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Abstract: This paper presents the implementation of a GMVC-based WAPSS to damp the
interarea modes of power systems. The choise for the GMVC to tackle this problem lies on the
fact that it can be used to compensate the time delay due to the latency of the transmission
system in a more natural way than other controllers. The paper shows that it is possible to
improve system’s closed-loop stability since its behavior is the same as if the time delay is
not regarded. Simulation results with Kundur’s System prove that a latency of 1 second at a
conventional WAPSS might lead system’s power to oscillate for 50 seconds for a short-circuit at
the transmission line, whereas the oscillation decreases to only 5 seconds if the GMVC-based
WAPSS is implemented.
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1. INTRODUCTION

According to Taylor (1994), power systems are the most
complex structure ever developed by man. The connection
of several generators, prime movers, transmission lines,
busbars, etc., led to very intrincate and sophisticate sys-
tems. It is possible to assure that the larger the power
system, the less stable it will be if no counteraction is
taken.

The interarea modes, which are electromechanical phe-
nomena, are known to be one of the most threatening
types of oscillating modes in power systems. They are
represented by low frequency oscillations (0.1-0.7 Hz) on
the power exchange between two or more generating areas.
The active power exchange causes the generators of one
area to oscillate against the generators in other areas, i.e.,
during transients the generators of different areas rotate
with contrasting phases, resulting in frequency deviations
that could collapse the whole system (Machowski et al.
(2011)).

The origin of most of the cited interarea modes are known,
and therefore counteractions were already been taken in
order to avoid or at least to mitigate them. Despite
researches that cope with damping of these oscillations
through Flexible AC-Transmission Systems (FACTS) (see,
e.g., Mithulananthan et al. (2003), Lei et al. (2013)), the
most used device for tackling the interarea modes is still
the Power System Stabilizer, short PSS (Kundur et al.
(1994)), which is a device connected to the input of the
Automatic Voltage Regulator (AVR) and serves to damp
out undesired oscillations. The PSS was first developed
to damp local modes out (0.7-2 Hz). However, when the
interarea modes were finally identified as an important

problem in power system stability, it was also implemented
for the damping of these modes, obtaining well-accepted
results over the years through several different approaches
(see, e.g, Kundur et al. (1989), Dai and Ghandakly (1995),
Kutzner (1999), Ba Muquabel and Abido (2006)).

Nonetheless, the local modes can be easily damped
through the usage of local PSSs since these modes have
a stronger impact on the states of the generator on which
it concerns. On the other hand, interarea modes of very
low frequencies are hardly damped with local PSSs due to
its mechanical characteristics (Milano and Anghel (2011)).
Also, the analysis of the participation factors and eigen-
vectors might show that a given interarea mode is better
observable in an area but better damped in another (Patel
et al. (2018)). Based on this fact several researchers inves-
tigated the possibility of using signals from other areas to
increase damping in comparison to the local PSS.

The Wide-Area Measurement Systems (WAMS) were de-
veloped exactly to ease the usage of these remote signals
of wide geographical area through satellites, which ended
up enabling the design of the so-called Wide-Area PSS,
or simply WAPSS (Chaudhuri et al. (2004)). Patel et al.
(2018) state that WAPSSs might use 4-20 times less con-
trol effort than the conventional (local) PSSs.

However, one issue to be tackled by the WAPSS is the la-
tency of the signals from distant machines, which depends
on the distance as well as on the used technology. This
latency introduces a time delay on the control loop that
might harm system’s overall stability (Milano and Anghel
(2011)).

The common approach is to model the power system
with time delay using Padé’s approximations and then
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designing the WAPSS based on continuous time models.
Chaudhuri et al. (2004) used a Smith Predictor to com-
pensate the delay, with an approximation for the esτ term.
Zhang et al. (2012) used a adaptive algorithm to identify
and compensate it. Yao et al. (2014) present a predictive
approach based on the GPC, resulting in a smooth control
signal. Ghosh and Senroy (2012) and Patel et al. (2018)
study the effect of synchronized and non-synchronized
time delays over the WAPSS, highlighting that using non-
sychronized signals increases the overall stability of the
power system.

Nonetheless, an even more trivial approach that is hardly
found in literature is the usage of power plant’s digital
model to design the WAPSS, likewise in (Yao et al.
(2014)). This synthesis deals with the time delay in a
simpler and more intuitive way than using the continuous
time modeling. Moreover, the digital approach enables
the designer to use advanced control techniques, such as
predictive, adaptive, stochastic, among many others.

Towards this, the present paper proposes a predictive
approach to deal with the signal latency. Unlike Yao et al.
(2014), which worked with the GPC in a SISO way and ob-
tained a smooth control signal, in this work the algorithm
to be implemented is the Generalized Minimum Variance
Controller (GMVC) (Clarke and Gawthrop (1975)).

