
Cloud-based collaborative learning of
optimal feedback controllers

Valentina Breschi ∗ Laura Ferrarotti ∗∗ Alberto Bemporad ∗∗

∗Dipartimento di Elettronica e Informazione, Politecnico di Milano,
20133 Milan, Italy (e-mail: valentina.breschi@polimi.it).

∗∗ IMT School for Advanced Studies Lucca, 55100 Lucca, Italy (e-mail:
{laura.ferrarotti,alberto.bemporad}@imtlucca.it)

Abstract: Industrial systems deployed in mass production, such as automobiles, can greatly
benefit from sharing selected data among them through the cloud to self-adapt their control laws.
The reason is that in mass production systems are clones of each other, designed, constructed,
and calibrated by the manufacturer in the same way, and thus they share the same nominal
dynamics. Hence, sharing information during closed-loop operations can dramatically help each
system to adapt its local control laws so to attain its own goals, in particular when optimal
performance is sought. This paper proposes an approach to learn optimal feedback control
laws for reference tracking via a policy search technique that exploits the similarities between
systems. By using resources available locally and on the cloud, global and local control laws
are concurrently synthesized through the combined use of the alternating direction method
of multipliers (ADMM) and stochastic gradient descent (SGD). The enhancement of learning
performance due to sharing knowledge on the cloud is shown in a simple numerical example.

Keywords: Consensus and Reinforcement learning control, Control over networks.

1. INTRODUCTION

Research on data-driven control is now gaining renewed
interest within the control community, given the limi-
tations of model-based design in coping with uncertain
real-world systems and varying operating conditions.
Data-driven control strategies, such as virtual reference
feedback tuning (Campi et al., 2002), aim at synthesizing
controllers from batches of input/output data, bypassing
the model identification phase. These approaches rely on
the choice of a reference model, representing the desired
behavior in closed loop. Although this decision is of
paramount importance for closed-loop performance, the
selection of the reference model is generally performed a
priori, without any guarantee that the desired behavior is
actually attainable given the selected class of controllers.
By sharing the same philosophy of data-driven control
strategies without requiring the selection of a reference
model, model-free reinforcement learning (RL) exploits
information collected from interactions between a process
and the environment to determine optimal policies, i.e.,
control laws that maximize a given reward. RL methods
are generally classified as actor-critic, critic-only, and
actor-only (or policy search) approaches (Konda and
Tsitsiklis, 2003), with the latter exploiting a specific
parameterization of the policy instead of resorting to
successive approximations of the cost to be optimized.
Although investigated within both the control and the
machine learning communities, methods for data-driven
design of optimal controllers generally leverage informa-
tion gathered from a single plant. As collecting informative
data from a single plant might require running it for a
long time, exploration throughout the learning phase is
generally quite limited, often requiring additional efforts

to satisfactorily search the state and action spaces (e.g.,
add exploration noise to the best decision).

Thanks to recent advances in cloud computing, it is
now technically and economically feasible to collect and
store information gathered from different plants with the
same nominal behavior, for example in a large volume
production setting. Since it is likely that these plants (or
agents) share similar objectives while operating within
different environments, the design of local control policies
might be improved by using the additional information
within experiences shared by other agents. In fact, each
plant may explore different regions of the state and action
spaces than others, so that the union of such explorations
can provide a wide coverage of the operating space. In case
of agents having limited embedded computing capabilities
but access to resources on the cloud, we can even assume
that each agent locally performs simple operations only.

