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Abstract: This paper presents a control redesign approach to improve the performance of
a certain class of dynamical systems. Motivated by recent research on re-engineering cyber-
physical systems, we propose a three-step control retrofit procedure. First, we reverse-engineer
a dynamical system to dig out an optimization problem it actually solves. Second, we apply
an augmented Lagrangian or a hat-x method to solve this optimization problem. Finally, by
comparing the original and new dynamics, we obtain the implementation of the redesigned part
(i.e., the extra dynamics). As a result, the convergence rate/speed or transient behavior of the
given system can be improved while the system structure remains. To show the effectiveness
of the proposed approach and its potential applications, we present two practical examples
including Internet congestion control and distributed proportional-integral (PI) control.

Keywords: Control redesign, reverse-engineering, optimization, primal-dual algorithms,
augmented Lagrangian.

1. INTRODUCTION

Cyber-physical systems (CPSs) integrate, coordinate and
monitor the operations of both the physical process and
the cyber world (Rajkumar et al. (2010)). They have
significant impacts on society, economy, and environment
since they are decisive in supporting fundamental infras-
tructures and smart applications including automotive
systems, transportation systems, smart grids, robotic net-
work systems, etc. However, due to historical reasons,
some CPSs are still relying on old ways of control and
are therefore inefficient and money-/energy-wasted. For
example, aging electricity distribution infrastructures are
becoming less reliable and less efficient (Kim and Ku-
mar (2013)). Recently, due to the technological advances
in sensing, communication and computation, there are
growing interests in establishing more advanced control to
improve the efficiency, performance as well as robustness
to uncertainties of CPSs (Lee (2008)).

Indeed, there are societal and industrial needs for better
control of CPSs. For example, with the increasing penetra-
tion of renewable energy in power grids, the conventional
control architecture may no longer be suitable for the
future: it is essential to design better control to quickly
attenuate the large fluctuation caused by those energy
sources. Furthermore, the automatic vehicles and mobile
robots, being operated in an uncertain environment with-
out complete information, require better control for more
safety and reliability. In these circumstances, a faster con-
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vergence rate or better transient behavior of the controlled
system is a necessity to achieve a faster response time or
improved reliability. Motivated by these practical needs,
in this paper, we present a control redesign approach to
systematically improve the performance of a certain class
of dynamical CPSs.

The control redesign problem has been studied under vari-
ous methods for several decades. Usually, improving those
existing systems’ performance can be achieved from two
perspectives. One way is rebuilding a new controller for the
whole system. For example, Deveci and Kasnakoğlu (2016)
showed that by incorporating numerical modeling and sim-
ulation to design the controller for a photo-voltaic system,
system performance and robustness could be improved.
This method can achieve a better result but with the
expense of complexity and high investment. The other way
is to redesign the existing controller by adding extra dy-
namics while maintaining the structure of the existing con-
troller. This can be simply realized, for example, by using
additional information produced by newly added sensors,
without affecting the structure of the controlled system.
For instance, Zhang and Papachristodoulou (2014) pro-
posed a modification approach based on a penalty method
for improving the performance and robustness to delays
of Internet congestion control protocols, and NešIć and
Grüne (2005) redesigned controllers by adding extra terms
obtained based on continuous-time systems and Lyapunov
functions to enhance stability and robustness.

On the other hand, the idea of redesign using a reverse- and
forward-engineering framework for optimality has been
introduced for over twienty years (Chiang et al. (2007)).
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From existing protocols designed based on engineering
instincts, utility functions are implicitly determined and
can be extracted via reverse-engineering. Then based on
the insights obtained from reverse-engineering, forward-
engineering systematically improves the protocals (Chiang
et al. (2007); Low and Lapsley (1999)). Recently, Li et al.
(2015) connected automation generation control (AGC)
and economic dispatch by reverse-engineering AGC to
improve power system economical efficiency, and Zhang
et al. (2015, 2018) developed a reverse- and forward-
engineering framework to redesign control for improved
efficiency, achieving optimal steady-state performance in
network systems. Here we use this framework as a tool to
study CPSs from an optimization perspective.

Nevertheless, little attention has been paid to improve
system performance in terms of convergence rate/speed
and transient behaviors. This paper utilizes the reverse-
and forward-engineering framework, together with several
techniques of changing condition numbers, to improve the
performance of one certain class of dynamical CPSs. These
systems include but not limited to existing protocols and
controlled systems.

