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Abstract: This paper presents a tight small-gain theorem for networks composed of infinitely
many finite-dimensional subsystems. Assuming that each subsystem is exponentially input-
to-state stable, we show that if the gain operator, collecting all the information about the
internal Lyapunov gains, has a spectral radius less than one, the overall infinite network is
exponentially input-to-state stable. We illustrate the effectiveness of our result by applying it
to traffic networks.
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1. INTRODUCTION

Interconnections of countably many finite-dimensional
subsystems also called infinite networks, appear naturally
as over-approximations of finite but very large networks
with a possibly unknown number of subsystems (Jovanović
and Bamieh, 2005). Applications of the theory of infinite
networks are versatile. Spatially invariant systems consist-
ing of an infinite number of components interconnected
to each other in the same pattern are studied in (Bamieh
et al., 2002; Curtain et al., 2009) together with applica-
tions to, e.g., vehicle platoon formation (Besselink and
Johansson, 2017). Infinite networks also appear as repre-
sentations of the solutions of linear and nonlinear partial
differential equations over Hilbert spaces in terms of series
expansions with respect to orthonormal or Riesz bases,
see e.g. (Lhachemi and Shorten, 2018). A closely related
approach relies on approximations of the system dynamics
by partial differential and difference equations (Meurer,
2012; Kim et al., 2008), which is based on a continuum
approximation in space or in time and is particularly useful
for consensus or coverage type problems.

Most of the results on the stability of infinite networks are
devoted either to spatially invariant or to linear systems.
Recently, several attempts have been made to relax such

? C. Kawan is supported by the German Research Foundation
(DFG) through the grant ZA 873/4-1. A. Mironchenko is supported
by the DFG through the grant MI 1886/2-1. N. Noroozi is supported
by the DFG through the grant WI 1458/16-1. M. Zamani is sup-
ported in part by the DFG through the grant ZA 873/4-1 and the
H2020 ERC Starting Grant AutoCPS (grant agreement No. 804639).

strong restrictions (Dashkovskiy and Pavlichkov, 2020;
Dashkovskiy et al., 2019; Mironchenko, 2019), by introduc-
ing max-form small-gain theorems for infinite networks,
where each subsystem is individually input-to-state stable
(ISS) (Sontag, 1989).

The main idea behind an ISS small-gain theory (see
e.g. (Jiang et al., 1996; Dashkovskiy et al., 2010)) is to
decompose a large-scale or infinite network into smaller
subsystems which are ISS with respect to the neighboring
subsystems, i.e., the inputs from other subsystems act
as disturbances. Then, if the influence of the subsystems
on each other is small enough, which is mathematically
described by a small-gain condition, the stability of the
overall system can be concluded.

In (Dashkovskiy and Pavlichkov, 2020) it is shown that a
countably infinite network of continuous-time ISS systems
is ISS, provided that the gain functions capturing the
influence from the neighboring subsystems are all less
than identity which is quite conservative. By means of
examples, it is shown in (Dashkovskiy et al., 2019) that
classic max-form small-gain conditions (SGCs) developed
for finite-dimensional systems (Dashkovskiy et al., 2010)
do not guarantee the stability of infinite networks of ISS
systems, even if all the systems are linear. To address this
issue, more restrictive robust strong SGCs are developed
in (Dashkovskiy et al., 2019). While the small-gain theo-
rems in (Dashkovskiy and Pavlichkov, 2020; Dashkovskiy
et al., 2019) are formulated in terms of ISS Lyapunov func-
tions, a trajectory-based small-gain theorem for infinite
networks is provided in (Mironchenko, 2019).
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In this paper, we develop tight SGCs for networks consist-
ing of a countably infinite number of finite-dimensional
continuous-time systems. We assume that each subsystem
is exponentially ISS with respect to internal and external
inputs and equipped with an exponential ISS Lyapunov
function. The associated gain functions reflecting the inter-
action with neighbors are assumed to be linear. Such a sce-
nario leads to several nontrivialities. In particular, the gain
operator, collecting all the information about the internal
gains, acts in an infinite-dimensional space, in contrast to
couplings of just N ∈ N systems of arbitrary nature (pos-
sibly infinite-dimensional). This calls for a careful choice of
an infinite-dimensional state space of the overall network,
and motivates the use of the theory of positive operators
on ordered Banach spaces for the small-gain analysis. We
establish in Theorem 6.2 that if the gain operator, which is
a positive operator, has the spectral radius less than one,
then the whole interconnection is exponentially ISS and a
so-called coercive exponential ISS Lyapunov function for
the overall network can be constructed.

