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Abstract: In this work, an output regulator design in a discrete-time setting is considered
for a linearized Ginzburg-Landau equation (GLE) with point observation using the internal
model principle. To address model instability, spectrum analysis is presented and utilized for
the continuous-time GLE system. In addition, the Cayley-Tustin transform is used for model
time discretization and no spatial approximation or model reduction is induced in the time
discretization. As for the servo control design, the discrete-time Sylvester regulation equations
are constructed and applied. By a state-feedback regulator, the output tracking and disturbance
rejection are realized simultaneously for the Ginzburg-Landau equation, which is verified by a
set of simulation studies.
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1. INTRODUCTION

Flow manipulation as a crucial topic in the realm of aero-
dynamics and hydrodynamics has been widely studied for
drag reduction, lift enhancement, turbulence suppression
etc. Among these, vortex shedding phenomena have gained
intensive interest, due to their wide existence when flows
pass submerged obstacles with Reynolds numbers larger
than the critical value (e.g. Rec ≈ 47 for a round cylin-
der). As shown in Fig. 1, a schematic diagram describing
the vortex shedding phenomenon in the two-dimensional
(2-D) flow behind the cylinder is illustrated, where one
can clearly observe the unstable vortex shedding and its
evolution.

Vortex shedding suppression has been investigated in the
literature both experimentally and using simulation. More
specifically, experiments have shown that the laminar
Kármán vortex can be suppressed in a certain range of
Reynolds number by oscillating the cylinder normal to the
mean flow (Berger, 1967), by applying feedback control
through suction and blowing treatment on the surface
(Roussopoulos, 1993; Huang, 1996; Gunzburger and Lee,
1996) and using acoustic feedback of signals collected from
hot-wires in the wake of the cylinder (Williams and Zhao,
1989). From a theoretical perspective, the Navier-Stokes
equations have been utilized to model the dynamics of the
cylinder wake (Chen and Chen, 1984; Henderson, 1995;
Milovanovic et al., 2009), although most of the work has
been done numerically due to the mathematical complex-
ity of the Navier-Stokes equations. A simplified model
was suggested and reviewed in terms of the Ginzburg-
Landau equation with appropriate coefficients (Huerre and
Monkewitz, 1990). The Ginzburg-Landau model is also
extensively used for mathematical modelling of nonlinear
wave dynamics, second-order phase transitions, supercon-

Fig. 1. Vortex shedding in the 2-D flow behind the cylinder
(Aamo and Krstic, 2004)

ductivity, superfluidity, Bose-Einstein condensation, liquid
crystals and strings in field theory (Aranson and Kramer,
2002).

When it comes to vortex shedding attenuation by Ginzburg
-Landau equation (GLE) modelling, various advanced con-
trol and stabilization methods have been exploited in one,
two, and three dimensions and with consideration of dif-
ferent Reynolds number ranges. More specifically, a single
input single output (SISO) proportional controller was
designed for Kármán vortex shedding with Reynolds num-
bers (based on cylinder diameter) close to the critical value
by Roussopoulos and Monkewitz (1996). In (Cohen et al.,
2005), a traditional proportional-integral-derivative (PID)
controller and a non-linear fuzzy controller were proposed
for the non-linear one-dimensional Ginzburg-Landau wake
model at 20% above the critical Reynolds number. Based
on a backstepping approach, output feedback boundary
control for stabilization of 1-D and 2-D GLE systems
has been widely studied (Aamo et al., 2004; Aamo and
Krstic, 2004; Aamo et al., 2005, 2007). Later on, the
proposed controllers were implemented in Navier-Stokes
(NS) equations based CFD simulations (Milovanovic and
Aamo, 2010, 2012), which was further extended to sta-
bilizing vortex shedding of 3-D wakes behind a cylinder
(Milovanovic and Aamo, 2011). A hybrid vortex method
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and evolution strategies were applied to investigate the
2-D and 3-D evolution of cylinder wakes (Poncet, 2004;
Poncet et al., 2005). From the optimal control perspec-
tive, a model predictive controller for stabilization of a
linearized GLE model was developed with consideration
of state and input constraints (Izadi et al., 2018). Most of
the contributions have concentrated on stabilizing control
while output regulation of GLE is limited. The servo
design plays a central role in flow manipulation and/or
modification with desired characteristics.