In this paper, we present a policy search approach to
design feedback optimal controllers for systems whose
dynamics are only known to be similar, that are allowed
to share their experiences through the cloud. Differently
from multi-agent RL approaches, such as the one in
(Dimakopoulou et al., 2018), the proposed method is not
aimed at finding local policies for systems interacting
within the same (non-stationary) environment and co-
operating to perform a common task. Instead, here the
advantage of a cloud-aided framework is exploited by
introducing a global policy, that is related to the local
control laws by (known) constraints, reflecting the similar-
ity among the agents. We will handle such constraints via
the Alternating Direction Method of Multipliers (ADMM)
(Boyd et al., 2011). Differently from what is generally

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2702



done in parallel RL, see, e.g., (Nair et al., 2015), the use
of ADMM allows systems to share a surrogate of their
experiences, e.g., their policies, while their states, actions
and rewards are retained locally, which might be useful
when the agents cannot share information other than
their policies for privacy or security reasons. Although the
rationale behind the method is fairly general, we focus
on the combination of ADMM with the policy gradient
strategy proposed in (Ferrarotti and Bemporad, 2019)
and we consider output tracking problems over groups of
similar agents, that are not forced to track exactly the
same reference, but are supposed to pursue similar goals.
Given the similarities between the agents and their goals,
we search for an optimal global policy for the whole group.
Within a multi-agent cooperative setup, the problem of
searching for a unique policy is also tackled in (Khan et al.,
2018) under the assumption that the local policies of the
agents lie in the same space. Differently from our approach,
in (Khan et al., 2018) the quest for a global policy is
introduced to reduce the computational complexity due
to the interactions of multiple agents, that work together
within the same environment to attain a common goal.
The paper is organized as follows. The considered policy
search problem is presented in Section 2, along with the de-
scription of the specific setting considered throughout the
paper. The proposed approach is presented in Section 3,
and its performance is assessed on a simple simulation
example in Section 4. Conclusions and directions for future
work are finally reported in Section 5.

Notation: Let N and Rn be the set of natural numbers and
of real vectors of dimension n, respectively. Let the identity
matrix be denoted by I. Given a (n × m)-dimensional
matrix A ∈ Rn×m, A′ indicates its transpose. Given a
vector x ∈ Rn, ‖x‖2 denotes its Euclidean norm, while
‖x‖2Q = x′Qx, where Q ∈ Rn×n.

2. PROBLEM FORMULATION

Consider N dynamical systems (also denoted as agents)
characterized by similar (but unknown) dynamics and
interaction with the environment. Let sn(t) ∈ Rns be
a Markovian signal specifying the behavior of the n-th
system, n = 1, . . . , N , evolving over time according to a
shared (unknown) model

sn(t+ 1) = h(sn(t), pn(t), un(t), dn(t)), (1)

where pn(t) ∈ Rns is a vector of measurable exogenous sig-
nals, dn(t) ∈ Rnd is a vector of unmeasured disturbances
and h : Rns × Rns × Rnu × Rnd → Rns is common to all
agents. The signal sn(t) might include the state of the n-
th system, whose dynamic evolution is described by the
shared (unknown) state-space model

xn(t+ 1) = f(xn(t), un(t), dn(t)),

yn(t) = g(xn(t), dn(t)),
(2)

where xn(t) ∈ Rnx , un(t) ∈ Rnu and yn(t) ∈ Rny are the
state, deterministic input and measured output of the n-
th agent at time t, and the (unknown) nonlinear functions
f : Rnx ×Rnu ×Rnd → Rnx and g : Rnx ×Rnd → Rny are
common to all agents.

In this paper we aim at finding N optimal deterministic
control policies πn : Rns×Rnp → Rnu , providing the input
to the n-th system at each time t

un(t) = πn(sn(t), pn(t)). (3)

Similarly to (Ferrarotti and Bemporad, 2019), the concept
of optimal policy is introduced via the definition of a local
stage cost ρn : Rns×Rnp×Rnu → R, which returns the cost
of applying the policy πn at time t. In this work, we assume
individual stage costs to be similar, e.g., all the agents aim
at optimally tracking their own output reference. Based
on ρn, and given an initial condition sn(0) and a sequence
{pn(l), dn(l)}∞l=0, the local cost of the deterministic policy
πn over an infinite control horizon is defined as

J∞n (πn,sn(0), {pn(l), dn(l)}∞l=0) =

=

∞∑
l=0

ρn(sn(l + 1), pn(l), π(sn(l), pn(l))),
(4)

with sn(l) evolving according to (1). The overall perfor-
mance of the deterministic policy πn can thus be defined
as

