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Abstract: This paper presents a method for georeferencing low-altitude camera sensors, both
infrared and electro-optical, in a maritime context. Accurate georeferencing require very high
precision for the object pixel coordinates due to sensor resolution. To achieve this we refine
the bounding boxes provided by an SSD object detector using the Sobel operator and the
Hough transform. Using real world data this method is applied in a maritime tracking system
based on the Joint Integrated Probabilistic Data Association method and compared to radar
tracking. The georeferenced cameras surpassed radar performance in several of the benchmarks
and maintained tracks with greater reliability at the cost of reduced position accuracy.
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1. INTRODUCTION

Sensor redundancy plays an important part in safe and
reliable navigation for autonomous vessels. Traditionally
this has taken the form of multiple radars or in more recent
years the combination of radars and lidars in a sensor
fusion system. The addition of passive sensors such as cam-
eras can further enhance the accuracy and robustness of
the system. However, the lack of explicit range information
presents a challenge which could significantly degrade the
accuracy of the vessels tracking system.

Low cost and efficient packaging make imaging sensors at-
tractive alternatives to more expensive, active sensors such
as radars. In the maritime domain the application of these
sensors for situational awareness has been the subject of
considerable research focus in recent years. (Bloisi and
Iocchi, 2009) demonstrated a video surveillance system for
boat traffic monitoring in Venice. (Fefilatyev et al., 2010)
used a buoy mounted camera to track marine vessels using
a multiple hypothesis framework. Background subtraction
of camera data was used to track vessel outlines in (Szpak
and Tapamo, 2011).

Georeferencing, the act of associating information with
geographic location, has not been discussed in compre-
hensive survey papers on maritime situational awareness
using cameras such as (Prasad et al., 2017). Nevertheless
methods using georerefencing have been examined in some
previous papers. (Park et al., 2015) used a monocular
camera mounted on an unmanned surface vessel to es-
timate target ranges based on the vertical distance be-
tween the target and the horizon. (Woo and Kim, 2016)
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demonstrated a vision-based collision avoidance system
using georeferenced cameras on simulated data. (Helgesen
et al., 2018) employed an unmanned aerial vehicle (UAV)
mounted thermal camera to achieve centimeter accuracy
in georeferencing static, maritime objects.

In this work we present, demonstrate and evaluate a
method for extracting range information from camera data
for use in a maritime target tracking system. Compared
to (Park et al., 2015) our method is simpler and more
robust due to eliminating the need for horizon detection.
This allows applications in situations where the horizon is
obscured such as urban environments or adverse weather
conditions. In contrast with (Helgesen et al., 2018) we
mount the cameras at low altitude more representative of
vessel-mounted sensors. The position estimation method
itself is similar to (Woo and Kim, 2016), however we also
integrate it into a complete, state-of-the-art pipeline from
detection to tracking. The tracking system is based on the
Markov-chain Two version of the Joint Integrated Prob-
abilistic Data Association (JIPDA), (Musicki and Evans,
2004), method for multi-target tracking. Real world data
from infrared (IR) and electro-optical (EO) cameras are
used to evaluate performance against a radar benchmark
on a dataset covering both day and night conditions at
ranges from 100m to 400m.

2. POSITION ESTIMATION

Typically it is not possible to estimate the position of
an object from 2-dimensional image data without addi-
tional information, e.g. constraining the object position
to a known plane. For maritime target tracking a safe
assumption is that all objects of interest, excepting sea-
planes, will be situated on the ocean surface which can be
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approximated as a flat plane. By placing the camera above
the ocean plane we can leverage this constraint to estimate
the actual position of a target in three dimensions.

By utilizing the pinhole model and the camera calibration
of (Zhang, 2000) we extract the object’s bearing and eleva-
tion angle in the camera frame, creating a unit vector. The
camera position and pose is used to transform this vector
into a north-east-down world frame fixed at the ocean
surface centered on the sensor rig. The object’s position is
then given by the intersection of the vector and the ocean
plane.

