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Abstract: A robust adaptive model predictive control (MPC) algorithm is presented for linear,
time invariant systems with unknown dynamics and subject to bounded measurement noise.
The system is characterized by an impulse response model, which is assumed to lie within a
bounded set called the feasible system set. Online set-membership identification is used to reduce
uncertainty in the impulse response. In the MPC scheme, robust constraints are enforced to
ensure constraint satisfaction for all the models in the feasible set. The performance objective
is formulated as a worst-case cost with respect to the modeling uncertainties. That is, at each
time step an optimization problem is solved in which the control input is optimized for the
worst-case plant in the uncertainty set. The performance of the proposed algorithm is compared
to an adaptive MPC algorithm from the literature using Monte-Carlo simulations.
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1. INTRODUCTION

Model predictive control (MPC) is a popular strategy used
to solve multivariable control problems due to its ability to
handle nonlinearities and constraints while guaranteeing
feasibility and stability (Rawlings and Mayne (2009)). The
idea of MPC is to compute an input sequence at each time
step, such that the input is optimal with respect to given
performance index and system constraints. Only the first
control input is applied to the plant, and the future control
inputs are recomputed at the next time step. Robust MPC
algorithms have the ability to handle uncertainty in the
system models, ensuring that constraints are not violated
despite inaccuracies in modeling the plant (Bemporad and
Morari (1999)). However, having large model uncertainties
adversely affects the performance of robust controllers.
Adaptive control is one technique which can be used
to ameliorate the conservatism induced by robustness to
modeling inaccuracies. The idea of adaptive control is to
carry out controller adjustments in real time based on
the collected input-output data. Since MPC is an opti-
mization based technique, performing online adaptation
can be integrated easily into the MPC control structure.
Utilizing this advantage, a variety of adaptive MPC control
algorithms have been developed in the last decade. The
main differences in these algorithms are in the model struc-
ture (impulse response, state-space, ARMAX, etc) and
the adaptation techniques (set-membership identification,
recursive least squares, etc) used.

In Kim and Sugie (2008), an adaptive MPC algorithm
was developed for single input multiple output, linear time
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invariant (LTI) systems. The system was described using
a state-space model with uncertain parameters which were
identified online using a recursive least squares technique.
In Lorenzen et al. (2017) and Lu and Cannon (2019),
adaptive MPC algorithms were proposed for multi input
multi output (MIMO), linear time varying (LTV) systems,
which were also described using a parametric state-space
structure. The size of uncertainty in the model parameters
was updated online using set-membership identification
(Milanese and Vicino (1991)). Using results from robust
tube MPC (Kouvaritakis and Cannon (2016)), these algo-
rithms guarantee stability and recursive feasibility of the
controllers. Instead of an estimate of the model, a worst-
case cost was used to describe the performance of the MPC
algorithm. This means that in addition to constraint sat-
isfaction, the control performance is robust to the worst-
case model uncertainty. However, the algorithms require
the knowledge of the state-space structure and noise free
measurements of the states, which can be restrictive.

Alternatively, impulse response models have been used to
describe the system dynamics. In Tanaskovic et al. (2013),
an adaptive MPC algorithm was presented for single input
single output (SISO), LTI systems with input and output
constraints and measurement noise. The algorithm uses
a finite impulse response (FIR) model, and assumes that
the true impulse response of the system lies inside a
bounded polytope. It was shown that the algorithm can
handle large uncertainties, and hence the prior bounds on
the FIR coefficients need not be tight. Set-membership
identification was used to refine the model set online
using measurement data. In Tanaskovic et al. (2019), the
algorithm was extended to MIMO, LTV systems, with
basis function parameterizations. In the algorithm, the
MPC objective was defined using the Chebyshev center of
the model set, while the constraints were robustly satisfied
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for all the models in the set. The control performance of
the algorithm was improved in Bujarbaruah et al. (2018)
by using a recursive least squares estimator of the system,
and defining chance constraints on the outputs.