Jn(πn) = E
Sn(0)

{Pn(l),Dn(l)}∞l=0

[J∞n (πn, Sn(0), {Pn(l), Dn(l)}∞l=1)], (5)

where Sn(0) is a random variable representing the initial
value of the trajectory of the n-th agent, which evolves ac-
cording to (1), and {Pn(l), Dn(l)}∞l=0 are random variables
whose realizations are the signals {pn(l), dn(l)}∞l=0.
By accounting for the similarities between the N systems
and relying on (4)-(5), our aim is to find the policies
{π?n}Nn=1 solving the following optimization problem:

minimize
{πn}Nn=1,π

N∑
n=1

Jn(πn)

s.t. φ(πn) = π, n ∈ {1, . . . , N},
(6)

where the (known) function φ describes the relation
between the local policies and a global control law π : Rns×
Rnp → Rnu , thus embedding the similarities between the
local policies.

Since the cost of each policy πn in (5) is defined over an
infinite control horizon, problem (6) cannot be solved in
practice. For computing the solution, we approximately
evaluate the cost over trajectories of prefixed finite length
L, with the performance index (4) recast as:

JLn (πn,Sn(0), {Pn(l), Dn(l)}L−1l=0 ) =

=

L−1∑
l=0

ρn(sn(l + 1), pn(l), πn(sn(l), pn(l))).
(7)

and the cost of applying the local policies given by the
expectation

Jn(πn) = E
Sn(0)

{Pn(l),Dn(l)}L−1
l=0

[
JLn (πn, Sn(0), {Pn(l), Dn(l)}L−1l=0 )

]
. (8)

Because of the above approximations, the optimal policies
computed through (6) with the costs in (7)-(8) only
approximate the actual solutions {π?n}Nn=1 and π? of the
original problem.

2.1 Policy structure

Suppose that the N agents have to track given set points
{rn(t) ∈ Rny}Nn=1, which might differ from one plant to the
other depending on their individual tasks. Assume that
we restrict our search within the class of linear policies,
namely

πn(sn(t), pn(t)) = −Kn

[
sn(t)
pn(t)

]
. (9)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2703



Since the state of a dynamical system is seldom directly
measured in practice (especially if the model of the
system is not known), we solve the control problem in
an input/output setting, as commonly done in data-driven
control (e.g., see (Campi et al., 2002)) and consider the
following state

xn(t)=
[
yn(t)′ · · · yn(t−na+1)′ un(t−1)′ · · · un(t−nb)′

]′
,

(10)
with na and nb fixed by the user.

Let qn(t) be the integral of the tracking error that system
n encounters,

qn(t+ 1) = qn(t) + (yn(t+ 1)− rn(t)). (11)

To attain offset-free steady-state tracking of constant set-
points, we define sn(t) and pn(t) as

sn(t) =

[
xn(t)
qn(t)

]
, pn(t) = rn(t), (12)

respectively and, based on these definitions, we consider
the quadratic stage costs

ρn(sn(l + 1), rn(t),∆un(t)) =

= ‖Cxn(t+1)−rn(t)‖2Qy+‖∆un(t)‖2R+‖qn(t+1)‖2Qq,
(13)

with ∆un(t) = un(t) − un(t − 1). The constant matrices
Qy = Q′y � 0, Qq = Q′q � 0, and R = R′ � 0 weighting
the tracking error and the control effort, respectively, and
C are common to all systems.

Given the similarities between the plants and their goal,
it is reasonable to search for a global linear policy, i.e.,

π(sn(t), pn(t))=−K
[
sn(t)
pn(t)

]
=−Kssn(t)−Krpn(t), (14)

common to all systems, irrespectively of the different local
set points. Problem (6) can thus be recast as follows,

minimize

N∑
n=1

Jn(Kn)

s.t. Kn −K = 0, n = 1, . . . , N,

(15)

with Jn(Kn) defined as in (8), and K ∈ Rns+np and
{Kn ∈ Rns+np}Nn=1 being the global and the local gains
to be designed. Note that the cost in (15) depends on the
unknown models (1).

