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Abstract: In this work, a real-time Control Lyapunov-Barrier Function-based model predictive
control (CLBF-MPC) system using recurrent neural network (RNN) models is developed for
a general class of nonlinear systems to ensure closed-loop stability and operational safety
accounting for time-varying disturbances. An RNN model is first constructed for the nominal
system (i.e., without disturbances) and utilized in the design of CLBF-MPC to provide state
prediction. Subsequently, to improve the closed-loop performance in terms of operational safety
and stability in the presence of disturbances, online learning of RNN models is incorporated
within the real-time implementation of CLBF-MPC to update the RNN models using the most
recent process measurement data. The proposed adaptive machine-learning-based CLBF-MPC
method is evaluated using a nonlinear chemical process example.
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1. INTRODUCTION

Recurrent neural networks (RNN), a class of artificial
neural networks where feedback loops are employed to
introduce past information into the network, has demon-
strated its capability in approximating complex, nonlinear
dynamic systems in the discipline of data-driven model-
ing, (e.g., You and Nikolaou [1993], Kosmatopoulos et al.
[1995], Trischler and D’Eleuterio [2016]). As RNN can
provide an accurate process model for model-based op-
timization of chemical processes, e.g., model predictive
control (MPC) when a first-principles model is unavailable,
RNN modeling methods have been recently incorporated
in the design of MPC to operate a nonlinear process at
the steady-state while optimizing process dynamic per-
formance. For example, it is demonstrated in Wu et al.
[2019c] that desired closed-loop performance in terms of
guaranteed stability, optimal response, and smooth control
actions can be achieved under the MPC using an ensem-
ble of RNN models that well capture process nonlinear
dynamics. In addition to process stability, another issue
that is important in chemical process operation and has
attracted a lot of attention in the engineering community
is process operational safety. To ensure that a process is
being operated in safe operating conditions for all times,
safety protection systems including process control sys-
tems, alarms systems and emergency shut down systems
have been developed and widely-used in industry. Specif-
ically, advanced process control systems at the lowest

? Financial support from the National Science Foundation and the
Department of Energy is gratefully acknowledged.

level of safety protection system need to be designed to
account for safety considerations such as operating the
system safely and avoiding triggering alarms systems too
frequently.

To incorporate process safety constraints into MPC design,
Control Lyapunov-Barrier functions (CLBF) (Romdlony
and Jayawardhana [2016]) that are designed based on
Control Lyapunov functions and Control barrier functions
(Ames et al. [2016], Jankovic [2017]) have been developed
and utilized in MPC to stabilize the closed-loop state at
its steady-state while avoiding unsafe operating regions
in state-space. It has been demonstrated in Wu et al.
[2019a] that under CLBF-MPC, recursive feasibility of the
optimization problem of CLBF-MPC, closed-loop stability
and process operational safety can be guaranteed simulta-
neously for nonlinear processes.

Despite the successful applications of RNNs in model-
based controllers, there is an increasing need to address
online learning of machine learning models as all real-
world processes are changing over time due to external
disturbances and internal variations (e.g., catalyst deac-
tivation). To that end, adaptive machine-learning-based
MPC has been developed in Wu et al. [2019b] to update
RNN models using real-time process data for nonlinear
processes subject to time-varying disturbances. Motivated
by the above, in this work, we develop a real-time adaptive
CLBF-based MPC that updates RNN models following the
error-triggered mechanism that has been proposed in Wu
et al. [2019b]. Specifically, an RNN-based CLBF-MPC is
first developed to derive closed-loop stability and safety for
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the nominal system. Based on that, online learning of RNN
models is incorporated in the real-time implementation of
CLBF-MPC to safely operate the system and drive the
state to its steady-state in the presence of disturbances.

2. PRELIMINARIES

2.1 Notation

The notation |·| is used to denote the Euclidean norm of
a vector. xT denotes the transpose of x. The notation
LfV (x) denotes the standard Lie derivative LfV (x) :=
∂V (x)
∂x f(x). Set subtraction is denoted by ”\”, i.e., A\B :=
{x ∈ Rn | x ∈ A, x /∈ B}. ∅ signifies the empty set. The
function f(·) is of class C1 if it is continuously differentiable
in its domain. A continuous function α : [0, a)→ [0,∞) is
said to belong to class K if it is strictly increasing and is
zero only when evaluated at zero.

