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Abstract: This paper proposes quaternion based three-dimensional guidance strategies, which
ensure target interception with zero miss distance. Unlike most of the existing guidance
strategies, the guidance command in this paper is derived using coupled engagement dynamics,
which helps to maintain satisfactory performance for the engagements where decoupling is no
longer valid. To avoid the well known possible singularities due to Euler’s representation, a
quaternion based representation of three-dimensional engagement is utilized. This facilitates
the proposed guidance strategy to remain applicable and effective for wider range. In addition,
guidance strategy is also derived to ensure target interception at a desired impact angle, which is
expressed in terms of desired line-of-sight quaternion. Simulation results are shown to evaluate
the efficacy of proposed guidance strategies for various engagement scenarios.
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1. INTRODUCTION

In order to counteract intelligent targets, armed with ad-
vanced interceptor defence systems, interceptor guidance
laws with in-flight constraints might be effective. These
in-flight constraints may include following a pre-defined
trajectory, achieving a pre-defined impact time constraint
or an attitude constraint, depending on mission require-
ments. Imposing constraint on interception angle leads to
an effective and precise interception by maximizing pene-
trability and minimizing co-lateral damage. By approach-
ing the target from a specific direction may also help to
avoid the detection by enemy and a possible counterattack.

Owing to its numerous benefits, vast amount of research
had been carried out to make impact angle constrained
guidance more accurate, reliable, and robust. Kim and
Grider (1973) made one of the initial efforts to design
impact angle constrained sub-optimal guidance for a re-
entry vehicle. This work was further extended by York and
Pastrick (1977) to account for first order autopilot. Few
researchers, such as (Jeong et al., 2004; Kim et al., 1998;
Lee et al., 2013; Ratnoo and Ghose, 2008, 2010), devised
various guidance laws to fulfil impact angle constraints by
making use of different supplementary bias terms with the
conventional proportional navigation guidance (PNG) law.

Modern control techniques used for impact angle con-
strained guidance laws include work of (Song and Shin,
1999) where they proved that the time-optimal control
results in a trajectory satisfying the predetermined impact
angle with low maximum altitude. The works in (Feng
et al., 2014; Ryoo et al., 2003, 2005; Shaferman and Shima,
2008), etc. also discussed optimal control based guidance
laws using variety of performance index functions, which
enable the target interception at predetermined impact an-
gle. In (Ratnoo and Ghose, 2009) a state dependent Riccati
equation (SDRE) method was proposed to solve impact

angle problem against stationary target, by formulating it
as nonlinear regulator problem.

Kumar et al. (2014); Rao and Ghose (2013) proposed
sliding mode control based guidance law using nonlin-
ear kinematics to intercept both maneuvering and non-
maneuvering targets at a desired impact angle. However,
the application of these guidance strategies were limited to
the planar engagements. Later, Kumar and Ghose (2014,
2017) proposed 3D impact angle control guidance law
using both conventional and non-singular SMC methods,
which ensures asymptotic and finite time interception at
desired impact angle. The interceptor’s lateral accelera-
tions in both pitch and yaw directions were used to enforce
sliding mode on appropriately chosen switching surface.
Maity et al. (2014) developed a 3D impact angle guidance
based on generalised model predictive static programming
technique. It is an iterative technique and a guess con-
trol history was required for the implementation of this
guidance. Biswas et al. (2018) derived two guidance laws
based on dynamic inversion (DI) for disturbance free sys-
tem and SMC to provide robustness against uncertainties.
Later in Biswas et al. (2019), another 3D guidance strat-
egy was derived based on unique relation between LOS
and impact angles, using sliding mode control. The 3D
guidance strategies presented above were based on Euler’s
representations, which is known to encounter singularity
during engagement, and this may limit the performance of
proposed strategies.