Our main result is a nontrivial generalization of Propo-
sition 3.3 in (Dashkovskiy et al., 2011) from finite to
infinite networks. The result in (Dashkovskiy et al., 2011)
basically relies on (Dashkovskiy et al., 2011, Lem. 3.1),
which is a consequence of the Perron-Frobenius theo-
rem. However, existing infinite-dimensional versions of the
Perron-Frobenius theorem, including the Krein-Rutman
theorem (Krein and Rutman, 1948), are not applicable
to our setting as they require at least quasi-compactness
of the gain operator, which is a very strong assumption.
Therefore we need to develop new technical results based
on the classical theory of ordered Banach spaces.

The work in (Dashkovskiy et al., 2019) is close in spirit
to our work, since in both the stability of the network
is studied on the basis of the knowledge of ISS Lyapunov
functions for the subsystems and the knowledge of the gain
structure. However, in (Dashkovskiy et al., 2019), the ISS
Lyapunov functions for the subsystems are defined in an
implication form and the gain operator is used in a max
formulation, which makes it nonlinear, even if all the gains
are linear. In contrast to (Dashkovskiy et al., 2019), in
the present work, we assume the existence of exponential
ISS Lyapunov functions for the subsystems in a dissipative
form and assume that the gain operator is defined in a sum
form. These differences make the results of this paper and
the methods employed in our analysis quite different from
those of (Dashkovskiy et al., 2019).

Due to the page limitation, we either omit the proofs
of the results or present only the main parts of the
arguments. We refer readers to the journal version of
this paper (Kawan et al., 2019) for the detailed proofs
and further applications to nonlinear spatially invariant
systems with sector nonlinearities. In Noroozi et al. (2020)
one can find further applications of our small-gain theorem
for the stability of infinite time-varying networks, to
consensus in infinite-agent systems, as well as to the design
of distributed observers for infinite networks.

2. NOTATION AND PRELIMINARIES

2.1 Notation

We write N = {1, 2, 3, . . .} for the set of positive integers.
R denotes the reals and R+ := {t ∈ R : t ≥ 0} the
nonnegative reals. For vector norms on finite- and infinite-
dimensional spaces, we write | · |. For associated operator
norms, we use the notation ‖ · ‖. We write A> for the
transpose of a matrix A (which can be finite or infinite).
We typically use Greek letters for infinite matrices and
Latin ones for finite matrices. Elements of Rn are by
default regarded as column vectors and we write x> · y
for the Euclidean inner product of two vectors x, y ∈ Rn.
We use the same notation for dot products of vectors with
infinitely many components. By `p, p ∈ [1,∞), we denote
the Banach space of all real sequences x = (xi)i∈N with
finite `p-norm |x|p < ∞, where |x|p = (

∑∞
i=1 |xi|p)1/p.

We write L∞(R+,R) for the Banach space of essentially
bounded measurable functions from R+ to R. If X is a
Banach space, we write r(T ) for the spectral radius of
a bounded linear operator T : X → X. The notation
C0(X,Y ) stands for the set of all continuous mappings
f : X → Y between metric spaces X and Y . The right
upper Dini derivative of a function γ : R → R at t ∈ R is
defined by

D+γ(t) := lim sup
h→0+

1

h

(
γ(t+ h)− γ(t)

)
,

and is allowed to assume the values ±∞. The right lower
Dini derivative D+γ(t) is defined analogously, replacing
lim sup with lim inf. Finally, we introduce the following
classes of comparison functions frequently used in Lya-
punov stability theory.