The main contribution of this paper is fourfold. Firstly, we
propose a control reconfiguration approach to systemati-
cally improve the performance of a certain class of systems
while maintaining the original control structure, i.e., if the
original control structure is centralized/distributed, the
redesign control structure will be centralized/distributed
as well. This is realized by obtaining extra dynamics
and adding it to the original control based on reverse-
engineering and several acceleration techniques. Further-
more, we prove the linear convergence rate of the primal-
dual gradient descent algorithm in discrete-time and pro-
vide bounds for step sizes. Thirdly, we investigate the
change of condition numbers under augmented Lagrangian
and hat-x methods. This leads to the control reconfigura-
tion. Finally, we demonstrate two practical applications of
our theoretical results to existing controlled systems.

The rest of this paper is organized as follows. Section 2
introduces the reverse-engineering technique and presents
our target systems, together with two motivating exam-
ples. In Section 3, we prove the linear convergence rate
of primal-dual gradient algorithm and we investigate the
change of condition number using the penalty method
and hat-x method. Section 4 presents the reconfiguration
steps and the explicit formula of extra dynamics. Section 5
provides simulation results of the motivating applications
to illustrate the effectiveness of the redesign framework,
and Section 6 concludes the paper.

Notations: Throughout this paper, we use upper case
roman letters to denote matrices, lower case roman letters
to denote column vectors and lower case Greek letters to
denote scalars. Let diag{?} denote the diagonal matrix
with corresponding entries ? on the main diagonal. Let
A � 0 (A � 0) denote that a square matrix is positive
semi-definite (positive definite). For two symmetric matri-
ces A1 and A2, notation A1 � A2 implies that A2 −A1 is
positive semi-definite. Let 〈·, ·〉 represent Euclidean inner
product, and let ‖ · ‖ denote Euclidean norm for vectors
and spectrum norm for matrices. Denote by Rn the n-
dimensional Euclidean space and by A ∈ Rm×n an m× n
real matrix. Let xT , ∇f and ∇2f(x) denote the transpose
of x, the gradient (as a column vector) and the Hessian
matrix of f . Let σmax(B) and σmin(B) denote the maxi-
mum and minimum singular values of B respectively. Let
λ(A) denote the eigenvalues of a square matrix A. Denote
by 0 a matrix of zeros with its dimension determined by
the context and by In the identity matrix with size n× n.

2. PRELIMINARIES

In this section, we introduce one special class of systems
that can be reverse-engineered as primal-dual gradient
algorithms. In particular, we show what kinds of conditions
are required to determine whether or not a system belongs
to this class (Zhang et al. (2018)), mainly for the discrete-
time linear cases. Also, we present two practical examples
in this class as our motivating applications.

2.1 Target Systems: Class-S

Reverse-engineering aims to seek a proper optimization
problem inherently from given dynamics. Different from
the previous optimization-to-algorithm framework, it gen-
erates a reverse flow, i.e., algorithm-to-optimization.

Consider a linear time-invariant (LTI) system

xk+1 = Axk + Cwk (1)

where xk ∈ Rn is the state vector, A ∈ Rn×n, C ∈ Rn×p
and wk ∈ Rp is the exogenous input, e.g., disturbances.

In general, any given discrete-time LTI closed-loop system
with either static feedback or dynamic feedback can be
rearranged to fit (1). This paper focuses on the class of
systems that can be reverse-engineered as primal-dual gra-
dient algorithms to solve saddle point problems, denoted
as Class-S 1 . Another special class, Class-O 2 (as defined
in Zhang et al. (2018)) that can be reverse-engineered as
gradient descent algorithms to solve unconstrained opti-
mization problems, is a subclass of Class-S. Therefore, the
class considered here is more general.

Class-S: System (1) belongs to Class-S if there exists
a function f(x(1), x(2)) : Rn → R and positive definite
matrices Px(1) , Px(2) such that ∇2

x(1)f � 0, ∇2
x(2)f � 0, the

saddle point set {∇f(x) = 0} is nonempty, and (1) is a
primal-dual gradient algorithm to solve maxx(1) minx(2) f ,
i.e., xk+1 = xk + diag{Px(1) ,−Px(2)}∇f |x=xk

. Here state x
is partitioned into x(1) and x(2).