The method can be summarized as follows:

(1) Object detection method (e.g. SSD) resulting in
bounding boxes for all objects of interest.

(2) Refine the bounding box using the horizontal Sobel
operator and Hough transform to find the intersection
between the object and the ocean surface

(3) Use the refined bounding box position to create a
vector pointing towards the object. The intersection
between the vector and the ocean plane yields the
object’s position.

An alternative approach is to use Mask R-CNN (He et al.,
2017), a deep learning detector for object segmentation,
eliminating the need for bounding box refinement. This
does however require specially labelled datasets with ob-
ject masks and is more computationally expensive than
the current method, but could result in greater accuracy.

Given a pixel position, xc
P = [xcP , y

c
P ], we first find the

bearing θc and elevation ϕc of the pixel in the camera
frame (c) relative to the image center.

θc =
xP −Rx/2

Rx
Fx (1)

ϕc =
yP −Ry/2

Ry
Fy (2)

Rx and Ry denote the image resolution in pixels along the
x and y axis while Fx and Fy are the corresponding fields
of view (FOV) in radians of the camera. These angles are
used to create a vector in the camera coordinate system
pointing towards the detection, vc.

vc = [xc, yc, zc] = [tan θc, tanϕc, 1] (3)

Using the camera position and pose this vector is trans-
formed into the world coordinate system (w) by a rotation,
Rw

c , and a translation, twc , to yield vw,

vw = Rw
c vc + twc . (4)

The start point of the vector is in the camera center given
by the translation vector. The vector end point occurs
once the vector crosses the ocean plane, i.e. at zw = 0.
Finding the scale factor, s, required for the vector vw to
intersect is then given by the cameras elevation, twcZ , and
the downwards component of the object vector, zw

s = −
twcZ
zw

. (5)

Combining the scale factor with the object vector and the
camera location yields the object’s position,

xw = twc + svw. (6)

2.1 Tracking system

In the context of autonomous vessels and collission avoid-
ance the end goal of a sensing system is accurate state
estimates. The presence of clutter, sensor noise and mul-
tiple targets require specialized state estimation methods
to yield optimal results. Due to this we have chosen to
integrate and evaluate the georeferencing method as part
of a full tracking system based on the JIPDA multi-
target tracker. Other well known tracking methods such as
Probabilistic Data Association (Bar-Shalom et al., 2011,
p. 174) and Joint Probabilistic Data Association (Bar-
Shalom et al., 2011, p. 387) are special cases of the JIPDA.

2.2 Measurement uncertainty

Accurate tuning of measurement uncertainty is important
to yield state estimates in tracking that are statistically
consistent. Setting the noise too small relative to the
real value can yield a jumpy, measurement weighted state
estimate. If the noise is too large the filter will be slow
to respond to measurements, relying more on model pre-
dictions. We define the measurement uncertainty in pixel
coordinates in the camera frame as this is where the
detection system operates. This noise covariance matrix,
ΣP , is then converted to Cartesian world coordinates, ΣW ,
based on the measurements or predictions according to

ΣW = JΣP JT (7)
where J is the Jacobian of (6) with respect to pixel
position.

3. IMAGE DETECTION AND PROCESSING

Image data requires extensive processing to extract accu-
rate detections. In this work we use a single shot detector
(SSD) based deep learning method for object detection to
extract bounding boxes which are then refined to provide
more accurate detections.

Fig. 1. IR detection output

3.1 SSD image data detector

Introduced in (Liu et al., 2015), the SSD functions by di-
viding an image into a grid consisting of a fixed amount of
pre-computed bounding boxes. SSD learns these bounding
boxes as part of the training process, known as MultiBox
(Erhan et al., 2013). Regression is then employed to match
these boxes to the actual objects within the image. This
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allows SSD to combine both speed and accuracy. Deep
learning based detectors such as SSD have been success-
fully used for object detection in maritime environments
in (Helgesen et al., 2019; Schöller et al., 2019).