In this paper, we present a robust adaptive MPC algorithm
which uses an FIR model description and a worst-case
performance index. For notational simplicity, SISO and
LTI systems are considered in this paper but the results
can be extended to MIMO and time varying systems. The
system is subject to input constraints, output constraints
and bounded measurement noise. To define the model
uncertainty, the algorithm uses a polytopic feasible system
set (FSS) which is updated online using set-membership
identification. The constraints are enforced for all models
in the FSS, and the objective function is defined using
a min-max cost. Using such a cost function optimizes
the control performance over all the plants in the FSS.
The proposed controller guarantees recursive feasibility,
and only requires the solution of linear and quadratic
programs at each time step. The performance of the robust
adaptive MPC algorithm is compared against the adaptive
MPC algorithm proposed in Tanaskovic et al. (2013) to
track different reference trajectories. It is shown that
the robust adaptive MPC algorithm improves worst-case
performance for all the trajectories considered, and the
mean performance for some of the trajectories.

Notation: The sets of integers and real numbers are
denoted by Z and R respectively, and the set of positive
integers is denoted by Z>0. For a vector b, bᵀ represents
its transpose, and [b]i refers to the ith element in it. The
ith row and jth column of a matrix A are denoted by [A]i∗
and [A]∗j respectively. The value x(i|t) denotes the value
of the variable x at time step i, predicted at the time step
t. The absolute value of a scalar a is denoted by |a|. The
rate of change of a signal a(t) computed as a(t)− a(t− 1)
is denoted by ∆a(t). For any real scalar-valued function
J , max

h∈H
J(h) refers to the maximum value of J over the set

H.

2. BACKGROUND MATERIAL

2.1 System description

We consider a SISO, discrete time, strictly proper, LTI sys-
tem. The system is assumed to have unknown but stable
dynamics. The true system S has an infinite impulse re-
sponse (IIR) {hS}∞1 where the elements {hS(1), hS(2), . . .}
are the impulse response coefficients of the system. To have
a computationally tractable representation of the system
for MPC, it is modeled using FIR coefficients. They are
represented by the components of the vector hm ∈ Rm,
wherem is the length of the FIR. At any time step t ∈ Z>0,
the system output y(t) can be represented as

y(t) =

∞∑
i=1

hS(i)u(t− i), (1)

and the model output ym(t) as

ym(t) =

m∑
i=1

hm(i)u(t− i) .
= hm ∗ u(t), (2)

where ∗ is the convolution operator and u(t) is the input
sequence. The measured output of the system is

ỹ(t) = y(t) + v(t), ∀t ∈ Z>0,

where v(t) is the measurement noise at the time step t.
The following assumptions are made on the system and
the noise.

Assumption 1. The noise v(t) is bounded according to

|v(t)| < ε, ∀t ∈ Z>0. (3)

Assumption 2. The IIR coefficients {hS}∞1 satisfy the
bounds

Ll ≤ hS(i) ≤ Lu, i = 1, 2, . . . , µ

Llρ
i−µ ≤ hS(i) ≤ Luρi−µ, i = µ+ 1, . . . ,∞,

(4)

for parameters Ll, Lu, ρ ∈ R: Ll, Lu ≥ 0, ρ ∈ (0, 1) and
µ ∈ Z>0.

Remark 1. Assumption 1 is reasonable because the mea-
surement noise in most systems is bounded, and the bound
is specified. Assumption 2 is valid for open-loop stable
systems (a common assumption in the context of sys-
tem identification and adaptive control). The parameter
ρ defines the rate of decay corresponding to the dominant
pole in the system, while the parameters Ll, Lu and µ
capture the initial dynamics. However, the assumption also
restricts the sign of the IIR coefficients to be positive. This
is because the algorithm presented here is suitable for
systems which have uncertain parameters with a known
sign. This is true for a certain class of systems, for e.g.,
positive systems (Farina and Rinaldi (2011)), but the
presented algorithm is not restricted to this class. It can be
extended to LTI systems represented using basis functions
(Wahlberg and Mäkilä (1996)), with the restriction that
the signs of the basis function coefficients are known.

The system is subject to the input and output constraints
given by

|u(t)| ≤ ū,

|∆u(t)| ≤ ∆u,

|y(t)| ≤ ȳ, ∀t ∈ Z>0.

(5)

The goal is to design a controller so that the output
follows a known, desired trajectory ydes while satisfying
the constraints (5).

2.2 Truncation error

The bounds on the FIR model coefficients hm can be
derived from Assumption 2 as

Ll ≤ hm(i) ≤ Lu, i = 1, 2, . . . , µ

Llρ
i−µ ≤ hm(i) ≤ Luρi−µ, i = µ+ 1, . . . ,m.