In this work, an internal model controller design is consid-
ered for a complex linearized Ginzburg-Landau equation
based on the pioneering work on geometric theory (Fran-
cis and Wonham, 1976). Specifically, a linearized GLE is
considered and discretized in the time domain by Cayley-
Tustin approach without any spatial approximation or
order reduction. Based on that, a discrete state feedback
regulator is designed for the discrete-time GLE model by
constructing and solving discrete regulator equations.

Section 2 presents the model description, spectrum analy-
sis, time discretization and the resolvent operator. In Sec-
tion 3, the exogenous system and state feedback regulator
are given. A set of simulation studies that include regula-
tion of the real part and imaginary part of the output are
outlined in Section 4 to demonstrate the feasibility of the
proposed method. Finally, concluding remarks are made
along with promising future work for the proposed design
method.

2. PROBLEM FORMULATION

In this section, we consider a linearized complex Ginzburg-
Landau equation taking the form of a complex parabolic
partial differential equation (PDE) with boundary input,
spatially distributed disturbance and point measurement.
Using the Cayley-Tustin transformation, an associated
discrete model is yielded without spatial discretization or
model reduction, where the resolvent operator is deter-
mined as a key link to generate discrete-time operators
from continuous-time ones.

2.1 Model Description

In this section we consider a linearized Ginzburg-Landau
equation as (Izadi et al., 2018; Aamo et al., 2005):

∂x(ξ̄, t)

∂t
=a1

∂2x(ξ̄, t)

∂ξ̄2
+ a2(ξ̄)

∂x(ξ̄, t)

∂ξ̄
+ a3(ξ̄)x(ξ̄, t) (1a)

xξ̄(0, t) = ū(t), xξ̄(ξ̄d, t) = 0, x(ξ̄, 0) = x0 (1b)

where x(ξ̄, t) ∈ X̄ is a complex-valued function with spatial
variable ξ̄ ∈ [0, ξ̄d] ⊂ R, and temporal variable t ∈ [0,∞).
X̄ = L2((0, ξ̄d),C) denotes a complex Hilbert space. a1 is a
positive real constant, while a2(ξ̄) and a3(ξ̄) are two com-
plex spatial functions. After an invertible state transfor-

mation w(ξ̄, t) = x(ξ̄, t)g(ξ̄), g(ξ̄) = exp( 1
2a1

∫ ξ̄
0
a2(η)dη)

and spatial scaling ξ = ξ̄d−ξ̄
ξ̄d

are applied, the convective

term is eliminated resulting in:

∂w(ξ, t)

∂t
= b1

∂2w(ξ, t)

∂ξ2
+ b2(ξ)w(ξ, t) (2a)

wξ(1, t) = u(t), wξ(0, t) = 0, w(ξ, 0) = w0 (2b)

with:

b1 =
a1

ξ̄2
d

, b2(ξ) = −1

2
a′2(ξ)− 1

4a1
a2

2(ξ) + a3(ξ) (3)

where w(ξ, t) ∈ X = L2((0, 1),C), ξ ∈ [0, 1], and a′2(ξ)
denotes the spatial derivative of a2(ξ). Additionally, u(t)
is the corresponding input action of the scaled system.

By (Tucsnak and Weiss, 2009, Rem. 10.1.6) the boundary
actuation can be converted to an abstract in-domain
control described by a spatial function B(ξ) by solving an
inner product formula as below

〈Lφ, ψ〉=〈φ,A∗ψ〉+〈Gφ,B∗ψ〉,∀φ∈D(L), ψ∈D(A∗) (4)

where L := b1
∂2

∂ξ2 + b2(ξ) with D(L) = H1((0, 1),C). The

boundary control is denoted by G, namely, Gφ := φξ(1).
By introducing X1 = Ker (G), we obtain A = L|X1

with the same definition as L, but a different domain as
D(A) = {φ ∈ X |φ ∈ H1((0, 1),C) ∩ Ker (G)}. It can be

found that A∗ = b1
∂2

∂ξ2 + b2(ξ) and D(A∗) = D(A). It is

straightforward to find

〈Gφ,B∗ψ〉 = φξ(1)ψ∗(1),∀φ ∈ D(L), ψ ∈ D(A∗) (5)

Comparing this with the fact that Gφ = φξ(1), it follows
that B(ξ) = δ(ξ− 1). For simplicity, we approximate B by
a bounded spatial function B(ξ) ≈ 1

2ε1[ξb−ε,ξb+ε] (ξ) with
ξb + ε = 1. Thus, an abstract linear state-space model is
formulated for the linearized Ginzburg-Landau equation
(2) as:

∂w(ξ, t)