3. POLICY SEARCH STRATEGY

To solve problem (15), we search for the global policy K
over a learning horizon T via an iterative ADMM-based
scheme, that combines updates of the local policies Kn via
mini-batch Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951), and the computation of the global gain
through the local information shared by the agents.
For every t ∈ {0, . . . , T−1}, let the augmented Lagrangian
associated to problem (15) be defined as

L =

N∑
n=1

Ln(Kn,δn,K), (16a)

Ln(Kn,δn,K)=Jn(Kn)+δ′n(Kn−K)+
β

2
‖Kn−K‖22, (16b)

with β > 0 being a tuning parameter and {δn}Nn=1 being
the Lagrange multipliers associated with the constraints of
problem (15). By running a new instance of ADMM (Boyd

et al., 2011) at each time t, the local and global policies
are computed via the following steps:

Ki+1
n =argmin

Kn

E
Sn(0)

{Pn(l),Dn(l)}L−1
l=0

[
JLn (Kn, Sn(0), {Pn(l), Dn(l)}L−1l=0 )

]
+

+ (δin)′(Kn−Ki)+
β

2
‖Kn−Ki‖22, n=1, . . . , N (17a)

Ki+1 =
1

N

N∑
n=1

[
Ki+1
n +

1

β
δin

]
, (17b)

δi+1
n = δin + β(Ki+1

n −Ki+1), n=1, . . . , N, (17c)

where i ∈ N is a counter that indicates the number
of ADMM iterations 1 . According to (17b), the global
estimate is the average of the local polices and Lagrange
multipliers, thus relying on information collected from all
agents. By looking at the steps in (17), it is also clear that
at each ADMM iteration the global policy can be updated
on a central processing unit, provided the updated local
estimates {Ki+1

n }Nn=1, while the local policies and the
local Lagrange multipliers can be updated either locally
or by using parallel dedicated resources on the cloud.
The iterations of the local policy search method to be
carried out at a given time instant are summarized in
Algorithm 1, which indicates a possible allocation of the
different operations involved in (17). In particular, at each
time step t, the n-th local policy Kn is updated by solving
(17a) via M iterations of mini-batch SGD, with the local
policies warm-started with the estimates obtained at the
previous time step.

Remark 1. The steps in (17) can be performed either
offline or online. However, a real-time implementation
requires synchronous back and forth communications
between the agents and the central processing unit, which
might be unfeasible, especially for fast sampling systems.
Since in the considered setting we search for the optimal
constant gain in (14), after some initial steps we expect
the lags in communication not to substantially deteriorate
the performance of the method. �

3.1 Local linear model update

The use of mini-batch SGD involves the computation
of the stochastic gradient ∇KnJLn , which requires the
knowledge of the (unknown) dynamic relation (1). This
limitation is overcome by locally estimating a linear
approximation of (1). Specifically, at each time instant t
N linear models, one per agent, are estimated recursively.
The dynamics of the n-th system in (2) can be locally
approximated as

yn(t) = Θn(t)χn(t) + dn(t), (18a)

where dn(t) is a zero-mean Gaussian white noise with
covariance Qkn and χn(t) = [x′n(t − 1), un(t − 1)′]′, with
xn(t) defined as in (10). The parameter matrix Θn(t) ∈
Rny×(nany+nbnu) is assumed to satisfy

Θn(t+ 1) = Θn(t) + ξn(t), (18b)

with ξn(t) being a zero-mean Gaussian white noise with
covariance matrix Rkn. As in (Ferrarotti and Bemporad,
2019), the parameter vector Θn(t) is recursively updated
by Kalman filtering (Kalman, 1960) and holds constant
over the whole horizon L over which the gradient is
computed. Given the dependence of the stage cost (13) on

1 The dependence on time is dropped to simplify the notation.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2704



Algorithm 1 ADMM-based policy search at time t

Inputs: State histories {Xn(t)}Nn=1; current references
{rn(t)}Nn=1; local models {Θn(τ)}Nn=1, τ = 0, . . . , t − 1;
previous local {Kn(t−1)}Nn=1 and global K(t−1) polices;
initial Lagrange multipliers {δ0n}Nn=1; β > 0.