2.2 Class of Systems

The class of continuous-time nonlinear systems considered
is described by the first-order nonlinear ordinary differen-
tial equations as follows:

ẋ = f(x) + g(x)u+ h(x)w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the
manipulated input vector, and w ∈ W is the disturbance
vector bounded by W := {w ∈ Rq | |w| ≤ wm, wm ≥ 0}.
The control action constraint is defined by u ∈ U :=
{umin

i ≤ ui ≤ umax
i , i = 1, ...,m} ⊂ Rm. f(·), g(·), h(·)

are sufficiently smooth vector and matrix functions of
dimensions n×1, n×m, and n×q, respectively. Throughout
the manuscript, the initial time t0 is taken to be zero
(t0 = 0), and it is assumed that f(0) = 0, and thus, the
origin is a steady-state of the nominal system of Eq. 1 with
w(t) ≡ 0, (i.e., (x∗s, u

∗
s) = (0, 0)).

2.3 Stabilizability Assumptions and Safety Considerations

A positive definite Control Lyapunov function (CLF) V
that satisfies the small control property (i.e., for every
ε > 0, ∃ δ > 0, s.t. ∀ x ∈ Bδ(0), there exists u that satisfies
|u| < ε and LfV (x) + LgV (x)u < 0, Sontag [1989]) and
the following condition is assumed to exist for the nominal
system of Eq. 1 with w(t) ≡ 0 :

LfV (x) < 0,∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (2)

The above CLF assumption implies that there exits a
stabilizing feedback control law Φ(x) ∈ U for the nominal
system of Eq. 1 (i.e., w(t) ≡ 0) that renders the origin of
the closed-loop system asymptotically stable for all x in a
neighborhood of the origin.

Additionally, we assume that there exists a set D ⊂ Rn

in state-space within which it is unsafe for the system
to be operated, and a safe stability region U such that
U ∩D = ∅ and {0} ⊂ U , within which closed-loop stability
and process operational safety are achieved simultaneously
in the following sense:

Definition 1. (Wu and Christofides [2020]) Consider the
system of Eq. 1 and input constraints u ∈ U . If there exists
a control law u = Φ(x) ∈ U such that for any initial state
x(t0) = x0 ∈ U , x(t) remains inside U , ∀t ≥ 0, and the
origin of the closed-loop system of Eq. 1 can be rendered
asymptotically stable, we say that the control law Φ(x)

maintains the process state within a safe stability region
U at all times.

2.4 Recurrent Neural Network

The following recurrent neural network (RNN) model is
developed to approximate the nonlinear dynamics of the
system of Eq. 1:

˙̂x = Fnn(x̂, u) := Ax̂+ ΘT y (3)

where x̂ ∈ Rn is the RNN state vector and u ∈ Rm is the
manipulated input vector. y = [y1, ..., yn, yn+1, ..., ym+n] =
[σ(x̂1), ..., σ(x̂n), u1, ..., um] ∈ Rn+m is a vector of both
the network state x̂ and the input u, where σ(·) is the
nonlinear activation function (e.g., a sigmoid function
σ(x) = 1/(1 + e−x)). A is a diagonal coefficient matrix,
i.e., A = diag{−a1, ...,−an} ∈ Rn×n with ai > 0,
i = 1, ..., n, and Θ = [θ1, ..., θn] ∈ R(m+n)×n with
θi = bi[wi1, ..., wi(m+n)], i = 1, ..., n. wij is the weight
connecting the jth input to the ith neuron where i =
1, ..., n and j = 1, ..., (m + n). It is noted that the RNN
model of Eq. 3 is an input-affine system, and therefore, it
can be written in the form that is similar to Eq. 1:

ẋ = f̂(x) + ĝ(x)u (4)

where f̂(·) and ĝ(·) can be derived from the coefficient
matrices A and Θ in Eq. 3 and are assumed to be
sufficiently smooth. The development of an RNN model
follows the two steps (data collection and training process)
as discussed in Wu et al. [2019c]. Additionally, to ensure
that the RNN model of Eq. 3 has the same steady-state as
the nonlinear system of Eq. 1, during the training process,
the modeling error ν is required to be bounded by |ν| =
|F (x, u, 0)− Fnn(x, u)| ≤ γ|x| ≤ νm, γ > 0, where νm > 0
is the upper bound within the operating region. Similarly,
we assume that there exists a Control Lyapunov function
V and a stabilizing controller u = Φnn(x) ∈ U that renders
the origin of the RNN system of Eq. 3 asymptotically
stable.