∂t
= Aw(ξ, t) + Bu(t) + Ed(t) (6a)

y(t) = Cw(ξ, t) (6b)

where u(t) ∈ L2
loc([0,∞), U), d(t) ∈ L2

loc([0,∞), Ud),
and y(t) ∈ L2

loc([0,∞), Y ), with U , Ud and Y being
finite-dimensional spaces. In addition, we consider A :
D(A) ⊂ X 7→ X being an infinitesimal generator of a
C0−semigroup T(t) on X , a bounded control operator
B ∈ L(U,X ), a point observation operator C ∈ L(X1, Y ),
and a bounded disturbance operator E ∈ L(Ud,X ). In
particular, we aim to steer a flow at point ξc ∈ (0, 1), so

the output of interest is characterized by: C :=
∫ 1

0
δ(ξ −

ξc)(·)dξ, where δ(ξ − ξc) denotes the Dirac delta function.
For well-posedness, we replace C by its Λ-extension CΛ,
namely, CΛx = lim

λ→+∞
Cλ(λI−A)−1x where I is an identity

operator, x ∈ X , λ ∈ ρ(A) (Tucsnak and Weiss, 2014). The
transfer functions from the input and disturbance to the
output are given as:

Gc(s) = CΛ(sI −A)−1B (7a)

Tc(s) = CΛ(sI −A)−1E (7b)

where s ∈ C+
σ ∩ ρ(A), σ is the maximum of the growth

index of a well-posed linear system and the growth bound
of the semigroup T(t) generated by A, and C+

σ = {s ∈
C|Re s > σ} delimited by σ ∈ R. In this work, the
objective is to realize output reference tracking, alleviate
plant disturbance, and stabilize the system.

2.2 Spectrum Analysis of A

It can be shown in several ways that for a uniformly
distributed function b2(ξ) the spectrum of A can be found
as follows:

λn = b2 − b1n2π2, φn(ξ) =
√

2 cos(nπξ) (8)
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where λn and φn(ξ) are the eigenvalues and eigenfunctions,
with n ∈ Z+. For n = 0, one has (λ0, φ0) = (b2, 1).
However, for an arbitrary complex function b2(ξ), it is not
simple to determine the spectrum characteristic of A. For
simplicity, we take average of the spatial function b2(ξ) as
b̄2 to approximate the original function b2(ξ), resulting in

A := b1
∂2

∂ξ2 + b̄2. Then, the spectrum of A naturally follows

that in Eq.(8) with b2 replaced by b̄2. For ease of notation,
we denote b̄2 by b2 in the following sections. This will be
further exploited in controller design in what follows.

2.3 Cayley-Tustin Time-Discretization

To preserve system properties (stability, controllabil-
ity and observability) during discretization, the Cayley-
Tustin time discretization is deployed to transform the
continuous-time model (6) with unbounded operators into
its discrete counterpart with bounded operators. Specifi-
cally, we discretize the continuous system (6) for a given
time discretization interval 4t as follows:

w(k∆t)− w((k − 1)∆t)

∆t
≈ Aw(k∆t) + w((k − 1)∆t)

2
+ Bu(k∆t) + Ed(k∆t) (9a)

y(k∆t) ≈ CΛ
w(k∆t) + w((k − 1)∆t)

2
(9b)

with w(0) = w0, k ≥ 1. As shown above, this dis-
cretization framework is based on the implicit mid-point
integration rule. It possesses a symmetric and symplectic
scheme leading to a structure- and energy-preserving time
discretization (Hairer et al., 2006; Xie et al., 2019). The

discrete input is given by uk√
∆t

= 1
∆t

∫ k∆t

(k−1)∆t
u(t)dt using

the mean value sampling (Havu and Malinen, 2007). It can
be shown that uk√

∆t
converges to u(k∆t) as ∆t→ 0+, and

similar expressions hold for dk and yk (Havu and Malinen,
2007). Simple algebraic manipulation results in an infinite-
dimensional discrete-time state-space model:

wk = Adwk−1 + Bduk + Ξddk, w(0) = w0, k ≥ 1 (10a)

yk = Cdwk−1 +Dduk + Υddk (10b)

where wk, uk, dk and yk represent the discrete-time
state, input, disturbance and output, respectively. The
associated discrete-time spatial operators are:[

A B E
CΛ 0 0

]
→
[
Ad Bd Ξd
Cd Dd Υd

]
(11)

=

[
−I + 2δR(δ,A)

√
2δR(δ,A)B

√
2δR(δ,A)E√

2δCΛR(δ,A) Gc(δ) Tc(δ)