1: for n = 1 to N do
2: update the linear model Θn(t); (agent)
3: transmit the model to the fusion center; (agent)
4: set K0

n(t) = Kn(t− 1) and K0 = K(t− 1); (cloud)
5: end for
6: while i<imax or another criterion is verified do
7: for n = 1 to N do
8: set Km

n (t) = Ki
n(t), for m = 0; (cloud)

9: for m = 1 to M do
10: run Algorithm 2;
11: compute Dn(Km−1

n (t)) as in (21); (cloud)
12: update the local policy as in (26); (cloud)
13: end for
14: set Ki+1

n (t) = KM
n ; (cloud)

15: end for
16: compute Ki+1 as in (17b); (cloud)
17: for n = 1 to N do
18: compute δi+1

n as in (17c); (cloud)
19: end for
20: end while

Outputs: Updated policies {Kn(t)}Nn=1 and K(t).

both the state of the n-th agent and the input increment
∆un(t), it is quite straightforward to recast (18a) as

yn(t) = Θx
nxn(t− 1) + Θu

n(t)∆un(t− 1) + dn(t), (18c)

where Θx
n(t) and Θu

n(t) can be easily derived from Θn(t).
From the definitions of sn(t) and pn(t) in (12), the linear
approximation for the local dynamics in (1) is obtained
by introducing also the integral action, which is known to
evolve according to (11). Let

An(t) =

[
Θx
n(t)
Ā

]
, Bn(t) =

[
Θu
n(t)
B̄

]
, (19)

where Ā and B̄ are fixed binary matrices. By combining
(11) and (18c), starting from t the behavior of the n-th
agent over an horizon of length L is thus given by the
following linear model:

sn(l+1)= Asn(l)+ B∆un(l)+Epn(l)+Hdn(l),

yn(l) = Csn(l),
(20a)

with

A =

[
An(t) 0
CAn(t) I

]
, B =

[
Bn(t)
CBn(t)

]
,

C = [I 0] , E =

[
0
−I

]
, H =

[
I
0

]
,

(20b)

for l = 0, . . . , L− 1.

3.2 Sampling strategy and local policy update

For each agent and each time step t, every iteration
m ∈ {1, . . . ,M} of local mini-batch SGD involves the
computation of the descent direction

Dn(Kn) = δin +
β

2
(Kn −Ki)+ (21)

+
1

Nt

Ns∑
k=1

Nr∑
j=1

Nd∑
h=1

∇KnĴLn (Kn, s
k,m
n (0), {rj,mn (l), dh,mn (l)}L−1l=0 ),

Algorithm 2 m-th SGD iteration (on the cloud) at time t

Inputs: State histories {Xn(t)}Nn=1; current references
{rn(t)}Nn=1; local models {Θn(τ)}tτ=0, n = 1, . . . , n;
previous local policies {Km−1

n (t)}Nn=1; β > 0.

1: for n = 1 to N do
2: for w = 1 to Nx do
3: sample xn(γwn,t) from Xn(t);
4: retrieve the local model Θn(γwn,t);
5: for z = 1 to Nq do
6: sample qzn(0);
7: build sw,zn (0) as in (24);
8: for j = 1 to Nr do
9: get a random reference rjn for (25);

10: for h = 1 to Nd do
11: get a trajectory {dhn(l)}L−1l=0 ;
12: compute

∇KnĴLn (Km−1
n (t), sw,zn (0), ηLn );

13: end for
14: end for
15: end for
16: end for
17: end for

Outputs: local analytic gradients ∇Kn ĴLn .