P :=
{
γ ∈ C0(R+,R+) : γ(0) = 0, γ(r) > 0, ∀r > 0

}
,

K :=
{
γ ∈ P : γ is strictly increasing

}
,

K∞ :=
{
γ ∈ K : lim

t→∞
γ(t) =∞

}
.

2.2 Interconnected Systems

We study the interconnection of countably many systems,
each given by a finite-dimensional ordinary differential
equation (ODE). Using N as the index set (by default),
the i-th subsystem is written as

Σi : ẋi = fi(xi, x̄i, ui). (1)

The family (Σi)i∈N comes together with sequences (ni)i∈N,
(mi)i∈N of positive integers and finite index sets Ii ⊂
N\{i}, i ∈ N, so that the following assumptions hold.

• The state vector xi of Σi is an element of Rni .
• The vector x̄i is composed of the state vectors xj ,
j ∈ Ii. The order of these vectors plays no particular
role, so we do not specify it.

• The external input vector ui is an element of Rmi .
• The right-hand side is a continuous function fi : Rni×
RNi × Rmi → Rni , where Ni :=

∑
j∈Ii nj .

• Unique local solutions of the ODE (1) (in the sense of
Carathéodory) exist for all initial states x0i ∈ Rni and
locally essentially bounded functions x̄i(·) and ui(·)
(which are regarded as time-dependent inputs). We
denote the corresponding solution by φi(t, x

0
i , x̄i, ui).

In the ODE (1), we consider x̄i(·) as an internal input and
ui(·) as an external input (which may be a disturbance or
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a control input). The interpretation is that the subsystem
Σi is affected by finitely many neighbors, indexed by Ii,
and its external input.

To define the interconnection of the subsystems Σi, we
consider the state vector x = (xi)i∈N, the input vec-
tor u = (ui)i∈N and the right-hand side f(x, u) :=
(f1(x1, x̄1, u1), f2(x2, x̄2, u2), . . .). The interconnection is
then formally written as

Σ : ẋ = f(x, u). (2)

To handle this infinite-dimensional ODE properly, we
choose appropriate Banach spaces X ⊂

∏
i∈N Rni and

U ⊂
∏

i∈N Rmi and restrict f toX×U . As a natural choice,
we use `p-type spaces for both X and U , and impose
conditions on f to guarantee existence and uniqueness of
solutions. Our goal is to show that Σ is exponentially input-
to-state stable (eISS) if each Σi admits an eISS Lyapunov
function and a small-gain condition is satisfied.

3. WELL-POSEDNESS

We want to model the state space X of Σ as a Banach
space of sequences x = (xi)i∈N with xi ∈ Rni . The most
natural choice is an `p-space. To define such a space, we
first fix a norm on each Rni (that might not only depend
on the dimension ni but also on the index i). For brevity,
we omit the index in our notation and simply write | · | for
each of these norms. Then, for every p ∈ [1,∞), we put

`p(N, (ni)) :=
{
x = (xi)i∈N : xi ∈ Rni ,

∑
i∈N
|xi|p <∞

}
.

Equipped with the norm |x|p := (
∑

i∈N |xi|p)1/p, the space
`p(N, (ni)) becomes a separable Banach space, which can
be shown using standard arguments, see e.g. (Dunford and
Schwartz, 1957).

As the state space of the system Σ, we consider X :=
`p(N, (ni)) for a fixed p ∈ [1,∞). Similarly, for a fixed
q ∈ [1,∞), we consider the external input space U :=
`q(N, (mi)), where we fix norms on Rmi that we simply
denote by | · | again. The space of admissible external input
functions is defined by

U :=
{
u : R+ → U : u is measurable

and essentially bounded
}
. (3)

A continuous mapping ξ : I → X, defined on an interval
I = [0, T∗) with T∗ ∈ (0,∞], is called a solution of the
infinite-dimensional ODE (2) with initial value x0 ∈ X for
the external input u ∈ U provided that the two conditions

f(ξ(t), u(t)) ∈ X and ξ(t) = x0 +

∫ t

0

f(ξ(s), u(s))ds,

hold for all t ∈ I, where the integral is the Bochner integral
for Banach space valued functions.