Plenty of research has been done towards terminal phase
constrained interceptor guidance laws, based on Euler
angle representation. Although, Euler angles are directly
available for computations and their dynamics is also
comparatively easy to comprehend, these dynamics fail
under gimbal-lock situations. To avoid such instances, en-
gagement dynamics may be decoupled and then guidance
strategies can be derived for planar engagements. However,
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it is well known that decoupling a coupled dynamics leads
to a trade off between computational complexity and the
overall effectiveness of the guidance law.

Singularities can be dreadful for the overall system perfor-
mance; and over the years, quaternions have been shown
to be effective, as a rescue in such situations. Quater-
nions are widely used in spacecraft orientation control and
unmanned aerial vehcile motion controls, because they
require less computational power as compared to other
conventional techniques.

In contrast to the existing works, this paper derives
the interceptor-target engagement dynamics in quaternion
form, and the same is used for designing the guidance
strategies. The engagement parameters and their corre-
sponding kinematics is first obtained in the quaternion
form. The collision conditions for the Euler angle represen-
tation do not hold directly for the quaternions. Thus, we
derived analogous necessary and sufficient collision condi-
tion for quaternion dynamics. The guidance strategies are
derived based on dynamic inversion control technique for
achieving interception of stationary and constant velocity
targets. Also, the guidance strategy is extended to cater
for the direction of impact in case of non-maneuvering
targets. This is achieved by defining the interception angle
as a function of LOS quaternion. As per the best of
authors’ knowledge, such guidance strategies using quater-
nion based dynamics are not presented earlier and is worth
investigating here. The performance of these guidance laws
are demonstrated with the numerical simulations, and
shown to be satisfactory.

2. PROBLEM FORMULATION

Consider a 3D interceptor-target engagement geometry as
shown in Fig. 1. The frames represented by axes [XI YI
ZI ], [XM YM ZM ] and [XT YT ZT ] represent inertial frame
of reference, the interceptor body frame and the target
body frame, respectively. The relative distance between
the interceptor and target is denoted by r in LOS frame,
where the LOS frame is defined using azimuth angle ψL
and elevation angle θL, with respect to the inertial frame.
Similarly, the pairs (ψm, θm) and (ψt, θt) provide the
orientation of the interceptor body frame and the target
body frame with respect to inertial frame, respectively.
The origin O of the inertial frame is considered to be
at the launch point of the interceptor. Interceptor and
target velocities in their corresponding body frames are
represented as (Vm, 0, 0)T and (Vt, 0, 0)T , which essentially
implies that the velocity vectors are along x-direction
of their respective frames. The lateral accelerations for
the interceptor and the target, in the yaw and the pitch
directions, are denoted by the pairs (Aym, Azm) and (Ayt,
Azt), respectively. The interceptor and target move with
constant speed throughout the engagement, with the speed
ratio ν = Vt/Vm < 1. In 3D interceptor-target engagement,
the velocity of the kth vehicle in the inertial frame can be
expressed as, for k = {m, t},

VkI = [Vk cos θk cosψk Vk cos θk sinψk Vk sin θk]
T
.

The relative velocity components between interceptor and
target are be obtained as

[Vr Vθ Vψ]
T

=
[
ṙ rθ̇L rψ̇L cosψL

]T
= [T]

I
L [VtI − VmI ] ,

Target

MissileInterceptor

Fig. 1. Interceptor-target engagement geometry

where, [T]
L
I is a transformation matrix relating the vectors

in the inertial frame and the LOS frame. The dynamics
of elevation and azimuth angle for the kth vehicle can be
obtained using the expression,

θ̇k =
Azk
Vk

; ψ̇k =
Ayk

Vk cos θk
; ∀ k = {m, t}.

The objective of this paper is to derive engagement pa-
rameters and the interceptor-target engagement dynamics
in quaternion form, develop the necessary and sufficient
conditions for target interception, and design of guidance
strategies with and without imposing impact angle con-
straints. The guidance strategies should be derived with-
out decoupling the engagement dynamics. This will facili-
tate the proposed guidance strategy to remain applicable
for a large domain.