where Nt = NsNrNd, and i denotes the ADMM iteration.
For each sample sk,mn (0) the approximated cost ĴLn is
obtained by exploiting the model in (20a) over the whole
horizon L from the initial state sk,mn (0).
The computation of Dn(Kn) requires sampling the spaces

of initial trajectories {sk,mn (0)}Nsk=1, exogenous signals

{rj,mn (l)}Nrj=1, and disturbances {dh,mn (l)}Ndh=1, with l =

0, . . . , L − 1. Since the signal sn(t) is defined as in (12),
initial values for both the state of (2) and the integral of
the tracking error have to be sampled to retrieve Ns values
of sn(0). To this end, consider the following dataset:

Xn(t) = {xn(0), xn(1), . . . , xn(t)}, (22)

which stores all the states reconstructed according to (10)
up to time t for the n-th agent. As the linear model in
(20a) is locally updated at each time step and it roughly
describes the behavior of the system in a neighborhood
of the initial state itself, we approximately know how the
n-th system behaves in the neighborhood of the points
in Xn(t) and, thus, we are able to compute the analytic

gradient ∇Kn ĴLn . As in (Ferrarotti and Bemporad, 2019),
we sample Nx values for the initial local state from Xn(t)
as

xw,mn (0) = xn(γw.mn,t ) + vw,mn , w = 1, . . . , Nx, (23)

where γw,mn,t is a randomly selected integer between 0
and t, vw,mn is a perturbation sampled from a zero-mean
Gaussian distribution with variance σ2

v , introduced to
explore the neighborhood of the trajectories generated by
the plants. The initial states in (23) are combined with
Nq samples qz,mn (0), z = 1, . . . , Nq drawn from a normal
distribution with zero mean and variance σ2

q , so to obtain

the Ns = NxNq samples sk,mn (0) = sw,z,mn (0) of the initial
trajectories as

sk,mn (0)=

[
xw,mn (0)
qz,mn (0)

]
, w∈{1, . . . , Nx}, z∈{1, . . . , Nq}. (24)

Along the horizon of length L, the reference of each agent
is assumed to be constant, namely

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2705



rj,mn (l) = rj,mn , l = 0, . . . , L, j = 1, . . . , Nr, (25)

with rj,mn randomly chosen in a fixed interval [rminn , rmaxn ],
which contains all the references of interest for the n-th
system. Instead, {dh,mn (l)}Ndk=1 are sampled randomly from
the box [−dmaxn , dmaxn ], for l = 0, . . . , L−1. The proposed
sampling strategy is summarized in Algorithm 2, where the
dependence on the current SGD iteration m is maintained
only on the local policy to simplify the notation.

Let ηLn = {rj,mn (l), dh,mn (l)}L−1l=0 . Given (sk,mn (0), ηLn ), the
n-th local policy is updated using the descent direction
Dn(Km−1

n ) computed at the previous SGD iteration Km−1
n

as in (21). In particular, at the m-th SGD step, the local
policy is given by

Km
n (t) = Km−1

n (t)− αmn Dn(Km−1
n (t)), (26)

with {αmn }Mm=1 being a sequence of positive decreasing
learning rates. Once the SGD iterations are terminated,
the updated local policy is given by Ki+1

n (t) = KM
n (t).

Remark 2. The descent direction in (21) is clearly com-
posed by a term depending on the local Lagrange
multiplier and the global policy, while the other depends
on the samples. In turn, the proposed sampling strategy
requires all past histories and local models to be available.
It is thus reasonable to put dedicated processing units in
charge of updating the policies, while local processors can
be exploited to find the local models only. �

4. NUMERICAL RESULTS

Consider N agents described by the (unknown) single-
input single-output (SISO) linear model

xn(t+1)=

[−0.669 0.378 0.233
−0.288 −0.147 −0.638
−0.377 0.589 0.043

]
xn(t)+

[−0.295
−0.325
−0.258

]
un(t),

yn(t) = [−1.139 0.319 −0.571]xn(t),

and let the matrices in (13) be Qy = Qq = 1 and R = 0.1.