This controller is chosen due to its intrinsic ability to
deal with the time delay. Also, Trentini et al. (2016)
have shown that any linear controller posed in the RST
structure might be converted to a GMVC. The main
advantage of this technique lies on the fact that the time
delay may be entirely compensated whereas closed-loop’s
dynamics remains the same. In other words, this approach
restores system’s stability without changing its closed-loop
behavior due to the cancelation of the time delay.

The technique eases controller’s project since it can be
designed regardless the latency, which is tackled by the
GMVC predictor.

In order to present this ideia, this paper is split into the
following: Section 2 shows the WAPSS equating in the
RST structure. Section 3 presents the WAPSS designed
via the GMVC synthesis. Section 4 details the design of
the GMVC-based WAPSS, whereas Section 5 shows the
evaluation of the presented technique through simulation
results for Kundur’s System.

2. WAPSS IN THE RST STRUCTURE

This section shows how a generic regulated power system
might be represented in the RST fashion, which is a
standard structure for linear digital controllers (Landau
(1998)). It counts on three arbitrary polynomial filters
given by,

R(q−1) = r0 + r1q
−1 + . . .+ rnaq

−nr

S(q−1) = s0 + s1q
−1 + . . .+ snb

q−ns

T (q−1) = t0 + t1q
−1 + . . .+ tnc

q−nt ,

which are responsible for plant’s output closed-loop be-
havior and are posed in the way shown in Fig. 1.

In the figure, y(k), yr(k) and u(k) are sampled output,
controller reference and control signal, respectively. The

yr(k)
u(k)

T (q−1)
1

S(q−1)-
q−d B(q−1)

A(q−1)G(q−1)

C(q−1)

A(q−1)D(q−1)

ξ(k)

R(q−1)

y(k)

Plant

Fig. 1. RST structure for a plant represented by a generic
SISO polynomial model.

plant is represented by generic polynomial model with
coefficients,

A(q−1) = 1 + a1q
−1 + . . .+ ana

q−na

B(q−1) = b0 + b1q
−1 + . . .+ bnb

q−nb

C(q−1) = 1 + c1q
−1 + . . .+ cncq

−nc

D(q−1) = 1 + d1q
−1 + . . .+ dnd

q−nd

G(q−1) = 1 + g1q
−1 + . . .+ gng

q−ng ,

being d the sample delay, q−1 is the backward shift
operator and ξ(k) is a Gaussian white noise sequence,
which might be an external disturbance too.

Now, let us regard the plant as a whole generic power
system with its output being the speed difference of
generators i and j (y(k) = ωij(k)) and its input being
WAPSS’s output signal u(k) = vpssi(k). This formulation
poses a regulation problem since there is no reference
change for the speed. Therefore, the WAPSS control law
is given by,

vpssi(k) = −R(q−1)

S(q−1)
ωij(k), (1)

which results in the following closed-loop expression,

ωij(k) =
CGS

ADGS + q−dBDR
ξ(k), (2)

where the argument q−1 is omitted for the sake of readi-
bility.

To be noticed is that the time delay d appears explicitly
in the characteristic polynomial, which means that the
stability margins of the whole power system might be
harmed. One must keep this information in mind when
analyzing the GMVC, which is presented in the next
section.

3. GMVC-BASED WAPSS

This section reviews briefly the theory behind the GMVC
in order to formulate the proposed WAPSS. For a deeper
understanding of it we recommend the reading of Clarke
and Gawthrop (1975); Doi and Mori (2002); Silveira and
Coelho (2011).

The GMVC was developed from the Minimum Variance
Regulator (MVR) first introduced by Åström in the 1970s.
Its generalized output is,

φ(k) = P (q−1)y(k)− T (q−1)yr(k + d) +Q(q−1)u(k),
(3)

with P (q−1), T (q−1) andQ(q−1) being arbitrary weighting
filters for system’s output, reference and control signal
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respectively. Remark that for the WAPSS, y(k) = ωij(k),
u(k) = vpssi(k) and yr(k + d) = 0.

The generalized output φ(k) is posed into a stochastic op-
timization problem of minimizing the GMV cost function,

J = E
[
φ2(k + d)

]
, (4)

while E[.] denotes the mathematical expectation operator.