3. DERIVATION OF QUATERNION DYNAMICS

In this section, interceptor - target engagement parameters
are obtained in quaternion form, followed by the derivation
of quaternion dynamics.

3.1 Engagement Parameters in Quaternion Form

It can be observed from 3D interceptor-target engagement
shown in Fig. 1, the components of LOS vector in the
inertial frame may be obtained by first rotating it along
YI axis by an angle θL, followed by a rotation along ZI
axis with an angle ψL. Let the quaternion [Yr] and [Zr]
represent the rotations of LOS along YI axis with elevation
angle θL and ZI axis with azimuth angle ψL, respectively.
The LOS vector in the inertial frame can be given by

rI = [Zr][Yr]r[Yr]
?[Zr]

? = [ZrYr]r[ZrYr]
? = [QL]r[QL]?

where [QL] = [ZrYr], represents the composite rotation of
LOS vector to transform it from LOS frame to the inertial
frame. Note that, ψL is rotation in positive sense, while
θL is a rotation in negative sense. Thus, the corresponding
quaternions [Zr] and [Yr] can be obtained by,

[Zr] = cos
ψL
2

+ k̂ sin
ψL
2
, [Yr] = cos

θL
2
− ĵ sin

θL
2
. (1)

Taking the quaternion product of [Zr] and [Yr] results into
equivalent quaternion [QL] as
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[QL] = q0r + q1r î− q2r ĵ + q3rk̂

where, the components of quaternions are,

q0r = cos
ψL
2

cos
θL
2
, q1r = sin

ψL
2

sin
θL
2
,

q2r = cos
ψL
2

sin
θL
2
, q3r = sin

ψL
2

cos
θL
2
.

(2)

Similarly, as seen from Fig. 1, the interceptor velocity
vector Vm and the target velocity vector Vt also undergo
a sequential rotation along YI and ZI axes with their
corresponding elevation angles (θm, θt) and azimuth angles
(ψm, ψt) respectively. Thus, in the inertial frame, the
interceptor velocity (VmI) and the target velocity (VtI)
may also be obtained as

VmI = [Qm]Vm[Qm]?, VtI = [Qt]Vt[Qt]
?; (3)

where, the quaternions [Qm] = [ZmYm] and [Qt] = [ZtYt],
are the equivalent quaternions representing composite ro-
tations of the interceptor and the target velocities along
YI and ZI axes, respectively. Based on these engagement
parameters, the derivation of dynamics of interceptor -
target engagement is discussed next.

3.2 Quaternion Interceptor-Target Dynamics

This section derives quaternion based interceptor-target
dynamics. Note that a unit quaternion Q(t) describes the
variation of orientation of some moving object, represented
by its body frame; relative to a fixed frame.

Let ω(t) be the angular velocity of the body frame with
respect to the inertial frame. Then, the derivative of Q(t),
as given in (Jia, 2008), can be represented by,

Q̇ =
1

2
ωQ. (4)

The angular velocity ω of any vector may be derived from
the Euler angle velocities such as

ω = Rz Ry Rx φ̇+Rz Ry θ̇ +Rz ψ̇, (5)

where, Rx, Ry, and Rz represent the Euler rotation ma-
trices along X, Y , and Z axis, respectively. The dynamics
of angular velocity is given by Euler’s equation (Hoffman
et al., 2018), as

Jω̇ = −ω×Jω + u, (6)

where the matrix ω× represents the skew-symmetric ma-
trix, while the terms J and u denote positive definite
inertia matrix and control torque, respectively. Thus, the
quaternion system dynamics can be expressed by,

Q̇ =
1

2
ωQ and Jω̇ = −ω×Jω + u. (7)

Using Eq. (7), we develop the collision condition for a
interceptor-target engagement in the next subsection.