If for each x0 ∈ X and u ∈ U , a unique local solution exists,
we say that the system is well-posed and write φ(·, x0, u)
for any such solution. As usual, we consider the maximal
extension of φ(·, x0, u) and write Jmax(x0, u) for its interval
of existence. We say that the system is forward complete
if Jmax(x0, u) = R+ for all (x0, u) ∈ X × U .

Denoting by πi : X → Rni the canonical projection onto
the i-th component (which is a bounded linear operator)
and writing u(t) = (u1(t), u2(t), . . .), we obtain

πiφ(t, x0, u) = x0i +

∫ t

0

πif(φ(s, x0, u), u(s))ds

= x0i +

∫ t

0

fi(πiφ(s, x0, u), (πjφ(s, x0, u))j∈Ii , ui(s))ds,

which implies that t 7→ πiφ(t, x0, u) solves the ODE
ẋi = fi(xi, x̄i, ui) for the internal input x̄i(·) :=
(πjφ(·, x0, u))j∈Ii and the external input ui(·). Hence,

πiφ(t, x0, u) = φi(t, x
0
i , x̄i, ui) for all t ∈ Jmax(x0, u).

Sufficient conditions for the existence and uniqueness of
solutions (and forward completeness) can be obtained from
the general theory of Carathéodory differential equations
on Banach spaces, see (Aulbach and Wanner, 1996) as a
general reference for systems with bounded generators.

4. EXPONENTIAL INPUT-TO-STATE STABILITY

Having a well-posed interconnection (2) with state space
X = `p(N, (ni)) and external input space U = `q(N, (mi)),
it is natural to study its stability with respect to both ini-
tial conditions and external inputs. The concept of input-
to-state stability is suitable for both of these purposes.

We equip the (linear) space U of external inputs with the
sup-norm |u|q,∞ := ess supt≥0 |u(t)|q and work with the
following definition of exponential input-to-state stability.

Definition 4.1. System Σ in (2) is called exponentially
input-to-state stable (eISS) if it is forward complete and
there exist a,M > 0 and γ ∈ K such that for any initial
state x0 ∈ X and any u ∈ U the corresponding solution
satisfies

|φ(t, x0, u)|p ≤Me−at|x0|p + γ(|u|q,∞) for all t ≥ 0.

Next, we provide an alternative definition of input-to-state
stability by means of eISS Lyapunov functions. First, for
any continuous V : X → R, let us define the orbital
derivative at x ∈ X for the external input u ∈ U by

D+Vu(x) := D+V (φ(t, x, u))|t=0,

where the right-hand side is the right upper Dini derivative
of t 7→ V (φ(t, x, u)) at t = 0. Then, the definition of
exponential ISS Lyapunov functions is as follows.

Definition 4.2. A continuous function V : X → R+ is
called an eISS Lyapunov function for the system Σ if there
exist constants ω, ω, b, κ > 0 and γ ∈ K∞ such that

ω|x|bp ≤ V (x) ≤ ω|x|bp, (4a)

D+Vu(x) ≤ −κV (x) + γ(|u|q,∞), (4b)

hold for all x ∈ X and u ∈ U .

The importance of eISS Lyapunov functions is due to the
following result, which is a variation of (Dashkovskiy and
Mironchenko, 2013, Thm. 1), and thus we omit the proof.

Proposition 4.3. If there exists an eISS Lyapunov function
for Σ, then Σ is eISS.