We want to find an optimal global policy K over T = 500
steps by means of the presented ADMM-based policy
search approach within an ideal setting, with no latencies
in communications and the availability of both local and
global computational resources. Algorithm 1 is run online
with the parameters reported in Table 1, and the local
policies are updated by using a faster variant of SGD,
AMSGrad (Reddi et al., 2019) 2 . AMSGrad is reinitialized
every time ADMM iterations are terminated, when either
imax = 100 is attained or

N∑
n=1

‖Ki+1
n −Ki+1‖22 ≤ ε, i = 9, . . . , imax − 1, (27)

with ε = 5 · 10−3. At the first instant, global and local
policies are all initialized by vectors of ones, {Θn(0)}Nn=1
are selected as zero vectors, the Lagrange multipliers are
chosen as {δ0n = 10−3}Nn=1 (and then initialized with
their values at the previous time step). The reference
signals {rn}Nn=1 are piecewise constant and differ from
one agent to the other. This implies that, despite the
common optimality criterion, the agents aim at attaining
different local goals. For comparison, we consider the
optimal policy computed based on the real system, that is
Kopt = [−1.257 0.219 0.653 0.898 0.050 1.141 −2.196]

′
.

2 We use the same parameters of (Ferrarotti and Bemporad, 2019),
i.e., α = 0.1, β1 = 0.9 and β2 = 0.999.

The convergence of the global policy iterate K(t) to Kopt

is assessed by computing the first iteration such that the
global policy is in the ε-neighborhood of Kopt, i.e.,

Tε
.
= min{t ∈ [1, T ] | ‖K(t)−Kopt‖2 < ε}, (28a)

while the quality of the estimate retrieved once the
ε-neighborhood has been reached is evaluated via the
following global indexes:

avgε
.
=

1

T−Tε+1

T∑
t=Tε

‖K(t)−Kopt‖2, (28b)

varε
.
=

1

T−Tε+1

T∑
t=Tε

(‖K(t)−Kopt‖2 − avgε)
2. (28c)

We also assess the benefits of exploiting shared experiences
by comparing our results to the ones obtained for
N=1 with the baseline approach presented in (Ferrarotti
and Bemporad, 2019). For our comparison to be fair,
the ADMM-based policy search strategy is implemented
online, generating the local inputs according to the current
local policies.

4.1 Noiseless case

For N = 2, we initially consider a noise-free setting and
we take dn = 0 in (18a). Table 2 compares the presented
strategy and the baseline (Ferrarotti and Bemporad, 2019)
by means of the global performance indexes in (28). These
results highlight a considerable difference in convergence
speed between the single and the multi-agent case, leading
to a lower average error avgε. This is further confirmed
by the 2-norm of the global errors reported in Fig. 2,
showing that convergence to the optimal policy drastically
improves when considering two similar systems sharing
information. By comparing the values of var3 in Table 2, it
is also clear that the estimate obtained with a single-agent
is smoother than the retrieved global policy. As shown in
Fig. 2, this is due to our choice of reinitializing AMSGrad
at each ADMM iteration which, at the same time, allows
us to considerably speed up convergence.

Sensitivity analysis

The performance attained by the proposed policy search
strategy can be affected by different decisions that are
made before the learning phase, such as the dimension of
the batch Nt, and the number M of AMSGrad iterations
performed at each ADMM step. The global performance
indexes obtained for batches of increasing dimension by
varying either Nq or Nx are shown in Table 3, imposing
both agents to track the same reference. When Nq is
modified, there is a slight change in the global performance
indexes, which seems linked to the random nature of the
batch construction process. Instead, a slight improvement
in the overall performance is observed when increasing Nx.
Indeed, the larger the batch is, the smaller the indexes
are. For different iterations M of AMSGrad, we obtain
the indexes reported in Table 4. Both avg0.5 and var0.5
decrease when M increases, leading to smoother variations
during the learning phase. Finally, we study how the global
performance change when N is increased. Table 5 reports
the results obtained for groups of agents of different
dimensions, showing the benefits linked to the experiences
provided by the additional agents.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2706



Table 1. Parameters for ADMM-based policy search
na nb β Qk

n Rk
n L Nx Nr Nq Nd σv σq rmin

n rmax
n M

3 2 1 10−3I 0.1 20 50 1 10 0 106 1 −103 103 10

50 100 150 200 250 300 350 400 450 500

t

-4

-2

0

2

4

50 100 150 200 250 300 350 400 450 500

t

-4

-2

0

2

4

Fig. 1. Output of each plant (black) vs local references to be tracked (dashed red).