]
where R(s,A) = (sI − A)−1 is the resolvent operator,
and Gc(δ) and Tc(δ) are transfer functions Gc(s) and Tc(s)
with evaluation of s = δ = 2/∆t ∈ R+. All discrete-time
operators in Eq.(10) are obtained as bounded operators:
Ad ∈ L(X ), Bd ∈ L(U,X ), Ξd ∈ L(Ud,X ), Cd ∈ L(X , Y ),
Dd ∈ L(U, Y ), Υd ∈ L(Ud, Y ). There are two feedforward
operators Dd and Υd in the discrete-time setting (10)
after applying Cayley-Tustin discretization, which are not
necessarily present in the continuous model setting (6).

2.4 Resolvent Operator

In this section, the resolvent operator is determined
in order to realize discrete-time operators in infinite-
dimensional model setting (10). Considering that the re-
solvent operator depends on the operator A purely, one

can directly apply Laplace transformation to Eq.(6) by
dropping B and E as:

∂we(ξ, s)

∂ξ
= Mwe(ξ, s) +A0w(ξ, 0)

where we(ξ, s) = [w(ξ, s);wξ(ξ, s)], A0 = [0;− 1
b1

] and

M = [0, 1; s−b2b1
, 0]. Apparently, the solution of we(ξ, s)

takes the following form:

we(ξ, s) =eMξwe(0, s) +

∫ ξ

0

eM(ξ−η)A0w(η, 0)dη (12)

It is straightforward to obtain eMξ as below

eMξ =

 cosh(

√
s− b2
b1

ξ)

√
b1

s− b2
sinh(

√
s− b2
b1

ξ)√
s− b2
b1

sinh(

√
s− b2
b1

ξ) cosh(

√
s− b2
b1

ξ)


Substituting boundary conditions wξ(1, s) = 0 = wξ(0, s)

into Eq.(12), one can solve for w(0, s) so that an analytic
closed-form expression of the resolvent operator is deter-
mined as follows:

w(ξ, s) = R(s,A)w(ξ, 0) (13)

where R(s,A) is denoted by:

R(s,A)(·) = −
1√

b1(s− b2)

∫ ξ

0

sinh(ws(ξ − η))(·)dη+

cosh(wsξ)√
b1(s− b2) sinh(ws)

∫ 1

0

cosh(ws(1− η))(·)dη

where ws =
√

s−b2
b1

. Thus, a direct calculation by

substituting the resolvent (with s = δ) back into Eq.(11)
can lead to the expressions of (Ad,Bd, Cd,Dd) as:

Ad(·) = −(·)−
2δ√

b1(δ − b2)

∫ ξ

0

sinh(wδ(ξ − η))(·)dη

+
2δcosh(wδξ)√

b1(δ − b2) sinh(wδ)

∫ 1

0

cosh(wδ(1− η))(·)dη

Bd =



√
2δ

2ε (δ − b2)

[
1− cosh (wδ (ξ − ξb + ε)) +

cosh (wδξ) sinh (wδ (1− ξb + ε))

sinh (wδ)

]
, for ξ ∈ [ξb − ε, 1]

√
2δ cosh (wδξ) sinh (wδ (1− ξb + ε))

2ε (δ − b2) sinh (wδ)
, otherwise

Cd(·) = −
√

2δ√
b1(δ − b2)

∫ ξc

0

sinh(wδ(ξc − η))(·)dη+

√
2δcosh(wδξc)√

b1(δ − b2) sinh(wδ)

∫ 1

0

cosh(wδ(1− η))(·)dη

Dd =
cosh (wδξc) sinh (wδ (1− ξb + ε))

2ε (δ − b2) sinh (wδ)
, ξc < ξb − ε

where wδ =
√

δ−b2
b1

. With ξc < ξb − ε < 1, we note that

lim
s→+∞

Gc(s) = lim
δ→+∞

Dd = 0

which implies that the system (6) is a well-posed regular
system, see (Weiss, 1994).

3. REGULATOR DESIGN

In this section, a discrete-time state feedback output
regulation problem is considered. Based on the discretized
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plant and a discrete exogenous model, a discrete-time
regulator is designed for the GLE system.