5. ASSUMPTIONS ON THE SUBSYSTEMS AND THE
GAIN OPERATOR

Our main objective is to develop conditions for exponential
input-to-state stability of the interconnection of countably
many subsystems (1), depending on certain stability prop-
erties of subsystems.
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We assume that each subsystem Σi, given by (1), is eISS
and there exist continuous eISS Lyapunov functions with
linear gains for all Σi. Restating the concept of an eISS
Lyapunov function (Definition 4.2) for the subsystem Σi,
we see that the gain γ in this definition indicates the
influence of the aggregated input onto the system. For our
purposes, this information is not sufficient as we would
like to know how each j-th subsystem influences each i-th
subsystem as in the next assumption.

Assumption 5.1. For each i ∈ N there is a continuous
function Vi : Rni → R+, such that for certain p, q ∈ [1,∞)

• There are constants αi, αi > 0 so that for all xi ∈ Rni

αi|xi|p ≤ Vi(xi) ≤ αi|xi|p. (5)

• There are constants λi, γij , γiu > 0 so that the
following holds: for each xi ∈ Rni , ui ∈ L∞(R+,Rmi)
and each internal input x̄i ∈ C0(R+,RNi) and for
almost all t in the maximal interval of existence of
φi(t) := φi(t, xi, x̄i, ui) one has

D+(Vi ◦ φi)(t) ≤ −λiVi(φi(t)) +
∑
j∈Ii

γijVj(xj(t))

+ γiu|ui(t)|q,
(6)

where we denote the components of x̄i by xj(·).
• For all t in the maximal interval of existence of φi

D+(Vi ◦ φi)(t) <∞.
Furthermore, we assume that the following uniformity
conditions hold for the constants introduced above.

Assumption 5.2. (a) There are constants α, α > 0 so that
for all i ∈ N

α ≤ αi ≤ αi ≤ α. (7)

(b) There is a constant λ > 0 so that for all i ∈ N
λ ≤ λi. (8)

(c) There is a constant γu > 0 so that for all i ∈ N
γiu ≤ γu. (9)

The above assumptions enforce stability properties of the
subsystems Σi. In order to speak about the interconnection
of all subsystems in (1), we should define the state space
for the interconnection as well as the space of input values.
The inequalities (5) and (6) suggest the following choice:
X = `p(N, (ni)) and U = `q(N, (mi)). Thus, we suppose:

Assumption 5.3. The system Σ with state space X =
`p(N, (ni)) and external input space U = `q(N, (mi)) is
well-posed.

In order to formulate a small-gain condition, we further
introduce the following infinite nonnegative matrices by
collecting the coefficients from (6):

Λ := diag(λ1, λ2, λ3, . . .), Γ := (γij)i,j∈N,

where we put γij := 0 whenever j /∈ Ii. We also introduce
the infinite matrix

Ψ := Λ−1Γ = (ψij)i,j∈N, ψij =
γij
λi
. (10)

Under an appropriate boundedness assumption, the ma-
trix Ψ acts as a linear operator on `1 by

(Ψx)i =

∞∑
j=1

ψijxj for all i ∈ N.

We call Ψ : `1 → `1 the gain operator associated with the
decay rates λi and coefficients γij .

We assume that Γ is a bounded operator from `1 to `1.

Assumption 5.4. The matrix Γ = (γij) satisfies

‖Γ‖1,1 = sup
j∈N

∞∑
i=1

γij <∞, (11)

where the double index on the left-hand side indicates that
we consider the operator norm induced by the `1-norm
both on the domain and codomain of the operator Γ.

Remark 5.5. Assumption 5.4 implies that there is a con-
stant γ > 0 s.t. 0 < γij ≤ γ for all i ∈ N, j ∈ Ii. �
Lemma 5.6. Suppose that Assumptions 5.4 and 5.2(b)
hold. Then Ψ : `1 → `1 is a bounded operator.

6. SMALL-GAIN THEOREM

In this section, we prove that the interconnected system
Σ is eISS under the given assumptions, provided that the
spectral radius of the gain operator satisfies r(Ψ) < 1.