According to Fig. 1, the plant is given by,

A(q−1)ωij(k) = q−d
B(q−1)

G(q−1)
vpssi(k) +

C(q−1)

D(q−1)
ξ(k). (5)

Shifting Eq. 5 d-steps ahead and remembering that P (q−1)
multiplies the output y(k) in Eq. 3, one obtains,

P (q−1)A(q−1)ωij(k + d) =
P (q−1)B(q−1)

G(q−1)
vpssi(k)

+
P (q−1)C(q−1)

D(q−1)
ξ(k + d). (6)

Clearly ξ(k + d) is unknown because it represents the fu-
ture of the disturbance, and therefore it can be represented
by present and future parts:

P (q−1)C(q−1)

A(q−1)D(q−1)
ξ(k + d) =

F (q−1)

A(q−1)D(q−1)
ξ(k)

+ E(q−1)ξ(k + d), (7)

whereas its Diophantine equation, i.e. a polynomial equal-
ity which arises, is given by,

P (q−1)C(q−1) = A(q−1)D(q−1)E(q−1) + q−dF (q−1).
(8)

being E(q−1) = 1 + e1q
−1 + · · · + end−1

q−d+1 and

F (q−1) = f0 + f1q
−1 + · · ·+ fnf−1q

−nf+1, with nf = np+
nc.

Using only the known data, the predicted output
ω̂ij(k + d|k) is,

P (q−1)ω̂ij(k + d|k) =
P (q−1)B(q−1)

A(q−1)G(q−1)
vpssi(k)

+
F (q−1)

A(q−1)D(q−1)
ξ(k). (9)

Thus, the current stochastic signal ξ(k), obtained from the
estimation error is,

ξ(k) =
P (q−1)

E(q−1)
[ωij(k)− ω̂ij(k|k)] . (10)

Substituting Eq. 10 into 9 and after some algebraic manip-
ulations, the d-steps ahead Minimum Variance Predictor
(MVP) turns to,

ω̂ij(k + d|k) =
B(q−1)D(q−1)E(q−1)

P (q−1)C(q−1)G(q−1)
vpssi(k)

+
F (q−1)G(q−1)

P (q−1)C(q−1)G(q−1)
ωij(k). (11)

The GMVC control law is thus obtained through the
minimization of J w.r.t u(k) with E

[
φ2(k + d)

]
=

φ̂2(k + d), resulting in,

vpssi(k) = − FG

BDE + CGQ
ωij(k), (12)

with the argument q−1 omitted for the sake of readibility.

At last, the closed-loop polynomial is obtained through
the substitution of Eq. 12 into 6. Using also Eq. 8, after
some algebraic manipulations, one finds:

ωij(k) =
CGQ+BDE

ADGQ+BDP
ξ(k). (13)

One may clearly see that the time delay d is entirely com-
pensated in the characteristic polynomial, which means
that it does not influence the system stability.

Notice also that if one sets Q(q−1) = S(q−1) and P (q−1) =
R(q−1) the characteristic polynomials of Eq. 2 and 13 are
the same, except for the time delay. It eventually means
that the dynamics of both systems might be similar if the
time delay is not regarded.

In other words, one can design conventional WAPSSs using
all the already known techniques while the implementation
may be based on the GMVC in order to overcome the time
delay issue.

Next section presents the implementation of the proposed
WAPSS followed by dynamic simulations of a benchmark
power system.

4. DESIGN OF THE GMVC-BASED WAPSS

From the last sections, the plant polynomials A(q−1),
B(q−1), C(q−1), D(q−1) and G(q−1), as well as the GMVC
ones E(q−1), F (q−1), P (q−1) and Q(q−1) are to be de-
fined. However, as already cited, Q(q−1) = S(q−1) and
P (q−1) = R(q−1), which means that R(q−1) and S(q−1)
must be found.

Starting from the most fundamental PSS structure shown
in Fig. 2, with K, τw, τ1 and τ2 being respectively the PSS
gain, wash-out time constant and the lead and lag time
constants.

sKτw
sτw + 1

sτ1 + 1

sτ2 + 1
ω vpss

Fig. 2. PSS with one lead-lag block.

Defining,

s :=
1

ts
(1− q−1) (implicit Euler method),

for converting the PSS to the digital domain and being ts
the sample time, the RST structure is obtained after some
algebraic manipulations, which results in,[

t2s + (τw + τ2)ts + τwτ2
]︸ ︷︷ ︸

s0

vpss(k) + · · ·

· · ·+[−(τw + τ2)ts − 2τwτ2]︸ ︷︷ ︸
s1

vpss(k−1)+τwτ2︸︷︷︸
s2

vpss(k−2) =

Kτw (ts + τ1)︸ ︷︷ ︸
r0

ω(k) +Kτw (−ts − 2τ1)︸ ︷︷ ︸
r1

ω(k − 1) + · · ·

· · ·+Kτwτ1︸ ︷︷ ︸
r2

ω(k − 2), (14)
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being,

R(q−1) = r0 + r1q
−1 + r2q

−2,

S(q−1) = s0 + s1q
−1 + s2q

−2,

T (q−1) = 0,

which basically defines also P (q−1) and Q(q−1).