50 100 150 200 250 300 350 400 450 500

t

0

2

4

6

Fig. 2. ‖K(t)−Kopt‖2 with warm-started (black) and not
reinitialized (dot-dashed blue) policies . N=2 (black)
and N = 1 (dashed red).

Table 2. Global indexes: N = 2 vs N = 1.
N T3 [steps] avg3 var3
1 224 2.695 0.035
2 5 0.310 0.051

Table 3. Global indexes vs batch dimension Nt.
Nt Nx Nq T0.5 avg0.5 var0.5
500 50 10 31 0.263 0.006
50 50 1 23 0.271 0.007

500 50 10 31 0.263 0.006
100 10 10 34 0.286 0.011

Table 4. Global indexes vs AMSGrad steps M .
M T0.5 avg0.5 var0.5
1 33 3.949 11.348
5 28 0.385 0.031
40 27 0.251 0.005

Table 5. Global indexes vs N .
N T0.5 avg0.5 var0.5
2 25 0.275 0.007
3 23 0.267 0.006
4 30 0.264 0.005

Table 6. Global and local indexes (noisy case).

T0.5 [steps] avg0.5 var0.5
24 0.255 0.004

4.2 Noisy case

Suppose now that the measurements are affected by noise,
modeled as a zero-mean Gaussian process with variance
10−4. As shown in Table 6, the performance attained by
maintaining dn = 0 in (18a) are comparable to the ones
achieved for the noiseless case. In Fig. 1, we show the
tracking performance attained during learning by each
agent when controlled by its consensus-shaped local policy.

5. CONCLUSION

We have extended the optimal policy search method
proposed in (Ferrarotti and Bemporad, 2019) to consid-
erably speed up convergence by exploiting information
shared by a group of similar systems operating in different
conditions. The consensus on policy parameters is achieved
by embedding SGD iterations within ADMM.
Future research will be devoted to relax the synchroniza-
tion requirements and to investigate the effect of long term
differences that might arise between agents, for example
due to different aging.

REFERENCES

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Found. Trends Mach. Learn., 3(1), 1–122.

Campi, M., Lecchini, A., and Savaresi, S. (2002). Virtual
reference feedback tuning: a direct method for the design
of feedback controllers. Automatica, 38(8), 1337 – 1346.

Dimakopoulou, M., Osband, I., and Van Roy, B. (2018).
Scalable coordinated exploration in concurrent rein-
forcement learning. In Advances in Neural Information
Processing Systems 31, 4219–4227.

Ferrarotti, L. and Bemporad, A. (2019). Synthesis of
optimal feedback controllers from data via stochastic
gradient descent. In 2019 18th European Control
Conference (ECC), 2486–2491.

Kalman, R. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D), 35–45.

Khan, A., Zhang, C., Lee, D., Kumar, V., and Ribeiro,
A. (2018). Scalable centralized deep multi-agent
reinforcement learning via policy gradients. arXiv
preprint arXiv:1805.08776.

Konda, V. and Tsitsiklis, J. (2003). On actor-critic
algorithms. SIAM J. Control Optim., 42(4), 1143–1166.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon,
R., De Maria, A., Panneershelvam, V., Suleyman,
M., Beattie, C., Petersen, S., Legg, S., Mnih, V.,
Kavukcuoglu, K., and Silver, D. (2015). Massively
parallel methods for deep reinforcement learning. arXiv
preprint arXiv:1507.04296.

Reddi, S., Kale, S., and Kumar, S. (2019). On the
convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

Robbins, H. and Monro, S. (1951). A stochastic
approximation method. The Annals of Mathematical
Statistics, 22(3), 400–407.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2707