First, we state a central technical lemma:

Lemma 6.1. Assume that the spectral radius of Ψ satisfies
r(Ψ) < 1 and that there exists a constant λ > 0 such that
λi ≤ λ for all i ∈ N. Then

(i) there exist a vector µ = (µi)i∈N satisfying µ ≤ µi ≤ µ
for all i ∈ N with constants µ, µ > 0, as well as a
constant λ∞ > 0 so that

[µ>(−Λ + Γ)]i
µi

≤ −λ∞ for all i ∈ N;

(ii) for every ρ > 0 we can choose the vector µ and the
constant λ∞ so that λ∞ ≥ (1− r(Ψ))λ− ρ.

By Proposition 4.3, our objective can be accomplished by
finding an eISS Lyapunov function for the interconnection
Σ under the small-gain condition r(Ψ) < 1. This is
accomplished by the following small-gain theorem, which
is the main result of the paper and a direct generalization
of (Dashkovskiy et al., 2011, Prop. 3.3) where this result
has been shown for finite networks.

Theorem 6.2. Consider the infinite interconnection Σ,
composed of subsystems Σi, i ∈ N, with fixed p, q ∈ [1,∞),
and let the following assumptions hold.

(i) Σ is well-posed as a system with state space X =
`p(N, (ni)), space of input values U = `q(N, (mi)),
and the external input space U , as defined in (3).

(ii) Each Σi admits a continuous eISS Lyapunov function
Vi so that Assumptions 5.1 and 5.2 are satisfied.

(iii) The operator Γ : `1 → `1 is bounded, i.e., Assumption
5.4 holds.

(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then Σ admits an eISS Lyapunov function of the form

V (x) =

∞∑
i=1

µiVi(xi), V : X → R+ (12)

for some µ = (µi)i∈N so that µ ≤ µi ≤ µ for certain
constants µ, µ > 0. In particular, the function V satisfies:

(a) V is continuous.
(b) There is a λ∞ > 0 so that for all x0 ∈ X and u ∈ U :

D+Vu(x0) ≤ −λ∞V (x0) + µγu|u|qq,∞.
(c) For all x ∈ X the following inequalities hold:

µα|x|pp ≤ V (x) ≤ µα|x|pp. (13)
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In particular, Σ is eISS.

Proof. First, we prove the result for the case that there is
a constant λ > 0 with

λi ≤ λ for all i ∈ N. (14)

Inequality (14) means that the decay rates of the eISS Lya-
punov functions for all subsystems are uniformly bounded.
Afterwards, we treat the general case.

Step 1 (Definition of V ): Lemma 6.1 yields a positive
vector µ = (µi)i∈N ∈ `∞ whose entries are uniformly
bounded away from zero, and a constant λ∞ > 0 so that

[µ>(−Λ + Γ)]i
µi

≤ −λ∞ ∀ i ∈ N. (15)

With this µ, the function V in (12) is well-defined, contin-
uous and satisfies (13) (we skip the arguments).

Step 2 (Estimate of the orbital derivative): Fix an initial
state x0 ∈ X and an external input u ∈ U . We write
φ(t) = φ(t, x0, u), φi(t) = πiφ(t), x̄i(t) = (πjφ(t))j∈Ii ,
where πi denotes the projection to the i-th component.
Then for any t > 0 (where φ(t) is defined), we obtain

1

t

(
V (φ(t))− V (x0)

)
=

1

t

∞∑
i=1

µi

[
Vi(φi(t))− Vi(φi(0))

]
.

Since the inequalities (6) are valid for almost all posi-
tive times, the function on the right-hand side of (6) is
Lebesgue integrable, and since we assume that D+(Vi ◦
φi)(t) < ∞ for all t, we can proceed using the general-
ized fundamental theorem of calculus (see (Hagood and
Thomson, 2006, Thm. 9 and p. 42, Rmk. 5.c)) to

1

t

(
V (φ(t))− V (x0)

)
≤ 1

t

∞∑
i=1

∫ t

0

µi

[
−λiVi(φi(s))

+
∑
j∈Ii

γijVj(φj(s)) + γiu|ui(s)|q
]
ds.