3.1 Exogenous system

In order to generate the disturbance and reference signals,
a discrete-time finite-dimensional exogenous system (exo-
system) is considered as follows:

qk = Sdqk−1, q0 ∈ Cn, k ≥ 1 (15a)

dk = Fdqk, yrk = Qdqk (15b)

where qk, dk, and yrk denote the exogenous state, distur-
bance, and output reference signals in the discrete-time
setting. In addition, Sd represents the discrete-time state
evolution matrix and is a n × n dimension matrix. More
specifically, we assume that Sd has distinct eigenvalues
placed in the interior of the unit disc, i.e., λSd

= ν + ιi
where ν, ι ∈ [0, 1] ⊂ R, ν2 + ι2 ≤ 1, and i2 = −1.
Hence, Sd is able to account for step-like and harmonic
signals. Moreover, we assume that Fd and Qd have proper
dimensions to generate disturbance and reference signals.

3.2 State Feedback Regulator Design

The main objective of output regulation is to stabilize
the original system, reject the disturbance and track the
desired reference trajectory. Mathematically, the output
regulation problem is to design a output regulator such
that the following conditions hold:

[1] The discrete-time closed-loop system operator Ad +
BdKd is strongly stable;

[2] The discrete-time tracking error ek = yk − yrk → 0
as k → +∞ for any given x0 ∈ X and q0 ∈ Cn.

To address that, a discrete-time state feedback regulator
can be designed in the following form:

uk = Kdxk−1 + Ldqk, k ≥ 1 (16)

where Kd ∈ L(X , U), Ld ∈ L(Cn, U), and all state
information of the plant and the exo-system is assumed
to be available under the framework (16).

By Eq. (III.6) in (Byrnes et al., 2000), the stabilization
controller gain K can be chosen as Kφ = −β〈φ,1〉
with some positive β to stabilize the unstable eigenvalue
(λ0 = 0). By applying this approach, we can stabilize all
unstable eigenvalues associated with the operator A. For
the stabilized continuous-time system, a new operator A

is obtained as: A = b1
∂2

∂ξ2 + b̃2 with b̃2 = b̄2 + BK and

D(A) = D(A). By (Curtain and Oostveen, 1997, Cor. 2.7),
we note that the discrete-time operator Ad corresponding
to the stabilized continuous-time operator A is strongly
stable.

Thus, we need the following theorem for solving the
feedforward gain Ld to realize the servo control aspect:

Theorem 1: Let the spectrum of Sd be contained in
the resolvent set of Ad, i.e., σ(Sd) ⊂ ρ(Ad) and (Ad,Bd)
be strongly stabilizable. The discrete state feedback reg-
ulation problem is solvable if and only if there exist a
mapping Πd ∈ L(Cn,X ) and Γd ∈ L(Cn, U) such that
the following discrete Sylvester equations hold (Xie and
Dubljevic, 2019.):

ΠdSd = AdΠd + (BdΓd + Pd)Sd (17a)

QdSd = CdΠd + (DdΓd + Θd)Sd (17b)

where Pd = ΞdFd, Θd = ΥdFd, and Ld = Γd −KdΠdS
−1
d

can be utilized to compute the state feedback control law
uk in Eq.(16).

Based on simple manipulation of discrete Sylvester equa-
tions (17a)-(17b) on the eigenpair (λdi , φ

d
i ) of Sd, the dis-

crete regulator gains (Πd,Γd) can be solved by:

Πdφ
d
i = λdi (λ

d
i I −Ad)−1(BdΓd + Pd)φ

d
i (18a)

Γdφ
d
i = [Gd(λdi )]−1[Qd − Td(λdi )Fd]φdi (18b)

where Gd(λdi ) = Cd(λdi I − Ad)−1Bd + Dd is the discrete
transfer function from uk to yck with z evaluated at z = λdi .
Similarly, Td(λdi ) = Cd(λdi I −Ad)−1Ξd + Υd is the discrete
transfer function from dk to yck with z evaluated at z = λdi .

It is shown that the continuous-time and discrete-time
transfer functions can be linked as follows by Cayley
bilinear transform (Opmeer and Curtain, 2004; Xie and
Dubljevic, 2019.):

Gd(z) = Gc(
z − 1

z + 1
δ), Td(z) = Tc(

z − 1

z + 1
δ) (19)

where z ∈ ρ(Ad) and z 6= −1, which can be used for solv-
ing Gd(λdi ) and Td(λdi ) from their continuous counterparts
and vice versa.

4. SIMULATION & RESULTS

In this section, two internal model controllers are designed
to regulate the real and imaginary parts of the considered
output of the linearized complex Ginzburg-Landau equa-
tion. More specifically, harmonic signals generated by the
discrete-time exo-system are deployed as disturbance and
reference signals. In addition, the model parameters used
for GLE in this work are adopted from (Izadi et al., 2018),
which were previously reported by Milovanovic and Aamo
(2012) and are given in Table 1.