In the above definition, the partition may not be unique.
Accordingly, we rearrange system (1) as follows[

xk+1
(1)

xk+1
(2)

]
︸ ︷︷ ︸

xk+1

=
[
A11 A12
A21 A22

]
︸ ︷︷ ︸

A

xk + Cw (2)

where x
(1)
k ∈ Rn1 , x

(2)
k ∈ Rn2 and n1 + n2 = n. For linear

systems in Class-S, the associated function f must be a
convex quadratic function, i.e.,

f =
1

2
xT
[
Q11 Q12

QT12 Q22

]
︸ ︷︷ ︸

Q

x+ xTR(Cw) + S(w) (3)

where Q11 ∈ Rn1×n1 is symmetric and negative semi-
definite, Q22 ∈ Rn2×n2 is symmetric and positive semi-
definite (i.e., f is concave in x(1) and convex in x(2)), and
Q12 ∈ Rn1×n2 . According to the definition of Class-S, the
following theorem is obtained.
Theorem 1. Let w be constant in (2) and the set {(A−
I)x+Cw = 0} be nonempty. System (2) belongs to Class-
S if and only if the following conditions are satisfied: (i)
system (2) is marginally or asymptotically stable; (ii) the
eigenvalues of A11−In1

and A22−In2
are non-positive real;

1 Notation S stands for saddle-point algorithms.
2 Notation O stands for optimization algorithms.
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(iii) A11−In1
and A22−In2

are diagonalizable with the di-
agonal canonical forms given by A11−In1

= J1Λ1J
−1
1 , J1 ∈

Rn1×n1 , A22−In2
= J2Λ2J

−1
2 , J2 ∈ Rn2×n2 , and there exist

V1 and V2 such that

(J−1
1 )TV1J

−1
1 A12 +AT21(J−1

2 )TV2J
−1
2 = 0

V1Λ1 = Λ1V1, V2Λ2 = Λ2V2

V1 ≺ 0, V2 ≺ 0. (4)

Also, there could be multiple optimization problems corre-
sponding to the same system (1). The derivation procedure
of those problems can be found in Zhang et al. (2018).

2.2 Internet Congestion Control

In the following, we propose Internet congestion control
as a motivating example that belongs to Class-S. Internet
congestion control regulates the data transfer and efficient
bandwidth sharing between sources and links. In the lit-
erature, numerous Internet congestion control algorithms
have been proposed. Here we consider a standard primal-
dual congestion control algorithm given by Srikant (2004)

xi(k + 1) = xi(k) + εkxi
(U ′i(xi(k))− qi(k)) (5a)

qi(k) =
M∑
l=1

Rlipl(k) (5b)

pl(k + 1) = pl(k) + εkpl(yl(k)− cl)+
pl(k) (5c)

yl(k) =

N∑
i=1

Rlixi(k) (5d)

where ε is the step size, Ui(xi) is the utility function of
user i, which is assumed to be a continuously differentiable,
monotonically increasing, strictly concave function of the
transmission rate xi and (yl(k)−cl)+

pl
= max{yl(k)−cl, 0}

if pl = 0; (yl(k)− cl)+
pl

= yl(k)− cl if pl > 0. R is a routing
matrix describing the interconnection, i.e.,

Rli =
{

1 if user i uses link l,
0 otherwise.

Also, kxi
> 0 is the rate gain, pl > 0 is the link price,

kpl > 0, N is the number of sources and M is the number
of links. The above dynamics can be rearranged in the
vector form as

x(k + 1) = x(k) + εdiag{kxi}
(
U ′(x(k))−RT p(k)

)
(6a)

p(k + 1) = p(k) + εdiag{kpl} (Rx(k)− c)+
p(k) (6b)

where x(k), U ′(x(k)) ∈ RN , p(k), c ∈ RM are the corre-
sponding vector forms of xi(k), U ′i(xi(k)), pl(k), cl.