Using the assumption (14), the notation

Vvec(φ(s)) := (V1(φ1(s)), V2(φ2(s)), . . .)>

and applying the Fubini-Tonelli theorem to interchange
the infinite sum and the integral (we skip the verification
of the assumptions of the Fubini-Tonelli theorem), one can
conclude that
1

t

(
V (φ(t))− V (x0)

)
≤ 1

t

∫ t

0

∞∑
i=1

µi

[
−λiVi(φi(s)) +

∑
j∈Ii

γijVj(φj(s))

+ γiu|ui(s)|q
]
ds

=
1

t

∫ t

0

[
µ>(−Λ + Γ)Vvec(φ(s)) +

∞∑
i=1

µiγiu|ui(s)|q
]
ds

≤ 1

t

∫ t

0

[
−λ∞V (φ(s)) + µγu|u|qq,∞

]
ds

=
1

t

∫ t

0

−λ∞V (φ(s)) ds+ µγu|u|qq,∞,

where we use (15) to show the second inequality above.
Since s 7→ V (φ(s)) is continuous, one obtains

D+Vu(x0) = lim sup
t→0+

1

t

(
V (φ(t))− V (x0)

)
≤ −λ∞V (x0) + µγu|u|qq,∞.

Hence, (4b) holds for V with κ = λ∞ and γ(r) = µγur
q.

Step 3 (Proof of eISS): We showed that properties (a)–(c)
are satisfied for V . Thus, V is an eISS Lyapunov function
for Σ and Σ is eISS by Proposition 4.3. Hence, for the case
of uniformly upper-bounded λi the theorem is proved.

Step 4 : If the decay rates λi are unbounded, one
can use the previous arguments and invoke the upper-
semicontinuity of the spectral radius to show the claim.

2

7. EXAMPLE: A ROAD TRAFFIC MODEL

In this example, we apply our approach to a variant of the
road traffic model from (de Wit et al., 2012). We consider
a traffic network divided into infinitely many cells, indexed
by i ∈ N. Each cell i represents a subsystem Σi described
by a differential equation of the following form

Σi : ẋi =−
(vi
li

+ ei

)
xi +Dix̄i +Biui, xi, ui ∈ R, (16)