A Mobilenet v2, (Sandler et al., 2018), network pretrained
on the COCO dataset, (Lin et al., 2014), was used as
a base for the detector. A custom dataset consisting of
2035 images for each camera was labelled based on data
recorded in 2017 at the same location. Using these images
two separate detectors were trained using transfer learn-
ing, one for each camera type. Fig. 1 illustrates detector
output.

3.2 Sobel operator

The Sobel operator, or Sobel filter, is an edge detection
method for digital images. It is used to approximate the
gradient of an image by convolving two 3× 3 kernels with
the image to find the horizontal and vertical gradients.
These gradients, Gx and Gy, are computed as

Gx =

[−1 0 1
−2 0 2
−1 0 1

]
∗ I (8)

Gy =

[−1 −2 −1
0 0 0
1 2 1

]
∗ I (9)

where I is an image.

3.3 Hough transform

The Hough transform, (Hough V, 1962), is a widely
used method to detect geometric features in image data.
The basic idea behind the Hough transform is that a
line in image space has a corresponding point in the
parameter space describing a line. Vice versa, a point in
image space will result in a line in parameter space. The
parametrization used today is due to (Duda and Hart,
1972) and is given by

ρ = x cos θ + y sin θ (10)
where [x, y] represents a point in an image and [ρ, θ] a
point in parameter space. The actual line detection is done
using a 2-dimensional accumulator array where each cell
corresponds to a certain pair of parameters, [ρ, θ]. If a line
is detected in the neighbourhood of a pixel, the parameters
of this line are found and the corresponding accumulator
cell is incremented by one. Once completed for all pixels,
the cells with the highest numbers will contain the most
likely lines. A gradient image obtained from applying the
Sobel operater is shown in Fig. 2. The points in the Hough
plot, Fig. 3, with the largest number of intersecting lines
corresponds to the cells in the accumulator array with the
highest number.

4. PERFORMANCE METRICS

This section presents the metrics used to evaluate the
various sensors and sensor combinations, both for track
management and track accuracy. The MATLAB Sensor
Fusion Toolbox was used to implement some of these
metrics.

Fig. 2. Sobel gradient image of a detected boat

Fig. 3. Hough transform and the resulting Hough lines of
Fig. 2

4.1 Track-truth assignment

The track-truth assignment determines whether a track
originates from a valid target or from clutter. For every
track the track-truth Euclidean distance is calculated to
all current truths, if this distance is below a set threshold,
15m, the association is valid. The threshold was set based
on smart phone GPS accuracy.

4.2 Track management metrics

Track management plays a vital part in the performance
of a tracking system. Good track management can pro-
vide better track initialization, reduce the effect of false
tracks and eliminate potential redundancies. This section
presents a number of metrics designed to evaluate the track
management performance of the tracking system.

• Establishment length evaluates the time in seconds
required to establish a valid track-truth association
measured from the start of a dataset. This serves as an
estimate of how many seconds is required to establish
a track once a target enters the surveillance region.
• False tracks are tracks not associated with a truth,

originating from clutter and false detections. In this
evaluation a false track is defined as a track that
was never associated with a truth during its lifetime.
This metric is reported as the average number of false
tracks and their duration per dataset.
• Truth breaks occur when a truth becomes unas-

sociated with a track, either due to track death or
the track has associated with another truth. This
metric is reported as the average track break time
per dataset.

4.3 Track accuracy

Another area of key interest in evaluating tracking perfor-
mance is the accuracy of the tracking results. Good track
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management can be of little consequence if the resulting
accuracy of the tracks are poor. Safe, autonomous maneu-
vering requires an accurate estimate of the current world
state to avoid potential collisions with other object’s. This
section presents metrics designed to evaluate the accuracy
of the tracking result decoupled from track management.