A modified version of Kundur’s Two-Area System (Kun-
dur et al. (1989)) is chosen to be the plant. The system
is shown in Fig. 3, which is composed by two generating
areas separated by two weak transmission lines between
busbars 7 and 9. Each generating area has two other
generators. The PSS of generator 4 is disconnected in order
to highlight an interarea mode of aproximately 0.6 Hz.

∼

∼

∼

∼

1

2

3

4

6 75 9 10 11

Area 1 Area 2

Fig. 3. Kundur’s Two-Area System.

The geometric approach (Hamdan and Elabdalla (1988))
shows that ω23 is a suitable signal to be used, with the
proposed WAPSS being applied on generator 2. Following
this, the plant linearization is performed, which provides a
58th-order model. The terminal voltage reference at busbar
1 is regarded as an external disturbance, with ω23 being
plant’s output. It leads the system to an ARMAX (Auto-
Regressive Moving Average with eXogenous input) model,
being D(q−1) = G(q−1) = 1, with A(q−1), B(q−1) and
C(q−1) completely defined.

Finally, E(q−1) and F (q−1) are calculated through the
Diophantine Equation (Eq. 8).

5. SIMULATION RESULTS

Using Kundur’s System, two scenarios are simulated in
order to evaluate the proposed WAPSS: a 5% step at the
voltage reference of busbar 1, and a short-circuit in the
middle of one of the transmission lines between busbars
7 and 9. The former emulates a linear behavior of the
power system whereas the latter is aimed to excite system’s
nonlinearities in order to evaluate the proposed WAPSS.

For the sake of comparison, each scenario is simulated with
local PSS, conventional WAPSS and also with the GMVC-
based WAPSS.

Also, in order to highlight the difference between the
WAPSSs (i.e., conventional and proposed ones), the time
delay is set to one second. At a first glance this value
might seem too high, however one must observe that,
for Kundur’s System, small time delays (& 400 ms) do
not impact significantly on system’s stability. Therefore,
the chosen value is used here only to emphasize the
improvement which the GMVC-based WAPSS may give
to system’s overall stability.

The variables to be analyzed are speed, terminal voltage,
electric power and PSS’s output signal. Also, the signal

ω23 is shown. For a better readibility, only signals of
generator 3 are shown, since the interarea modes are easily
identifiable at this machine due to the distance from the
voltage change (generator 1). Concerning the short-circuit
simulation, any machine can be analyzed since the fault
occurs at the middle of the power system.

Regarding the PSS output, the analysis are done on the
device applied to generator 2, therefore vpss2 is the signal
to be analyzed.

Figure 4 shows the results for the 5% step voltage at
generator 1 at t = 1 s. All the values are in p.u. units.
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Fig. 4. Step of 5% at the reference voltage of generator 1.

Observe that an 1 s time delay makes the local PSS to
perform better than the conventional WAPSS. The former
damps out the 0.6 Hz interarea oscillation in about 10 s,
whereas the latter takes about 50 s. The acting of vpss2
for the conventional WAPSS starts one second after the
change in the reference voltage of busbar 1 due to the
synchronization time, which harms the overall stability of
the power system.

On the other hand, the GMVC-based WAPSS is able
to damp out the power oscillations in only 5 s. The
analysis of signals ω23 and vpss2 explains the results for
the speed, terminal voltage and electric power at generator
3. Worth citing is GMVC-based WAPSS’s output, where
it is noticeable that, differently from the conventional
WAPSSs, its acting starts at the same time of the local
PSS, i.e., at t = 1 s. This behavior is expected according
to the GMVC equating presented in Sec. 3. Since the time
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delay between signals ω2 and ω3 does not influence the
proposed WAPSS output, it is able to help on the damping
of the interarea modes more efficiently.

The short-circuit simulation is shown in Fig. 5, where the
fault time is set to 200 ms.
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Fig. 5. Short-circuit between busbars 7 and 9.

The figure shows that, by means of stability, the results
obtained with the short-circuit simulation are similar to
that obtained with the 5% step at the reference voltage
of generator 1. The local PSS stabilizes the power after
10 s, the conventional WAPSS takes about 50 s and the
proposed WAPSS needs less than 5 s.

Moreover, GMVC-based WAPSS outperforms the conven-
tional WAPSS by all means for the study case. Again, it
is possible to observe that the proposed WAPSS output
vpss2 starts acting 1 s before the conventional one, which
justifies the increase of system’s overall stability.

6. CONCLUSION

This paper has shown that inherent latency issues of
WAPSS may be overcome with a GMV-based design. It
presents comprehensive results that comply with the MV
theory, i.e., system’s time delay might be fully compen-
sated if system’s (identified) model is known.

Further works will cope with larger power systems and
with different PSSs’ structures, like the PSS2B and
PSS4B.
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