(6)

The bounds used in (6) are equal to the bounds on the
first m IIR coefficients in (4). However, the bounds in (6)
can be relaxed since the proposed controller is adaptive.
That is, the exact knowledge of the true system dynamics
is not necessary, and an upper bound on the decay of its
impulse response is sufficient for this algorithm. Using (6),
the model can account for the part of the output due to
the first m impulse response coefficients of the true system.
However truncating the length of the impulse response
results in an error in the model’s prediction, which can
be bounded as

|y(t)− ym(t)| =

∣∣∣∣∣
∞∑

i=m+1

hS(i)u(t− i)

∣∣∣∣∣
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≤
∞∑

i=m+1

|hS(i)u(t− i)|

≤ ū
∞∑

i=m+1

|hS(i)| ≤ ūLρm−µ
ρ

1− ρ
.
= ηm. (7)

2.3 Online set-membership identification

Set-membership identification is a technique used to iden-
tify systems affected by noise with unknown statistical
properties (Milanese and Vicino (1991)). Here, an initial
FSS is defined as the set of all possible models that are
consistent with the initial information

H(0) := {hm ∈ Rm |(6)} , (8)

which is a polytope in Rm. At each time step t, a
non-falsified set is used to update the set H(t), which is
the FSS at that time step. For systems with FIR descrip-
tions, polytopic non-falsified sets can be constructed from
measurement data. For example, using the measurement
ỹ(t), a simple non-falsified set can be written as

δ(t) :=

{
h ∈ Rm

∣∣∣∣∣ h ∗ u(t) ≤ ỹ(t) + ηm + ε,
h ∗ u(t) ≥ ỹ(t)− ηm − ε

}
(9)

where ηm and ε are defined according to (3) and (7)
respectively and δ(t) contains the set of all models that
could have generated the measurement ỹ(t). As proposed
in Chisci et al. (1998), using a block of s measurements
[ỹ(t − s), . . . , ỹ(t − 1)] to generate the non-falsified set
improves the identification. Let φ(k) ∈ Rm denote the
vector of past m inputs at time step k arranged as

φ(k) = [u(k), u(k − 1), . . . , u(k −m+ 1)]ᵀ,

then the convolution h ∗ u(k) can be written as φ(k)ᵀh.
Similar to (9), the following non-falsified set is defined

∆s(t) :=

h ∈ Rm
∣∣∣∣∣
φ(k)ᵀh ≤ ỹ(k) + ηm + ε,

φ(k)ᵀh ≥ ỹ(k)− ηm − ε,
∀k ∈ [t− 1, t− s]

 (10)

= {h ∈ Rm |A∆(t)h ≤ b∆} .
where the matrices A∆ ∈ R2s×m, b∆ ∈ R2s are used to
characterize ∆s(t), which is the set of all models that could
have generated the measurements [ỹ(t − s), . . . , ỹ(t − 1)].
The FSS can be updated at each time step using ∆s(t)
according to

H(t) = H(t− 1) ∩∆s(t). (11)

Since the initial FSS is defined as a polytopic set and
∆s(t) is polytopic, the set H(t) remains polytopic ∀t if
it is updated according to (11). However, the number
of hyperplanes in H(t) will increase at every time step.
To prevent this, H(t) is defined using a finite number of
polytopic constraints given in

H(t) := {h|Ahh ≤ bh(t)}, (12)

where Ah ∈ Rp×m is a matrix chosen offline and bh(t) ∈ Rp
is updated online such that H(t) ⊇ H(t − 1) ∩ ∆s(t) is
satisfied. This is ensured by calculating bh(t) as a solution
to the following set of p linear programs:

[bh(t)]i = max
h∈Rm

[Ah]i∗h

s. t.

[
Ah
A∆

]
h ≤

[
bh(t−1)
b∆

]
, i=1, . . . , p.

(13)

3. ROBUST ADAPTIVE MODEL PREDICTIVE
CONTROL

In MPC for systems with FIR models, an optimization
problem is solved at each time step to calculate the control
inputs for a finite prediction horizon. The control input at
the end of the prediction horizon is chosen such that it
can remain at a constant value after the horizon while
satisfying constraints. This ensures recursive feasibility
of the algorithm, whereby the optimization problem at
the next time step remains feasible. The control input
corresponding to the first time step is applied to the
system, and the future control inputs are recalculated
at the next time step. In this section, an optimization
problem consisting of the worst-case cost with respect
to model uncertainties is formulated, while enforcing the
system constraints defined in (5). A robust adaptive MPC
algorithm is then described.

