each line. The sequence within each line is not
explicitly optimized in the first stage, since the allocation
of orders to lines has a greater impact on the objective than
the exact sequencing of the orders. The new sequences
are implicitly determined by the previous sequences. Once
the temperature threshold is reached for the first stage,
the allocation is fixed to the best found solution and the
sequence within each line is optimized. In the second stage
the permutation of the sequence is performed by changing
the position of a random order within the sequence. In the
case of the decoupled layout a solution is discarded if the
amount stored in the buffer exceeds its maximum capacity,
i.e. if

max
∀t∈TH

Invt > Cap. (12)

4. RESULTS

The SA-based scheduling algorithm was tested on two
different real-life case studies of increasing complexities
using actual plant data. Both cases included 3 lines and
differ in the number of orders (Case 1: 36, Case 2: 62),
The algorithm was implemented in Julia 1.0.3.1 (Bezanson
et al., 2017) on a MS Windows 10 desktop PC (intel R©
Core

TM

i7-8700CPU @ 4.30 GHz, 6 Cores, 12 logical
processors, 16 GB RAM). The cooling schedule was given
by T0 = 15000, A = 0.9 and h was increased every 1000
iterations for both layouts. Due to the stochastic nature
of the algorithm, 10 optimization runs were performed for
each case and for each plant layout. The results of the
makespan minimization are summarized in Table 1, where
they are compared to nominal schedules provided by the
planners at the plant. The results show that the makespan
was decreased for all examined cases. The decoupled layout
provides better results due to the increased flexibility
and the higher production rates compared to the coupled
layout. The fact that more degrees of freedom are available
increases the complexity of the scheduling problem but
also enables improvements of the makespan. The mean
CPU times for the examined cases are summarized in
Table 1. The nominal schedules as well as exemplary Gantt
charts for each case are shown in Fig. 6-9. The Gantt charts
show that the algorithm provides schedules in which the
different lines finish processing approximately at the same
time, indicating a balanced utilization of the available

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10926



Fig. 5. Simulated annealing-based optimization algorithm.

resources. This is very significant, as the examined process
is continuous, i.e. production continues immediately after
the execution of the current schedule. For the decoupled
layout the evolution of the amount stored in the buffer is
also shown.

Table 1. Results of the SA-based optimization.

Case MS [min] Impr. [%] CPU Time [s]
Nom. 3202 − −

1 Coup. 3127± 13 2.34 1742
Dec. 2796± 38 12.68 1828
Nom. 5371 − −

2 Coup. 4548± 46 15.32 1940
Dec. 3876± 57 27.93 2802

As mentioned above, the SA-based algorithm is stochastic
in nature, therefore each run results in a different solution.
The evolution of the objective value of the best found
solution for the decoupled layout of Case 2 is shown in
Fig. 10 for ten different runs in order to evaluate the
reproducibility and the performance of the algorithm. The
results show that a drastic improvement of the solution
occurs in the first iterations. After around 50000 itera-
tions, or approximately 5 min of CPU time, a solution
that is very near to the final solution is already found.
This indicates that the algorithm can be used to generate
good schedules even within short computation times, if
necessary. This figure also illustrates the effect of the two

Fig. 6. Case 1: Nominal and optimal schedules for the
coupled layout.

Fig. 7. Case 2: Nominal and optimal schedules for the
coupled layout.

Fig. 8. Case 1: Optimal schedule and buffer profile for the
flexible layout.

stages (allocation and sequencing). The main improvement
of the soultion occurs in the allocation stage. After around
150000 iterations, the sequencing stage starts and refines
the schedule further. All optimization runs converge to
similar objective values (see Table 1), indicating the re-
producibility of the results.

5. CONCLUSION

This contribution presented a two-stage SA-based algo-
rithm for two different layouts of a make-and-pack con-
sumer goods production plant. The solution algorithm was
split into an allocation and a sequencing stage in order to
reduce the computational complexity. The results for two
different case studies show clear benefits for both layouts

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10927



Fig. 9. Case 2: Optimal schedule and buffer profile for the
flexible layout.