2.5 Stabilization and Safety via Control Lyapunov-Barrier
Function

Control Lyapunov-Barrier Function (CLBF) has been uti-
lized in Romdlony and Jayawardhana [2016], Wu et al.
[2019a] to design a stabilizing controller that drives the
state of the nonlinear system of Eq. 1 to the origin while
avoiding the unsafe region in state-space. Specifically, the
definition of constrained CLBFs Wc(x) that are designed
for the RNN system of Eq. 3 subject to input constraints
is as follows:

Wc(x) > ρ, ∀ x ∈ D ⊂ φuc (5a)

Lf̂Wc(x) < 0,

∀ x ∈ {z ∈ φuc\(D ∪ {0} ∪ Xe) | LĝWc(z) = 0} (5b)

Uρ := {x ∈ φuc | Wc(x) ≤ ρ} 6= ∅ (5c)

where ρ ∈ R, and Xe := {x ∈ φuc\(D∪{0}) | ∂Wc(x)/∂x =
0} is a set of states for the RNN model of Eq. 4 where

Lf̂Wc(x) = 0 (for x 6= 0) due to ∂Wc(x)/∂x = 0. f̂ and

ĝ are from the RNN model in the form of Eq. 4. The
construction method of the constrained CLBF of Eq. 5 can
be found in Romdlony and Jayawardhana [2016] and Wu
et al. [2019a], in which a control Lyapunov function and
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a control barrier function are designed separately and
combined together through weighted average.

A feedback control law u = Φnn(x) ∈ U that renders the
origin exponentially stable within an open neighborhood
φuc that includes the origin in its interior is assumed to ex-
ist for the RNN system of Eq. 3 (also in the form of Eq. 4)
in the sense that there exists a C1 constrained Control
Lyapunov-Barrier function Wc(x) that has a minimum at
the origin and satisfies the following inequalities ∀x ∈ φuc:

ĉ1|x|2 ≤Wc(x)− ρ0 ≤ ĉ2|x|2, (6a)

∂Wc(x)

∂x
Fnn(x,Φnn(x)) ≤ −ĉ3|x|2,∀x ∈ φuc\Bδ(xe) (6b)∣∣∣∣∂Wc(x)

∂x

∣∣∣∣ ≤ ĉ4|x| (6c)

where ĉj(·), j = 1, 2, 3, 4 are positive real numbers,
Wc(0) = ρ0 is the global minimum value of Wc(x) in
D, and Bδ(xe) is a small neighborhood around xe ∈ Xe.
Fnn(x, u) is the RNN system of Eq. 3. The universal Son-
tag controller Lin and Sontag [1991] with Wc(x) replacing
the Lyapunov function V (x) can be used as a stabilizing
control law Φnn(x) that satisfies the conditions in Eq. 6.
Additionally, by continuity and the smoothness assumed
for f, g and h in the nonlinear system of Eq. 1, there
exist positive constants M , Lx, Lw, L

′

x, L
′

w such that the
following inequalities hold for all x, x′ ∈ Uρ, u ∈ U , and
w ∈W :

|F (x, u, w)| ≤M (7a)

|F (x, u, w)− F (x′, u, 0)| ≤ Lx|x− x′|+ Lw|w| (7b)∣∣∣∣∂Wc(x)

∂x
F (x, u, w)− ∂Wc(x

′)

∂x
F (x′, u, 0)

∣∣∣∣
≤ L

′

x|x− x′|+ | ≤ L
′

w|wm| (7c)

The following theorem is established to demonstrate that
in the presence of an unsafe region D, closed-loop stability
and operational safety are achieved simultaneously for the
RNN system of Eq. 3 under the CLBF-based controller.

Theorem 1. Consider that a constrained CLBF Wc(x):
Rn → R that has a minimum at the origin and meets
the conditions of Eq. 5, exists for the RNN system of
Eq. 3. The controller u = Φnn(x) ∈ U that satisfies
Eq. 6 guarantees that the closed-loop state stays in Uρ
and avoids the unsafe region D for all times for any
x0 ∈ Uρ. Additionally, in the presence of an unbounded
unsafe region, the origin can be rendered exponentially
stable under u = Φnn(x) ∈ U , for all x0 ∈ Uρ, while
discontinuous control actions u = ū(x) ∈ U are required at
stationary points xe (xe 6= 0) for a bounded unsafe region
in state-space within Uρ.