Let U be the vector of predicted control inputs [u(t|t), u(t+
1|t), . . . , u(t+N−1|t)], where N is the prediction horizon.
Let {ũ(t −m + 1), ũ(t − 2), . . . , ũ(t − 1)} be the previous
m − 1 control inputs applied to the system. The vectors
φ(i|t) ∈ Rm are constructed using past and predicted
future control inputs as

φ(i|t) = [q(i|t) . . . q(i−m+ 1|t)]ᵀ , (14)

i = t, t+ 1, . . . , t+N +m− 2,

where q(k|t) is defined as

q(k|t) =

{
ũ(k) k ≤ t
u(k|t) t < k ≤ t+N − 1
u(t+N − 1|t) t+N − 1 < k.

(15)

The vectors φ(i|t) are a combination of the past control
inputs which are known, and the future control inputs
which are the decision variables. These vectors will be
used to represent the future outputs of the system y(i|t)
as φ(i|t)ᵀh , for h ∈ H(t) and i ∈ [t, t+N+m−2]. In (15),
the control inputs after the prediction horizon are set to
be equal to u(t+N − 1|t), so that recursive feasibility can
be guaranteed.

3.1 Robust objective function

The optimization problem in the MPC algorithm includes
a cost minimization objective. To ensure that the perfor-
mance of the controller is robust to the worst-case plant
uncertainty, the cost function J is defined according to

J = max
h∈H(t)

t+N−1∑
i=t

(
ydes(i|t)− φ(i|t)ᵀh

)2
, (16)

where ydes is the desired output trajectory and the vectors
φ(i|t) are defined in (14) and (15). Additional terms which
penalize the input u and the rate of change of input ∆u
can be added to the cost function, but are omitted for
notational simplicity. The defined cost function ensures
that the optimized control inputs minimize the maximum
possible value of J over all the models in H(t). This is
a min-max objective, which must be reformulated in a
convex manner. Using supplementary cost variables c ∈
RN , the cost function in (16) can be rewritten as

J =

N∑
j=1

c(j)2, (17)
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s.t max
h∈H(t)

ydes(i|t)− φ(i|t)ᵀh ≤ c(i− t+ 1),

max
h∈H(t)

−ydes(i|t) + φ(i|t)ᵀh ≤ c(i− t+ 1),
(18)

∀i ∈ [t, t+N − 1].

In (18), each element of c is specified as an upper bound
on the worst case deviation from the reference.

3.2 System constraints and optimization problem

While the constraints (18) are used to implement a min-
max objective, the system’s input and output constraints
given in (5) must be enforced through the optimization
problem. The constraints on the input at each time step
can be written as

−ū ≤ u(i|t) ≤ ū,
−∆u ≤ ∆u(i|t) ≤ ∆u, ∀i ∈ [t, t+N − 1].

(19)

The output constraints must be satisfied for all the models
in H(t), i.e., robustly satisfied. The system outputs can be
bounded according to

y(i|t)≥ min
h∈H(t)

φ(i|t)ᵀh− ηm,

y(i|t)≤ max
h∈H(t)

φ(i|t)ᵀh+ ηm, ∀i ∈ [t+1, t+N+m−2],

where ηm is the truncation error defined in (7). Hence, the
output constraints in (5) can be formulated as

max
h∈H(t)

φ(i|t)ᵀh ≤ȳ−ηm,

max
h∈H(t)

−φ(i|t)ᵀh ≤ȳ−ηm, ∀i ∈ [t+1, t+N+m−2],
(20)

where the outputs constraints for i ∈ [t + N, t + N +
m − 2] are enforced to ensure no constraint violations
occur when a constant input is applied at the end of the
prediction horizon. Thus, the optimization problem in the
MPC controller can be set up as

min
U

J

subject to (18), (19), (20).
(21)

The constraints (18) and (20) can be replaced by an
equivalent set of linear constraints using techniques from
robust optimization (Ben-Tal et al. (2009)). Using this
reformulation, (21) is simplified to a standard quadratic
program.