• Position accuracy is evaluated according to root-
mean-square error (RMSE). RMSE is calculated for
a single target-track pair according to

PosRMSE =

√∑k
i=1(x̂i − xi)2

k
, (11)

where k is the total number of updates, x̂i and xi the
track and truth position. Position RMSE is calculated
per target across all datasets.
• Divergence occurs when the Euclidean distance be-
tween a track-truth assignment exceeds the assign-
ment threshold of 15m, that is

||xi
k − x̂j

k|| > 15m. (12)

Track deviation is a significant concern with regards to
track breaks, large deviations can lead to valid measure-
ments outside the validation gate of the track, increasing
the probability of track death.

4.4 Filter consistency

Since experimental data are used, filter consistency is eval-
uated with the Average Normalized Innovation Squared
(ANIS). For a single target Kalman filter we have

ANIS =
1

N

N∑
k=1

VT
k S−1

k Vk, (13)

where Vk is the innovation at time k and Sk the inno-
vation covariance. In a JPDA or JIPDA tracker multiple
weighted Kalman filter updates can be used to update
track states. In these cases the Normalized Innovation
Squared (NIS) calculation for target t is weighted accord-
ing to the marginal association probabilities:

NISt
k =

∑mk

j=1 β
t,j
k (Vt,j

k )T (St
k)−1Vt,j

k∑mk

j=1 β
t,j
k

, (14)

where βt,j
k is the marginal association probability of track t

with measurement j andmk the number of measurements.
This metric is calculated for all tracks, valid or false,
across all time steps and averaged to produce the reported
ANIS metric. More information about the association
probabilities can be found in (Musicki and Evans, 2004).

5. SENSORS AND EXPERIMENT SETUP

Electro-optical sensor data were provided by an AXIS
P5514-E camera at a resolution of 1280 × 720 pixels.
Infrared sensor data came from a FLIR M232 camera using
a 320× 240 VOx microbolometer sensor sensitive to long-
wave infrared radiation. Both cameras were set to near
identical fields of view, 24°, and sampled at 1Hz. The radar
benchmark comes from a SIMRAD Broadband 4G radar.

5.1 Radar pipeline

The radar used in this work contains a built-in detection
system. These detections are presented in the form of

spokes containing resolution cells corresponding to certain
ranges and azimuth angles. Each cell contains a binary
value representing whether a target is present or not in the
range and azimuth covered by this cell. These resolution
cells are converted into a 2D point cloud which is clustered
to provide a single detection for each target. An in-depth
exploration of this radar pipeline is available in (Wilthil
et al., 2017).

The performance evaluation is based on several datasets
recorded outside Oslo, Norway, at the DNV GL headquar-
ters. Data were recorded using all sensors at both day and
nighttime. Cameras were mounted to a mobile sensor rig
provided by DNV GL, set at a fixed position on land at
an elevation of 3 meters. In Fig. 4 the experiment area is
shown with an approximate FOV for the cameras overlaid.

Fig. 4. Experiment area with camera FOV

Two reference targets were used in the evaluation, both
recording a GPS ground truth using Android smart
phones. Shown in Fig. 5, the reference targets include
a small aluminium boat propelled by low-power electric
motors and a kayak fitted with a radar reflector. Dataset
weather conditions are given in Table 1. Some boating
activity was present in the daytime dataset and a single
non-reference target in the nighttime dataset. Any tracks
resulting from these targets are assumed to be false by the
evaluation system due to a lack of ground truths.

Fig. 5. Reference targets

Table 1. Testing conditions

Dataset 1 Dataset 2
Light[LUX] 24k-28k 0-7
Rain[mm] 0 0
Douglas Sea state 1-2 1
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6. RESULTS

Using the datasets and metrics described previously the
tracking performance of the georeferenced cameras, both
individually and in fusion, are evaluated against a radar
benchmark. Raw performance data can be found in Tables
2 and 3 as well as Fig. 8. A visualization of the tracking
process at 200m range can be seen in Figs. 6 and 7.