3.3 Collision Conditions for Quaternion Dynamics

For a guaranteed target interception, it is necessary that
the LOS does not rotate in space with time, and the closing
velocity of interceptor-target engagement must be positive
(Vc = −ṙ). When the interceptor and the target satisfy
these conditions, they are considered to be on collision
course and the interception is inevitable. In Euler angle
dynamics, these conditions are given by (Zarchan, 2012),

θ̇L = ψ̇L = 0; ṙ < 0. (8)

For quaternion dynamics, we can borrow positive closing
velocity condition, that is, (Vc = −ṙ) straight from Euler
dynamics. However, in case of the quaternion dynamics,
the orientation of LOS is given by the quaternion [QL].
Thus, the rate of rotation of LOS is controlled by the rate
of change of [QL], as given by Eq. (4). Clearly, achieving

Q̇L = 0 ensures that the LOS orientation [QL] remains
constant in the space. Hence, the necessary and sufficient
condition for interception in the quaternion dynamics can
be expressed mathematically as

[Q̇L] =
1

2
ωL[QL] = 0; ṙ < 0. (9)

The required angular velocity of LOS vector, ωL in Eq. (9)
can be obtained from Eq. (5), and is equal to

ωL =
[
θ̇L sinψL, −θ̇L cosψL, ψ̇L

]T
. (10)

Using this collision condition, the guidance law will now be
derived for the interceptor to achieve a target interception
in the subsequent section.

4. DERIVATION OF GUIDANCE STRATEGY

In this section, the derivation of guidance strategy using
dynamic inversion control technique is presented. It is
important to observe that, to satisfy collision conditions
mentioned in Eq. (9), either [QL] or ωL has to be equal
to zero. However, it is also clear from Eq. (2) that there
are no real values of θL and ψL, which make [QL] = 0.
Hence, to achieve successful interception, ωL needs to be
controlled to zero.

4.1 Target Interception

To achieve target interception, the error in angular velocity
can be defined as e = ωL. Consider a first order error
dynamics given by

ė+K e = 0, (11)

where K ∈ R3×3 is a diagonal positive definite matrix,
with diagonal entries as the time constant of desired error
dynamics for each component. The error and its dynamics
reduce to e = ωL, ė = ω̇L, which on substitution in
Eq.(11) results in

ω̇L +K ωL = 0. (12)

Pre-multiplying both sides of Eq.(12) by inertia matrix J
and using Eq.(6), one may obtain

−ωx
LJωL + u+ J K ωL = 0,

which, in turn, gives the designed control torque as

u = ωx
LJωL − J K ωL, (13)

to ensure ωL → ωLd = 0 asymptotically. Note that when
the desired control objective is achieved, ωL = 0, and thus
the control effort u also becomes zero. Subsequently, the
interceptor with this guidance strategy intercepts station-
ary, moving, as well as maneuvering targets. Although, the
guidance law, given by Eq. (13), ensures target intercep-
tion, it does not guarantee the achievement of interception
from a desired specific direction.

4.2 Target Interception at Desired Impact Angle

As discussed in Kumar and Ghose (2017), impact angle
and LOS angle have one-to-one correspondence, and in
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fact, for stationary target, desired impact angle can be
expressed in terms of desired LOS orientation at the time
of interception, if interceptor is on collision course with
target. Thus, to achieve interception at pre-defined angle,
the LOS angle at the time of interception needs to be
controlled.

Let us assume that [QLd] denotes the quaternion, repre-
senting desired LOS orientation at the time of impact.
To achieve interception from a desired impact direction,
in addition to ensuring collision conditions, the guidance
strategy must also ensure that the following relation holds

[QL] = [QLd]. (14)

The difference between two quaternions, [QL] and [QLd], is
given as [QL][QLd]

?, where [QLd]
? denotes the conjugate

of [QLd]. Hence, post-multiplying Eq. (14) by [QLd]
? on

both sides, we get

[QL][QLd]
? = [QLd][QLd]

? = 1. (15)

In other words, the constraint on guidance design also
needs to account for the relation [QL][QLd]

? − 1 = 0.
To do so, let us define error of the system given by
e = [QL][QLd]

? − 1. Note that, in order to satisfy the

collision conditions given in Eq.(9), Q̇Ld = 0 and Q̈Ld = 0.
Therefore, on differentiating e one may get,

ė = Q̇L[QLd]
?, ë = Q̈L[QLd]

?.