3.3 Robust adaptive MPC algorithm

The procedure for robust adaptive MPC is described in
Algorithm 1. The algorithm must be initialized with the

Algorithm 1 Robust adaptive MPC

Initialize ∆s(0) using past measurements and inputs
according to (10).
Initialize H(0) according to (8),(12).

1: t← 1
2: repeat
3: Obtain the measurement ỹ(t)
4: Update ∆s(t) according to (10).
5: Update H(t) using (13).
6: Solve optimization problem (21) to compute U .
7: Apply the control input u(t|t)← U(1).
8: t← t+ 1
9: until

setH(0) and the past inputs applied to the system. At each
time step t, the measurements ỹ(t) are used to update the
non-falsified set ∆s(t) and H(t) according to (10) and (13)
respectively. Algorithm 1 guarantees robust satisfaction of
input and output constraints, as shown by the following
theorem from Tanaskovic et al. (2013).

Theorem 1. If Assumptions 1-2 hold, and the optimization
problem (21) is feasible at t=0. Then, the closed loop
system obtained by applying Algorithm 1 is guaranteed
to satisfy the input and output constraints ∀t > 0.

In Algorithm 1, at each time step the FSS is truncated
using measurement data. The performance of the closed
loop system improves with time because the size of the
uncertainty set decreases and hence the controller is adap-
tive. The advantage of including a worst-case cost in the
objective function of the MPC controller is that it increases
the robustness of the performance to model uncertainty.
However, this affects its adaptivity, i.e., the amount of
information it learns from a system. This is because the
control inputs of robust adaptive controllers are generally
smaller than that of a controller using nominal cost func-
tion. To investigate the effects of adaptivity and robustness
on the overall performance on the system, a simulation
study was performed.

4. SIMULATIONS

In this section, the performance of the robust adaptive
MPC (RAMPC) algorithm proposed in Algorithm 1 is
compared against the adaptive MPC (AMPC) algorithm
given in Tanaskovic et al. (2013). The AMPC algorithm
defines the objective function of the MPC controller using
the Chebyshev center of the FSS as the estimate of the
true system. The objective function is defined therein as
a quadratic function of the predicted deviation from the
reference trajectory, along with penalties on the input
and the rate of change of input. To make the comparison
equivalent, the penalties on input and input rate have
been removed. Thus in both the AMPC and RAMPC
algorithms, the only objective of the optimal control
problem is reference tracking. The performance of the
algorithms is compared based on the root mean squared
(RMS) deviation from the reference trajectory.

4.1 Parameter Settings

The true systems which must be controlled by the AMPC
and RAMPC algorithms were randomly sampled from a
predefined and bounded set. The parameters defining the
initial FSS are given in Table 1, where the bounds on the
impulse response coefficients can be calculated from (4).

Table 1. Parameters describing bounds on im-
pulse response, input and output

Ll Lu µ ρ ε ū ∆u ȳ

0.3 1 4 0.65 0.1 2 0.8 4

A set of 200 impulse responses was obtained by random
sampling of each coefficient from a uniform distribution
between the bounds defined in (4). Each impulse response
obtained was considered as a true system which must be
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controlled using the AMPC and RAMPC algorithms. The
prediction horizon was set to N = 15 time steps, and the
length of the FIR in the model was truncated to m = 12
parameters. This results in a truncation error ηm = 0.12,
as given in (7). To define the initial FSS according to (12),
a matrixAh was constructed with p = 156 constraints. The
initial bounds bh(0) were calculated using the parameters
specified in Table 1. The value of bh(t) was updated at
each time step using a block of s = 36 past measurements.

In both the algorithms, the control inputs form regressor
vectors which are used to refine the FSS as shown in
(10) and (13). The reference trajectory to be tracked
influences the sequence of control inputs, and hence the
refinement of the uncertainty sets. However, only a step
reference was considered in Tanaskovic et al. (2013). To
investigate dependence of controller performance on the
reference trajectory, AMPC and RAMPC algorithms were
used to track the different trajectories in Figure 1. The step
trajectory has a quick change in reference which is difficult
to track. A smaller peak to peak amplitude was chosen
for the step so that the overall deviations from different
trajectories have comparable magnitudes.

-2

0

2

-2

0

2

-2

0

2

0 20 40 60 80 100

0

2

Fig. 1. Reference trajectories used to compare the perfor-
mance of nominal and robust adaptive MPC.