Proof : It is noted in Wu et al. [2019a] that the unsafe
regions D can be categorized as bounded unsafe regions
(e.g., a set of unsafe operating conditions in a chemical
reactor) and unbounded unsafe regions (e.g., obstacle
avoidance in motion planning). Specifically, it is pointed
out in Wu et al. [2019a] that in the case of an unbounded
unsafe region, the origin (i.e., the steady-state of the
nonlinear system of Eq. 1) is the unique stationary point
in state-space, and therefore, closed-loop stability and
process operational safety can be readily derived under
the controller u = Φnn(x) ∈ U . However, in the presence

of a bounded unsafe region, there exist stationary points
(other than the origin) in state-space (i.e., Xe in Eq. 5b),
and therefore, the stationary points need to be designed to
be saddle points and discontinuous control actions will be
applied at saddle points to drive the state away from them
in the direction of decreasing Wc(x) to ensure closed-loop
stability and safety. The detailed proofs for both bounded
and unbounded unsafe regions can be found in Wu and
Christofides [2020], and are omitted here.

3. REAL-TIME CLBF-BASED MPC USING RNNS

In this section, we present the formulation of CLBF-MPC
using an RNN model and demonstrate that closed-loop
stability and safety can be achieved simultaneously under
CLBF-MPC for the nominal system of Eq. 1 (i.e., w(t) ≡
0). Subsequently, in the presence of time-varying distur-
bances w(t), online learning of RNN models is employed
within CLBF-MPC via an error-triggered mechanism to
improve RNN prediction accuracy using the most recent
process data.

3.1 Formulation of CLBF-MPC

The CLBF-MPC using an RNN model is represented by
the following optimization problem Wu et al. [2019a]:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t))dt (8a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (8b)

x̃(tk) = x(tk) (8c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (8d)

Ẇc(x(tk), u(tk)) ≤ Ẇc(x(tk),Φnn(tk))

if Wc(x(tk)) > ρnn and x(tk) /∈ Bδ(xe) (8e)

Wc(x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N ),

if Wc(x(tk)) ≤ ρnn (8f)

Wc(x̃(t)) < Wc(x(tk))− fe(t− tk), ∀ t ∈ (tk, tk+N ),

if x(tk) ∈ Bδ(xe) (8g)

where x̃(t), S(∆) and N are the predicted state trajectory,
the set of piecewise constant functions with period ∆, and
the number of sampling periods in the prediction horizon,
respectively. The cost function L(x̃(t), u(t)) is generally
in a quadratic form that has the minimum value at the
equilibrium of the system of Eq. 1 (e.g., |x̃(t)|2QL

+|u(t)|2RL
,

where QL and RL are positive definite matrices). The
RNN model of Eq. 3 is utilized to predict states x̃(t) over
t ∈ [tk, tk+N ). The objective function of Eq. 8a is the time
integral of L(x̃(t), u(t)) over the prediction horizon. The
input constraints of Eq. 8d are applied over the entire
prediction horizon. The state measurement of Eq. 8c at
t = tk is taken as the initial condition for the RNN models
of Eq. 8b. The constraint of Eq. 8e forces Wc(x̃) along
the predicted state trajectories to decrease at least at the
rate under the CLBF-based controller u = Φnn(x) ∈ U
when Wc(x(tk)) > ρnn and x(tk) /∈ Bδ(xe). If Wc(x(tk)) ≤
ρnn, the constraint of Eq. 8f is activated to maintain the
predicted state of the RNN system within Uρnn such that
the closed-loop state of the nonlinear system of Eq. 1
is bounded Uρmin . Additionally, if x(tk) ∈ Bδ(xe), the
constraint of Eq. 8g decreases Wc(x) over the prediction
horizon such that the state can escape from saddle points
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xe within finite sampling steps, where fe(t) is a function
that represents the difference between predicted value
of Wc(x̂) and actual value of Wc(x) due to a nonzero
modeling error. The state measurements of the closed-
loop system of Eq. 1 are assumed to be available at each
sampling time. The CLBF-MPC optimization problem of
Eq. 8 calculates an optimal input sequence but only sends
the first control action to the control actuators to be
applied over the next sampling period.

The theorem below demonstrates that under the CLBF-
MPC of Eq. 8, closed-loop stability and process opera-
tional safety are achieved simultaneously for the nominal
system of Eq. 1 (i.e., w(t) ≡ 0) in the sense that the closed-
loop state is bounded in the safe operating region Uρ for all
times, and is ultimately bounded in a small neighborhood
Uρmin

around the origin.