By differentiating the quaternion [QL] twice, we get

Q̈L =
1

2

[
ω̇LQL + ωLQ̇L

]
. (16)

Pre-multiplying both sides of this equation by inertia
matrix J results in,

JQ̈L =
1

2

[
Jω̇LQL + JωLQ̇L

]
. (17)

Substituting the value of Jω̇L from Eq. (6) in Eq. (17)
results into

JQ̈L =
1

2

[
(−ω×

LJωL + u)QL + JωLQ̇L

]
. (18)

Consider the second order error dynamics, given by

ë+Kv ė+Kpe = 0, (19)

where Kp,Kv ∈ R3×3 are diagonal, and positive definite
matrices, representing the damping factor and natural
frequencies of the second order error dynamics, of each
component. Substituting values of e, ė and ë in the error
dynamics, we get

0 = [Q̈L][QLd]
? +Kv[Q̇L][QLd]

? +Kp ([QL][QLd]
? − 1)

[Q̈L] = −Kv[Q̇L]−Kp[QL]−Kp[QLd].

Pre-multiplying both sides of above equation by inertia
matrix J leads to

J [Q̈L] = −JKv[Q̇L]− JKp[QL]− JKp[QLd]. (20)

By substituting Eq. (18) in Eq. (20), the control torque,
u, is given by,

u = ω×
LJωL − J(2Kv + ω)[Q̇L][Q∗

L]

+ 2KpJ([QLd]− [QL])[Q∗
L].

(21)

Equation (21) represents the necessary control torque
required to intercept a target at pre-defined angle. This
is achieved by reducing the error between actual LOS
quaternion [QL] and desired LOS quaternion [QLd] to
zero. In this case, proposed guidance strategy ensures the
alignment of interceptor to collision course from desired
direction.

Remark : This law may also work for moving targets
and achieve interception at pre-specified LOS quaternion
[QLd], however, owing to the target motion, the intercep-
tion angle may not be expressed directly in terms of LOS
angle at the time of impact. In other words, guidance
command, given by Eq. (21), can be used to intercept
moving targets at pre-defined impact angles, provided that
the desired impact angle is given in terms of desired LOS
orientation at the time of impact. For better understand-
ing, a typical interceptor-target engagement scenario is
presented in following section for constant velocity targets.

5. SIMULATIONS

In this section, we evaluate the performance of proposed
guidance laws, derived in previous section, to validate
their efficacy for various engagement geometries. The
simulation parameters and initial conditions used are listed
in Table 1. The inertia matrix J is diag(5.7 × 103, 5.7 ×

Table 1. Simulation parameters.

Symbol Values Symbol Values

M (0, 0, 0) θm 22◦

T (10000, 0, 13000) ψm 15◦

Vm 500m/s θt 0◦

Vt 250m/s ψt 0◦

103, 28.224). Also, the maximum allowable interceptor
lateral acceleration is assumed to be limited to 400 m/s2

in each direction.

5.1 Target Interception

In this subsection, we evaluate the performance of the
guidance law designed for target interception. We first con-
sider a typical engagement scenario with initial conditions
same as in Table 1. The simulation results depicted in
Fig. 2, show the trajectories of interceptor, lateral accel-
eration profiles in both pitch and yaw directions, and the
variations of components of angular velocity with respect
to time. As can be seen from Fig. 2(a), the interceptor
intercepts the target successfully. The lateral acceleration
requirement of the interceptor is higher during the initial
phase of engagement, as shown in Fig. 2(b). But towards
the interception, acceleration demand reduces to zero,
which is desirable feature for any guidance. The reason
behind initial high acceleration demand is due to the re-
quirement of interceptor to align on a collision course, that
is, to make [Q̇L] equal to zero. Once, the LOS quaternion
attains a constant value, the control requirement goes to
zero. Clearly, when there is no change in rotation of LOS,
angular velocity, which is also defined as the error in this
system, goes to zero as evident from Fig. 2(c).