The optimization problems in both the algorithms were
solved using CVX (Grant and Boyd (2014)) and MOSEK
(Andersen and Andersen (2000)).

4.2 Results and discussions

The performance of the algorithms was evaluated based
on the RMS deviation from the given reference trajectory.
Figure 2 shows the distribution of the RMS deviations
from each of the trajectories considered. The histograms
in blue and red represent the performance of the AMPC
and RAMPC algorithms respectively. Since the FSS is in
a high dimensional space (m = 12), its center might not
always be a good representation of the true system. For
all trajectories except the step, using a robust controller
improves the control performance even when the worst-
case uncertainty is not realized. It can be seen that the
distribution of RMS deviation for the RAMPC algorithm

has a smaller tail on the right side. This corresponds to
better performance using the RAMPC algorithm when
the true system is not close to the Chebyshev center of
the FSS. In addition, the performance of the algorithms
is dependent on the reference trajectory, as seen in the
plot corresponding to the step reference. Due to the quick
changes in the trajectory, the minimum value of RMS
deviation measured for the step reference was higher.

The mean and maximum of the deviations from reference
trajectories are given in Table 2 and the results with
better performance are highlighted. The maximum of the
RMS deviation corresponds to the worst-case performance,
which is improved for all the trajectories while using the
RAMPC algorithm. Comparing the means of the RMS
deviation from reference, it can be seen that RAMPC
performs better for all the trajectories except the step.
This is due to the robust cost in the RAMPC algorithm,
which results in conservative responses while tracking the
quick changes in the step reference.

Table 2. Mean and maximum values of the root
mean squared deviations from the reference.

Mean RMS deviation Maximum RMS deviation

Trajectory AMPC RAMPC AMPC RAMPC

rampSaw 0.152 0.137 0.303 0.228
rampStep 0.208 0.196 0.352 0.292
sinusoid 0.182 0.167 0.380 0.311

step 0.251 0.269 0.354 0.350

In Figure 3, the trajectories with the highest RMS devi-
ation from the step reference are plotted. It can be seen
that the tracking performance improves with time due to
the reduction in the model uncertainty. The conservatism
of the RAMPC algorithm while tracking the quick changes
is visible in the trajectories. However, the flat portion of
the trajectory is tracked better with the RAMPC algo-
rithm, and it reduces the worst-case cost of the AMPC
algorithm. The computational complexity of the optimal
control problem is higher in the RAMPC algorithm due to
the additional robust constraints defined in (18). However,
the AMPC algorithm solves an additional linear program
to estimate the Chebyshev center. Table 3 compares the
runtimes of the algorithms at each time step, when the
number of FIR coefficients was incrementally increased.

Table 3. Runtimes for different FIR lengths

m tAMPC[in s] tRAMPC[in s]

8 2.10 1.80
10 2.37 2.32
12 2.44 2.52
14 2.92 3.10
20 7.82 8.80

The values tAMPC and tRAMPC correspond to the time
required to calculate new control inputs at each time step
for the AMPC and RAMPC algorithms respectively. The
simulations were performed on an Intel i7-8550U 1.8 GHz
processor, by keeping the prediction horizon constant. It
can be seen that for small impulse responses, the RAMPC
algorithm is faster. The runtime of the RAMPC algorithm
is higher for larger systems, but is only 12% higher than
the corresponding runtime for the AMPC algorithm.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4292



0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

Fig. 2. Distribution of RMS deviation of output from each reference trajectory using AMPC and RAMPC algorithms.

0 20 40 60 80 100
0

1

2

3

4

Fig. 3. Worst-case tracking performance of the AMPC and
RAMPC algorithms using a step reference.

5. CONCLUSION

In this paper, a robust adaptive MPC algorithm was de-
scribed which can be applied for LTI systems with input
and output constraints. The algorithm uses set online
membership identification to reduce the uncertainty in
the model parameters, and ensures robust constraint sat-
isfaction. The objective function of the MPC algorithm is
designed so that it is robust to model uncertainty, and the
resulting optimization problem was posed as a standard
quadratic program. The algorithm was compared to an
existing algorithm in literature using Monte Carlo simu-
lations. The simulation study showed that using a worst-
case objective function improves the performance of the
adaptive MPC controller for various reference trajectories.
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