Theorem 2. Consider the nominal system of Eq. 1 (i.e.,
w(t) ≡ 0) with a constrained CLBF Wc that satisfies
Eq. 5 and has a minimum at the origin. Given any initial
state x0 ∈ Uρ, it is guaranteed that the CLBF-MPC
optimization problem of Eq. 8 can be solved with recursive
feasibility for all times. Additionally, under the sample-
and-hold implementation of CLBF-MPC based on an RNN
model that satisfies |ν| = |F (x, u, 0)− Fnn(x, u)| ≤ γ|x| ≤
νm, it is guaranteed that for any x0 ∈ Uρ, the state is
bounded in Uρ, ∀ t ≥ 0, and ultimately converges to Uρmin

as t→∞.

Proof : The proof can be found in Wu and Christofides
[2020], and is omitted here.

3.2 Error-triggered On-line Learning of RNNs

Now we consider the nonlinear system of Eq. 1 subject
to bounded time-varying disturbances (i.e.,|w(t)| ≤ wm)
that cannot be fully eliminated by the sample-and-hold
implementation of CLBF-MPC using the RNN models
that are developed for the nominal system of Eq. 1 (i.e.,
w(t) ≡ 0). In this case, the closed-loop system of Eq. 1
may be rendered unstable under the CLBF-MPC using the
initial RNN model for all times. To account for the impact
of disturbances in the prediction of the CLBF-MPC of
Eq. 8, the RNN model of Eq. 8b needs to be updated
via on-line learning using the most recent data to capture
the nonlinear dynamics of the system of Eq. 1 subject
to the time-varying disturbances w(t). Specifically, based
on the error-triggering mechanism in Wu et al. [2019b],
the following moving horizon error metric Ernn(tk) is
developed to indicate the RNN model prediction accuracy
at t = tk:

Ernn(tk) =

Nb∑
i=0

|xp(tk−i)− x(tk−i)|
|x(tk−i)|+ δ

(9)

where Nb is the number of sampling periods before tk that
contribute to the quantification of the prediction error.
xp(tk−i) and x(tk−i), i = 0, ..., Nb are the predictions of
the past states using RNN models, and the past state
measurements from the actual nonlinear system of Eq. 1
under the same control actions, respectively. δ is a small
positive real number that is introduced in the denominator
of Eq. 9 to avoid the division by small numbers when
x(tk−i) approaches zero. The RNN model of Eq. 8b is

updated if the accumulated error Ernn(tk) exceeds the
threshold ET :

Ernn(tk) > ET (10)

where ET is determined via extensive closed-loop simula-
tions. It should be noted that when an online learning
of RNN models is activated, all the data points since
the last model update will be used as the training and
validation data for the new RNN model. As the number
of available data points has a great impact on the RNN
model accuracy, Nb and ET need to be carefully chosen
to achieve a desired training performance. Specifically, the
moving horizon length Nb is first determined via extensive
closed-loop simulations to ensure that there are enough
data points that can be utilized in the online update of
RNN models, and meanwhile, will not cause data-storage
burden. Subsequently, the threshold ET is determined via
simulations off-line to trigger an RNN model update when
the state error has accumulated to an undesired level
while accounting for common measurement noise, which
is sufficiently small compared to time-varying disturbances
from model uncertainty, and should not trigger an update
of RNN models in most times. Additionally, when the state
approaches the unsafe region, the threshold ET should be
adjusted to update online learning more frequently such
that the new RNN models are able to capture the most re-
cent dynamics subject to disturbances in a timely manner,
and therefore, provide a sufficiently accurate prediction for
the CLBF-MPC optimization problem of Eq. 8 to avoid
the unsafe region. Lastly, after the RNN model is updated
at a certain sampling step t = tk, all the errors before
t = tk are reset to zero.

3.3 Implementation Strategy for On-line RNN Learning
Within CLBF-MPC

Based on the error-triggered control scheme proposed in
the previous section, the implementation strategy of the
on-line RNN learning is integrated with the machine-
learning-based CLBF-MPC of Eq. 8 as follows:

Step 1 : An initial RNN model that is utilized in the
CLBF-MPC of Eq. 8 is derived from extensive open-loop
simulations for the nominal system of Eq. 1 (i.e., w(t) ≡ 0)
following the construction method in Wu et al. [2019c].