Fig. 10. Reproducibility of the optimization results for the
coupled layout of Case 1.

compared to the nominal schedules. Furthermore, the algo-
rithm exhibits a good reproducibility and can provide good
solutions even in very short computation times, making it
suitable for online scheduling applications.
A main drawback of the algorithm when applied to the
decoupled layout is the fixed assignment of formulation
lines to packing lines, as this significantly reduces the
flexibility of the plant. Since all units of the formulation
stage are identical and can process any order, additional
flexibility can be added by allowing different allocations
of the orders in the two production stages. This would
necessitate modifications to the sequence-based schedule
generation. Furthermore, the splitting of the scheduling
problem into two separate optimization stages also de-
creases the improvement potential, as it limits the degrees
of freedom of the optimization. In order to address this
drawback while still keeping the problem computationally
tractable the two stages could be solved in an integrated
fashion. In each iteration the allocation could be performed
by a metaheuristic algorithm and a simplified MILP could
be used to compute the optimal sequence for the given
allocation.

REFERENCES

Baumann, P. and Trautmann, N. (2014). A hy-
brid method for large-scale short-term scheduling of
make-and-pack production processes. European Jour-
nal of Operational Research, 236(2), 718–735. doi:
10.1016/j.ejor.2013.12.040.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.B.
(2017). Julia: A fresh approach to numerical computing.
SIAM Review, 59(1), 65–98. doi:10.1137/141000671.

Bousonville, T. (2002). The two stage continuous paral-
lel flow shop problem with limited storage: Modeling
and algorithms. In P. Collet, C. Fonlupt, J.K. Hao,
E. Lutton, and M. Schoenauer (eds.), Artificial Evolu-
tion, volume 2310 of Lecture Notes in Computer Science,
180–191. Springer, Berlin and Heidelberg.

Coelle Coello, C.A. (2002). Theoretical and numerical
constraints handling techniques used with evolutionary
algorithms: A survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering, (191
(11-12)), 1245–1287.

Delahaye, D., Chaimatanan, S., and Mongeau, M. (2019).
Simulated annealing: From basics to applications. In
M. Gendreau and J.Y. Potvin (eds.), Handbook of Meta-
heuristics, International Series in Operations Research
& Management Science, 1–35. Springer International
Publishing, Cham.

Elekidis, A.P., Corominas, F., and Georgiadis, M.C.
(2019). Optimal short-term scheduling of industrial
packing facilities. In 29th European Symposium on Com-
puter Aided Process Engineering, volume 46 of Com-
puter Aided Chemical Engineering, 1183–1188. Elsevier.
doi:10.1016/B978-0-12-818634-3.50198-3.

Harjunkoski, I., Maravelias, C.T., Bongers, P., Castro,
P.M., Engell, S., Grossmann, I.E., Hooker, J., Méndez,
C., Sand, G., and Wassick, J. (2014). Scope for indus-
trial applications of production scheduling models and
solution methods. Computers & Chemical Engineering,
62, 161–193. doi:10.1016/j.compchemeng.2013.12.001.

Kopanos, G.M., Méndez, C.A., and Puigjaner, L. (2010).
Mip-based decomposition strategies for large-scale
scheduling problems in multiproduct multistage batch
plants: A benchmark scheduling problem of the pharma-
ceutical industry. European Journal of Operational Re-
search, 207(2), 644–655. doi:10.1016/j.ejor.2010.06.002.

Kopanos, G.M., Puigjaner, L., and Maravelias, C.T.
(2011). Production planning and scheduling of parallel
continuous processes with product families. Industrial
& Engineering Chemistry Research, 50(3), 1369–1378.
doi:10.1021/ie100790t.

Méndez, C.A. and Cerdá, J. (2002). An milp-based
approach to the short-term scheduling of make-and-pack
continuous production plants. OR Spectrum, 24(4), 403–
429. doi:10.1007/s00291-002-0103-5.

Sand, G., Till, J., Tometzki, T., Urselmann, M., En-
gell, S., and Emmerich, M. (2008). Engineered ver-
sus standard evolutionary algorithms: A case study
in batch scheduling with recourse. Computers
& Chemical Engineering, 32(11), 2706–2722. doi:
10.1016/j.compchemeng.2007.09.006.

Wang, K., Löhl, T., Stobbe, M., and Engell, S. (2000).
A genetic algorithm for online-scheduling of a multi-
product polymer batch plant. Computers & Chemi-
cal Engineering, 24(2-7), 393–400. doi:10.1016/S0098-
1354(00)00427-0.

Yfantis, V., Corominas, F., and Engell, S. (2019). Schedul-
ing of a consumer goods production plant with interme-
diate buffer by decomposition and mixed-integer linear
programming. IFAC-PapersOnLine, 52(13), 1837–1842.
doi:10.1016/j.ifacol.2019.11.469.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10928