Table 1. Parameters of GLE (Izadi et al., 2018)

Parameter Numerical value

a1 0.01667

a2(ξ̄)
(0.1697 + 0.04939i)ξ̄2 − (0.1748 + 0.06535i)ξ̄
−0.09061 + 0.001485i

a3(ξ̄)
(0.1563− 0.001352i)ξ̄4 + (−1590 + 0.6278i)ξ̄3

+(0.3958− 1.8577i)ξ̄2 + (−1.6852 + 1.6759i)ξ̄
+1.2645− 0.2489i

In the two simulation scenarios, the disturbance distribu-
tion is described by E(ξ) = 1[0,0.5](ξ), and other numerical

parameters are taken as ∆ξ = 0.00125, ∆t = 0.5, ξ̄d = 1.5,
β = 1.5, ξb = 0.9, and ε = 0.1. In particular, ξc = 0.5
is chosen to demonstrate design. Additionally, the initial
condition utilized here is given as: w0 = 0.0141×cos(2πξ).

Regulation of the real part of the output: In order to
generate harmonic signals, we take Sd = [0.9824, 0.1868; -
0.1868,0.9824], q0 = [0; 1], Fd = [0, 0.005], and Qd =
[0.02, 0], leading to periodic reference and disturbance
signals as: yrk = 0.02 × sin(0.06kπ) and dk = 0.005 ×
cos(0.06kπ). Revisiting Eq.(18b) and Eq.(19), the discrete
feedforward gain can be solved as Ld = [0.0135, 0.0382],
which completes the control action uk.
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After 40 seconds of simulation, the closed-loop state and
output evolution profiles are depicted in the Fig. 2 and
Fig. 3. It is apparent that the designed state feedback
regulator can stabilize the originally unstable system, and
the spatiotemporal profile shows the expected periodic be-
haviour. From the perspective of output performance, one
can clearly see that the real part of the controlled output
follows the desired reference signal and the tracking error
converges to zero quickly, which verifies the effectiveness
of the proposed output regulator.

(a) Real part

(b) Imaginary part

Fig. 2. State evolution of closed-loop GLE system in the
case of regulation of the real part of the output.
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Fig. 3. Output trajectory of closed-loop GLE system in
the case of regulation of the real part of the output.

Regulation of the imaginary part of the output: In this case,
periodic signals with a different frequency are generated by
setting Sd = [0.9689, 0.2474;−0.2474, 0.9689], q0 = [0; 1],
Fd = [0, 0.008], and Qd = [0.01, 0], which yields reference
and disturbance signals as: dk = 0.008 × cos(0.08kπ)
and yrk = 0.01 × sin(0.08kπ). By recalling Eq.(18b) and
Eq.(19), the discrete feedforward gain is found as Ld =
[0.0367,−0.0038], which leads to the control law uk.

In the case of regulation of the imaginary part of the
output, the closed-loop state and output evolution profiles

are shown in Fig. 4 and Fig. 5, with simulation of 40
seconds. More specifically, it can be seen that the designed
regulator is able to realize system stabilization, reference
tracking and disturbance rejection, simultaneously. As
shown in Fig. 5, the controlled output is steered to track
the desired reference, and the the tracking error converges
to zero after 20 seconds. This further demonstrates that
the proposed internal model controller can accomplish
output regulation of the complex state GLE system (in
both real and imaginary parts).

(a) Real part

(b) Imaginary part

Fig. 4. State evolution of closed-loop GLE system in the
case of regulation of the imaginary part of the output.
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Fig. 5. Output trajectory of closed-loop GLE system in the
case of regulation of the imaginary part of the output.

5. CONCLUSION

In this work, a discrete-time output regulator is designed
for a linearized Ginzburg-Landau PDE system. In partic-
ular, the linear GLE model is time discretized by applying
the Cayley-Tustin transformation which yields the infinite-
dimensional discrete-time GLE model without spatial ap-
proximation or model order reduction. Based on the geom-
etry theory, the standard finite-dimensional continuous-
time regulator design is extended to the discrete-time
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setting and applied to the discretized GLE system. The
simulation has shown that the proposed design is able to
stabilize the system, track the complex output of interest,
and reject the undesired disturbance signals as well. As
a future step, it will be interesting to design a boundary
observer accounting for output feedback regulator design
and digital implementation in real-world vortex shedding
problems.
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