Step 2 : Starting from an initial condition x0 ∈ Uρ,
the nonlinear system of Eq. 1 is operated under CLBF-
MPC in a sample-and-hold fashion with states being
continuously monitored and collected. The online update
of RNN models is triggered the moment that the moving
horizon error detector of Eq. 9 exceeds its threshold ET . At
the next sampling time, the new RNN model will replace
the old model in the CLBF-MPC of Eq. 8 to solve for the
optimal control actions u∗(t) for the next sampling period.

Step 3 : When the closed-loop state enters a small neigh-
borhood Uρmin

around the origin, which is considered to
be practically stable for the nominal system of Eq. 1, the
error-triggering mechanism is taken off-line until the state
leaves Uρmin

again due to time-varying disturbances.

Remark 3. It is noted that the online learning of RNN
models is performed using the most recent process data
only by loading the old RNN models with the previ-
ous RNN structure and weight matrices as initialization.
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Therefore, the new RNN models that are trained using new
data points inherit some important features of the nominal
process from the old RNN models and also capture the
recent dynamics subject to time-varying disturbances from
new data points. Additionally, instead of training a new
RNN model from scratch, the training process based on
the most recent data and the previous RNN model is
more computationally tractable, and thus, can be readily
incorporated in the real-time implementation of CLBF-
MPC.

4. APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

A chemical process example is provided to illustrate the
application of machine-learning-based CLBF-MPC to sta-
bilize the closed-loop state at the steady-state and main-
tain the state in the safe stability region. Specifically, a
well-mixed, non-isothermal continuous stirred tank reactor
(CSTR) where an irreversible second-order exothermic
reaction takes place is considered. The reaction transforms
a reactant A to a product B (A → B). The inlet concen-
tration of A, the inlet temperature and feed volumetric
flow rate of the reactor are CA0, T0 and F , respectively.
The CSTR is equipped with a heating jacket that sup-
plies/removes heat at a rate Q. The CSTR dynamic model
is described by the following material and energy balance
equations:

dCA
dt

=
F

V
(CA0 − CA)− k0e

−E
RT C2

A (11a)

dT

dt
=
F

V
(T0 − T ) +

−∆H

ρLCp
k0e

−E
RT C2

A +
Q

ρLCpV
(11b)

where CA is the concentration of reactant A in the reactor,
V is the volume of the reacting liquid in the reactor, T is
the temperature of the reactor and Q denotes the heat
input rate. The concentration of reactant A in the feed is
CA0. The feed temperature and volumetric flow rate are T0

and F , respectively. The liquid has a constant density of
ρL and a heat capacity of Cp. ∆H, k0, E, and R represent
the enthalpy of reaction, pre-exponential constant, activa-
tion energy, and ideal gas constant, respectively. Process
parameter values are in Wu et al. [2019c].

The CSTR is initially operated at the steady-state xs =
(CAs, Ts) = (1.22 kmol/m3, 438 K), and us =
(CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The manipulated
inputs are the inlet concentration of species A and the
heat input rate, which are represented by the deviation
variables ∆CA0 = CA0 − CA0s , ∆Q = Q − Qs, respec-
tively. The manipulated inputs are bounded as follows:
|∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5 × 105 kJ/hr.
Therefore, the states and the inputs of the closed-loop
system are xT = [CA−CAs T −Ts] and uT = [∆CA0 ∆Q],
respectively, such that the equilibrium point of the system
is at the origin of the state-space (i.e., (x∗s, u

∗
s) = (0, 0)).

In this work, we consider the model variations due to
the following disturbances: (1) the feed flow rate F is
changing from 5 m3/h to 7 m3/h at t = 0 hr, and (2) the
actual value of the pre-exponential constant k0 used in the
process model is reduced by half to represent a change in
the reaction rate at t = 0 hr.