with the following structure

− ei = 0, Di = cvi+1

li+1
, x̄i = xi+1, Bi = 0 if i ∈ S1 :=

{1, 3};
− ei = 0, Di = cvi+4

li+4
, x̄i = xi+4, Bi = r > 0 if

i ∈ S2 := {4 + 8c : c ∈ N ∪ {0}};
− ei = 0, Di = cvi−4

li−4
, x̄i = xi−4, Bi = r

2 if i ∈ S3 := {5+

8c : c ∈ N ∪ {0}};
− ei = 0, Di = c( vi−1

li−1
, vi+4

li+4
)>, x̄i = (xi−1, xi+4), Bi = 0

if i ∈ S4 := {6 + 8c : c ∈ N ∪ {0}};
− ei = e ∈ (0, 1), Di = c( vi−4

li−4
, vi+1

li+1
)>, x̄i =

(xi−4, xi+1), Bi = 0 if i ∈ S5 := {9+8c : c ∈ N∪{0}};
− ei = 0, Di = c( vi+1

li+1
, vi+4

li+4
)>, x̄i = (xi+1, xi+4), Bi = 0

if i ∈ S6 := {2 + 8c : c ∈ N ∪ {0}};
− ei = 0, Di = c( vi−4

li−4
, vi−1

li−1
)>, x̄i = (xi−4, xi−1), Bi = 0

if i ∈ S7 := {7 + 8c : c ∈ N ∪ {0}};
− ei = 2e,Di = c( vi−1

li−1
, vi+4

li+4
)>, x̄i = (xi−1, xi+4), Bi = 0

if i ∈ S8 := {8 + 8c : c ∈ N ∪ {0}};
− ei = 0, Di = c( vi−4

li−4
, vi+1

li+1
)>, x̄i = (xi−4, xi+1), Bi = 0

if i ∈ S9 := {11 + 8c : c ∈ N ∪ {0}};
where, for all i ∈ N, 0 ≤ vi ≤ v, 0 < l ≤ li ≤ l, and
c ∈ (0, 0.5). In (16), li is the length of a cell in kilometers
(km), and vi is the flow speed of the vehicles in kilometers
per hour (km/h). The state of each subsystem Σi, i.e. xi,
is the density of traffic, given in vehicles per cell, for each
cell i of the road. The scalars Bi represent the number of
vehicles that can enter the cells through entries that are
controlled by ui. In particular, ui = 1 means green light
and ui = 0 means red light. Moreover, the constants ei
represent the percentage of vehicles that leave the cells
using available exits.

It can be shown easily that the interconnected system
Σ with state space X := `2(N, (ni)) and input space
U := `2(N, (mi)) is well-posed.

Furthermore, each subsystem Σi admits an eISS Lyapunov
function of the form Vi(xi) = 1

2x
2
i . The function Vi satisfies

(5) and (6) for all i ∈ N with αi = αi = 1
2 , λi = 2(vi

li
+

ei − 2εi), γij = ‖cDi‖2
2εi

for all j ∈ Ii, γiu =
B2

i

2εi
, for

an appropriate choice of 0 < ε ≤ εi ≤ ε such that
0 < λ := 2

(
v/l − 2ε

)
≤ λi. In that way, one can readily

observe that
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0 < γij ≤
v2

ε l2
=: γ <∞, 0 < γiu ≤

r2

2ε
=: γu <∞.

Additionally, the infinite matrix Ψ := Λ−1Γ = (ψij)i,j∈N =
(γij/λi)i,j∈N, for Λ and Γ defined in (10), has the following
structure.

− i ∈ S1 ⇒ (γij 6= 0 ⇔ j = i+ 1);
− i ∈ S2 ⇒ (γij 6= 0 ⇔ j = i+ 4);
− i ∈ S3 ⇒ (γij 6= 0 ⇔ j = i− 4);
− i ∈ S4 ⇒ (γij 6= 0 ⇔ j ∈ {i− 1, i+ 4});
− i ∈ S5 ⇒ (γij 6= 0 ⇔ j ∈ {i− 4, i+ 1});
− i ∈ S6 ⇒ (γij 6= 0 ⇔ j ∈ {i+ 1, i+ 4});
− i ∈ S7 ⇒ (γij 6= 0 ⇔ j ∈ {i− 4, i− 1});
− i ∈ S8 ⇒ (γij 6= 0 ⇔ j ∈ {i− 1, i+ 4});
− i ∈ S9 ⇒ (γij 6= 0 ⇔ j ∈ {i− 4, i+ 1}).

The spectral radius r(Ψ) can be estimated by

r(Ψ) ≤ ‖Ψ‖ = sup
j∈N

∞∑
i=1

ψij ≤ 2
γ

λ
.

Hence, any choice of the constants εi such that

(2(cv)2/ε l2)/((v/l)− 2ε) < 1,

for all i ∈ N, leads to r(Ψ) < 1.

Hence, by Theorem 6.2 there exists µ = (µi)i∈N ∈ `∞

satisfying µ ≤ µi ≤ µ with constants µ, µ > 0 such that

the function V (x) = 1
2

∑∞
i=1 µix

2
i is an eISS Lyapunov

function for the interconnected system Σ.

8. CONCLUSIONS

In this paper, we developed sufficient small-gain type
conditions for showing exponential ISS of networks con-
sisting of countably infinite numbers of exponentially ISS
subsystems, which are finite-dimensional themselves. The
proposed small-gain conditions, expressed in terms of the
spectral radius of the resulting gain operator, are tight (see
Kawan et al. (2019) for a detailed tightness analysis) and
can be effectively checked for large classes of systems. In
the spirit of (Noroozi et al., 2018), we plan to investigate
the necessity of the proposed small-gain conditions.
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