Next we perform simulation for moving target, where the
target is moving in horizontal direction, receding away
from interceptor, with constant velocity Vt. The initial
conditions are the same as in Table 1, and the results are
plotted in Fig. 3. The interceptor is still able to intercept
the target, as shown in Fig. 3(a). As soon as the angular
velocity of LOS reaches to zero as shown in Fig. 3(c),
[QL] attains a constant value, making the acceleration
requirement equal to zero, as presented in 3(b). Other
behaviours are similar to those in the previous case.
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Fig. 2. Engagement scenario of interception of a stationary target.
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Fig. 3. Engagement scenario of interception of a moving target.
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Fig. 4. Engagement scenario of interception of a stationary target at pre-defined impact angle.
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Fig. 5. Engagement scenario of interception of a moving target at pre-defined impact angle.

5.2 Target Interception at Pre-defined Impact Angle

To evaluate the performance of proposed guidance strat-
egy, simulation is performed with a desired impact angle of
θd = −45◦ and ψd = 45◦, leading to a desired quaternion

[QLd] = 0.8531− (0.1464̂i+ 0.3536ĵ + 0.3536k̂)

where î, ĵ, and k̂ are the unit vectors along x, y and z
directions, respectively. The initial conditions and simula-
tion parameters used are the same as those listed in Table
1. As can be seen from Fig. 4(a), the interceptor performs

a significant maneuver to satisfy impact angle constraint,
also reflected from its trajectory, to approach target from
desired direction, which was absent in Fig. 2(a). The
requirement on interceptor’s maneuver is shown in Fig.
4(b). For the purpose of visualization, the orientation of
LOS throughout the engagement is also shown in the form
of Euler angles in Fig. 4(c). Note that, θL and ψL become
constant, once the interceptor orients itself in the desired
direction.
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To test the performance of proposed impact angle guid-
ance, simulation is also performed against a moving target,
with the initial conditions as listed in Table 1, and results
are shown in Fig. 5. The interceptor is required to intercept
the target at a specified impact angle, given in terms of
LOS orientation (θd,ψd), with desired quaternion [QLd].
Fig. 5(a) shows the evolution of trajectories of interceptor
and target, which confirms the successful target intercep-
tion, with interceptor lateral acceleration profiles as shown
in Fig. 5(b). From Fig. 5(c), it is clear that at the time of
impact, the LOS orientation is same as the pre-specified
values of θd and ψd. However, owing to the target motion,
this orientation does not depict the value of actual impact
angles, but it is representative of them.

6. CONCLUSION

Most of the researchers prefer using planar engagements
for developing guidance laws, as occurrence of singularities
is a serious issue in nonlinear engagement kinematics.
However, this reduces overall effectiveness of guidance
laws with in-flight constraints. In this paper, guidance
strategies are derived after obtaining 3D interceptor-target
engagement dynamics in quaternion form, which allows
us to avoid the possible singularities in case of gimbal-
lock situations, and also reduces computational burden
on the system. Based on this newly devised quaternion
dynamics, the guidance laws for unconstrained intercep-
tion and impact angle constrained interception are derived.
These guidance strategies were derived using dynamic
inversion control technique. Both the guidance laws were
shown to perform satisfactorily, with the help of numerical
simulations. Simulations also reveal that the impact angle
constrained guidance law can intercept a moving target
at a pre-defined direction of impact. Future work involves
consideration of multiple in-flight constraints to the ex-
isting guidance law along with investigating the practical
implementability of the proposed dynamics.
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