Suppose U(x) is quadratic, i.e., U(x) = − 1
2x

TQ1x+Q2x+
s where Q1 is a diagonal, positive definite constant matrix,
Q2 is a row vector with positive constant elements and s
is a constant vector, then (6) becomes[

p(k + 1)
x(k + 1)

]
︸ ︷︷ ︸

z(k+1)

=

[
IM εdiag{vlkpl}R

−εdiag{kxi
}RT IN − εdiag{kxi

}Q1

]
︸ ︷︷ ︸

A

(7)

×
[
p(k)
x(k)

]
︸ ︷︷ ︸
z(k)

+
[
d1
d2

]
︸ ︷︷ ︸
Cw

where vl = 1 if pl(k) > 0 or pl(k) = 0, yl(k) > cl, otherwise
vl = 0, and d1, d2 denote the remaining constant terms.
Compared with (2), it is straightforward: A11−In1 is 0 and

A22 − In2
is −εdiag{kxi

}Q1. They satisfy the conditions
listed in Theorem 1 and thus, the above dynamics can be
reverse-engineered as a primal-dual algorithm to solve

max
p∈RM ,pl≥0

min
x∈RN

f = −U(x) + pT (Rx− c). (8)

In general, the reverse-engineering from (6) to the above
problem always works if U(x) is concave. It is of interest to
redesign the primal-dual congestion control algorithm (6)
for a faster convergence speed and better transient behav-
ior to improve the performance of data transfer.

2.3 Distributed PI Control for Single Integrator Dynamics

In the following, we propose distributed PI control for
single integrators as a motivating example that belongs to
Class-S. Consider n agents with single integrator dynamics

ẏi = di + ui
where di is a constant disturbance and ui is the control
input given by

ui =−
∑
j∈Ni

ρ2(yi − yj) + ρ1

t∫
0

(
yi (τ)− yj (τ)

)
dτ


− δ (yi − yi(0)) (9)

where ρ1, ρ2, δ are positive constant parameters, yi(0) is
the initial condition and Ni is the set of neighbors of agent
i. This controller drives agents to reach consensus under
static disturbances. According to Theorem 6 in Andreas-
son et al. (2014), this controller maintains stability for any
constant disturbance di and initial conditions.

Introduce integral action żi = yi − yn and rearrange the
dynamics after discretizing in the vector form as[

z(k + 1)
y(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=

[
In−1 εD
−ερ1L̃ In − ερ2L− εδIn

]
︸ ︷︷ ︸

A

[
z(k)
y(k)

]
︸ ︷︷ ︸
x(k)

(10)

+

[
0

ε
(
d+ δy(0)

) ]︸ ︷︷ ︸
Cw

where z(k) ∈ Rn−1, y(k), d ∈ Rn, x(k) ∈ R2n−1, ε is the
step size and D = [In−1 − 1] (1 is a column vector of
ones). L ∈ Rn×n is the Laplacian of the connected agent

network and L̃ ∈ Rn×(n−1) is obtained after removing the
nth column of L. Compared with (2), it is straightforward
to notice that A11 − In1 is 0 and A22 − In2 is −ερ2L −
εδIn. They satify the conditions listed in Theorem 1 and
therefore, the above dynamics can be reverse-engineered
as a primal-dual algorithm to solve

max
z∈Rn−1

min
y∈Rn

f =
1

2
xT
[

0 ρ1L̃
T

ρ1L̃ ρ2L+ δIn

]
︸ ︷︷ ︸

Q

x− xT
[

0
d+ δy(0)

]

=
ρ2

2
yTLy + ρ1z

T L̃T y +
δ

2
yT y − yT d− yT δy(0).

(11)

It is of interest to redesign the distributed PI controller (9)
to improve system performance.

3. SOLUTION ALGORITHMS

For CPSs (1) in Class-S, they can be reverse-engineered
as primal-dual gradient algorithms to solve saddle point
problems. Then it is natural to apply faster or slower
algorithms to solve this problem, which can result in a
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redesigned system formula with improved performance.
In this section, we introduce the standard primal-dual
gradient algorithm and prove its linear convergence rate,
which is related to the condition number. Then methods
that change the condition number including augmented
Lagrangian and hat-x methods are introduced. By combin-
ing these methods with the reverse-engineering technique,
a well-structured redesign approach naturally appears.

Consider a convex-concave saddle point problem given by

max
λ∈Rm

min
x∈Rn

L(x, λ) = f(x) + λT (Bx− b) (12)

where x ∈ Rn, λ ∈ Rm is the Lagrangian multiplier vector
(dual variable vector), B ∈ Rm×n and b ∈ Rm.
Assumption 1. The objective function f ∈ Sµ,L, i.e.,
for any x, y ∈ Rn,

µ ‖x− y‖ ≤ ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ (13)

µ

2
‖y − x‖2 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
‖y − x‖2 .