Fig. 6. IR tracking at 200m range

Fig. 7. EO tracking at 200m range

6.1 Electro-optical camera performance

In terms of track management the EO camera shows
promising daytime performance compared to the radar.
Tracks are established significantly quicker (Table 3) and
could be improved further by sampling at the cameras
native framerate. Track break times are also considerably
lower although the number of breaks is an order of magni-
tude higher. False tracks (Table 2) are a problem, possibly
due to the detectors tendency to detect sea birds as valid
targets. Nighttime performance is significantly reduced
due to a lack of illumination resulting in large amounts
of sensor noise.

Track accuracy is reduced compared to the radar, both in
terms of divergence time (Table 3) and in terms of RMS
position error, Fig. 8. At certain ranges the camera does
match the position accuracy of the radar but this is highly
dependent on finding the correct pixel corresponding to
the intersection between the vessel and the ocean. Due to
the cameras low elevation and the long distances to targets
minor pixel errors can result in position estimates off by

Table 2. Track metrics

Sensors False Tracks False Track Length ANIS
R 20 262.10s 2.06
IR 113 482.99s 2.64
EO 87 564.67s 2.14
IR,EO 223 376.53s 2.63

tens of metres.

6.2 Infrared camera performance

Compared to EO performance the IR camera is slightly
slower in establishing tracks, possibly due to the lower
resolution resulting in greater effects of detection inaccura-
cies. Both the number of track breaks as well as the track
break time is roughly doubled compared to the EO camera.
The nighttime performance of the IR camera is however
much better than the EO camera due to the nature of
the sensor with near identical performance regardless of
lighting conditions. Similarly to the EO camera the IR
camera yields better performance across several metrics
compared to the radar. False tracks still remain a problem,
though slightly less than with the EO camera.

For track accuracy the IR camera usually tracks the EO
camera closely in terms of RMS position error, Fig. 8.
Track divergence time is nearly doubled, increasing the
likelihood of premature track deaths. The radar bench-
mark is still significantly better than both cameras in
terms of divergences.

Table 3. Track Metrics, parantheses show day-
time performance

Sensors Est. T. Breaks Break T. Div. T.
R 14.96s 28 393.09s 17.63s
IR 5.14s (3.21s) 341 307.18s 196.73s
EO 41.85s (1.41s) 170 123.25s 103.47s
IR,EO 4.51s (0.57s) 450 273.70s 211.69s

6.3 Sensor fusion performance

The effects of sensor fusion can result in significant ad-
vantages for robustness and redundancy (Helgesen et al.,
2019). For track management the effects of sensor fusion
are both positive and negative. Tracks are established
quicker than with only EO. However the number of track
breaks is greater than any of the cameras, although the
break time is lower than the IR camera. A minor improve-
ment in long range accuracy can be observed in Fig. 8.
In certain cases performance was worse than individual
cameras, possibly due to the lack of multi-sensor tuning.

7. CONCLUSION

A method for georeferencing imaging data from monoc-
ular cameras without horizon detection was presented
in this paper and applied to maritime target tracking.
Constraining objects to a flat plane modelling the ocean
surface allowed position estimation using only a single
camera. A reduction in track breaks was observed com-
pared to the radar benchmark, possibly due to differences
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in sensor resolution. The lower resolution of the radar
was observed to cause merged measurements for targets
at close ranges degrading tracking performance. We also
observed reduced position accuracy compared to the radar
benchmark. Higher camera resolutions and enhanced de-
tection accuracy is expected to improve this along with
further work on camera calibration. Planned future work
includes application to vessel-mounted sensors where the
sensor platform is in motion as well as integration into a
heterogeneous multi-sensor fusion system with active and
passive sensors.
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