The control objective is to operate the CSTR process of
Eq. 11 at its steady-state while maintaining the closed-loop

state trajectories in the safe stability region Uρ using an
RNN-based CLBF-MPC scheme. Specifically, we consider
an unsafe region D embedded within the stability region
(i.e., a level set of Lyapunov function V ) that is defined
as an open set, for example, an ellipse described by D :=

{x ∈ R2 | F (x) = (x1+0.92)2+ (x2−42)2

500 < 0.06}.Following
the construction method in Wu et al. [2019a], H is defined
as H := {x ∈ R2 | F (x) ≤ 0.07}, and the Control Barrier
Function B(x) is designed as follows:

B(x) =

{
e

F (x)
F (x)−0.07 − e−6, if x ∈ H
−e−6, if x /∈ H

(12)

Additionally, a Control Lyapunov Function using the stan-
dard quadratic form V (x) = xTPx is constructed with the
following positive definite P matrix:

P =

[
1060 22
22 0.52

]
(13)

Therefore, Wc(x) = V (x) + µB(x) + ν is designed with
the following parameters ρc = 0, c1 = 0.1, c2 = 1061,
c3 = maxx∈∂H |x|2 = 2295, c4 = minx∈∂D |x|2 = 1370.
ν = ρc − c1c4 = −160, and µ = 1 × 109 to meet the
conditions of CLBFs in Eq. 5.

The explicit Euler method with an integration time step
of hc = 2 × 10−5 hr is applied to numerically simulate
the dynamic model of Eq. 11. The nonlinear optimization
problem of the RNN-based CLBF-MPC of Eq. 8 is solved
using the IPOPT software package Wächter and Biegler
[2006] and its Python version, named, PyIpopt, with the
sampling period ∆ = 2× 10−3 hr.

The closed-loop simulation of the CSTR of Eq. 11 is
carried out under the CLBF-MPC with and without
online learning of RNN models, respectively, and the
results are shown in Figs. 1-3. Specifically, in Fig. 1,
it is demonstrated that in the presence of disturbances,
the closed-loop state trajectory under the CLBF-MPC
using online update of RNN models is able to avoid
the unsafe region and converge to a small neighborhood
around the origin, while the one under the CLBF-MPC
without online RNN update crosses the red unsafe region
D due to a considerable model mismatch between the
initial RNN model for the nominal process of Eq. 11 and
the actual process subject to disturbances. Fig. 2 shows
the input profiles under the CLBF-MPC with and without
online RNN update, from which recursive feasibility and
satisfaction of input constraints are demonstrated for both
optimization. Additionally, it is also observed in Fig. 2 that
since RNN models are updated in a timely manner under
the CLBF-MPC with online learning, the oscillation of u1

becomes less near the end of operation period compared
to the one without online update.

The value of error is shown in Fig. 3 for CLBF-MPCs with
and without online RNN update. It is demonstrated that
without online learning, the error exceeds the threshold
quickly and increases to an undesired level during the
operation, which implies the failure of the initial RNN
model in capturing the actual CSTR dynamics in the
presence of disturbances. However, under the CLBF-MPC
with online RNN learning, it is demonstrated that the
RNN model update is triggered six times during the entire
operation period (i.e., t=0.06 hr) to maintain the error
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below its threshold for most of the time. Therefore, with
online learning, the RNN models used in CLBF-MPC
always capture the latest process dynamics subject to dis-
turbances, and lead to a desired closed-loop performance
for the CSTR of Eq. 11 with simultaneous closed-loop
stability and operational safety.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
CA − CAs

(kmol/m3)

-50

0

50

T
−

T
s
(K

)

D

Uρ

Uρmin

CLBF-MPC without updating RNN
CLBF-MPC with updating RNN

Fig. 1. The state-space profiles for the closed-loop
CSTR subject to time-varying disturbances under
the CLBF-MPC of Eq. 8 with (red trajectory) and
without online RNN update (blue trajectory), respec-
tively, for an initial condition (-1.5,70).
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Fig. 2. Manipulated input profiles (u1 = ∆CA0, u2 = ∆Q)
for the closed-loop CSTR subject to time-varying
disturbances under the CLBF-MPC of Eq. 8 with
(red trajectory) and without online RNN update (blue
trajectory), respectively, for an initial condition (-
1.5,70).
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Fig. 3. Value of Ernn(t) at each sampling time for the
closed-loop CSTR subject to time-varying distur-
bances under the CLBF-MPC of Eq. 8 with (red, right
y-axis) and without online RNN update (blue, left y-
axis), respectively, where the threshold ET is set to
0.15.

5. CONCLUSION

In this work, we proposed a real-time machine learning-
based CLBF-MPC scheme using error-triggered online
learning of RNN models to optimize process operational
safety and closed-loop stability for nonlinear systems sub-
ject to time-varying disturbances. The application to a
chemical reactor example demonstrated that the closed-
loop state was able to avoid the unsafe region and con-
verged to a small neighborhood around the origin under
the CLBF-MPC with online update of RNN models.
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