(14)

Assumption 2. Matrix B is full row rank.
Remark 1. Parameters L and µ can be obtained by:

µ ≤ ‖∇f(x)−∇f(y)‖
‖x− y‖

≤ L. (15)

If the objective is twice differentiable, ∇2f is bounded by

µIn � ∇2f(x) � LIn. (16)

The corresponding primal problem of (12) is an equality
constrained convex optimization problem given by

min
x∈Rn

f (x) s.t. Bx = b. (17)

This is a very important type of optimization problems
due to the wide applications in engineering and control
systems. For problem in this form, A11 = In1 in (2), which
is the target case considered in this paper. Equation (12)
can be further expressed as

min
λ∈Rm

f∗(−BTλ) + λT b (18)

where f∗ denotes the conjugate of f and is defined as
f∗(y) = sup

x∈Rn

{〈x, y〉 − f(x)} for all y ∈ Rn.

3.1 Primal-Dual Gradient Descent

Our target systems (1), i.e., belonging to Class-S with
A11 = In1, can be reverse-engineered as a primal-dual
gradient descent (PDGD) algorithm to solve problem (12).

Algorithm 1 First-order primal-dual gradient method

Setting: Choose appropriate positive step sizes ε1, ε2, and
let x0 and λ0 be arbitrary initial conditions.

xk+1 = xk − ε1(∇f(xk) +BTλk) (19a)

λk+1 = λk + ε2(Bxk − b) (19b)

Let (x∗, λ∗) denote the saddle point of L and it satisfies
the optimality conditions

∇xL = ∇f(x∗) +BTλ∗ = 0 (20a)

∇λL = Bx∗ − b = 0. (20b)

Since the primal problem is strongly convex and the con-
straint is affine, strong duality holds. Therefore, x∗ is
unique and is an optimal solution of the primal prob-
lem (17). When Assumption 2 holds, λ∗ is unique.

Lemma 1. Assume f̃(x) = f(x) + xTBTλk and x̃∗ =

arg min
x∈Rn

f̃(x), then x̃∗ = ∇f∗(−BTλk) and as k →∞, x̃∗

tends to x∗.

Proof. For fixed λk, the update rule of xk (19a): xk+1 =
xk − ε1(∇f(xk) + BTλk) is a gradient descent step

for unconstrained problem min
x∈Rn

f̃(x). Function f̃(x) has

the same function parameters as f(x), i.e., f̃(x) is also
µ-strongly convex and has Lipschitz continuous gradi-
ent L. According to the optimality condition, we have
∇f̃(x̃∗) = ∇f(x̃∗) + BTλk = 0. Since the gradient
∇f∗ is the inverse of ∇f (Rockafellar (1970)), we have
x̃∗ = ∇f−1(−BTλk) = ∇f∗(−BTλk). Similarly, accord-
ing to (20a), we have x∗ = ∇f∗(−BTλ∗). Since the se-
quence {(xk, λk)}k≥0 generated by Algorithm 1 converges
to (x∗, λ∗) (Bertsekas (1997)), x̃∗ tends to x∗.

Theorem 2. Suppose Assumptions 1 and 2 hold and
step sizes ε1, ε2 satisfy 0 < ε1 ≤ 2

L+µ , 0 < ε2 ≤
2

σ2
min

(B)/L+σ2
max(B)/µ

and c < 1, then Algorithm 1 con-

verges to the unique saddle point (x∗, λ∗) exponentially.
Let ak =

∥∥xk −∇f∗(−BTλk)
∥∥, bk = ‖λk − λ∗‖ and define

a potential function Vk = γak+bk, then for some constants
c, γ that depend on ε1, ε2, we have

Vk+1 ≤ cVk (21)

where γ > 0 and c = max{c1, c2} < 1 with c1 = 1− µε1 +
ε2σ

2
max(B)
µ + ε2σmax(B)

γ and c2 = 1− ε2σ
2
min(B)
L +

ε2γσ
3
max(B)
µ2 .

Proof. See the Appendix in Shu et al. (2020).

Note that the potential function Vk decreases at a ge-
ometric rate and the error of ‖xk − x∗‖ and ‖λk − λ∗‖
are bounded by Vk: ‖λk − λ∗‖ ≤ Vk and ‖xk − x∗‖ ≤∥∥xk −∇f∗(−BTλk)

∥∥ +
∥∥∇f∗(−BTλk)− x∗

∥∥ ≤ ak +
σmax(B)

µ bk ≤ max
{

1
γ ,

σmax(B)
µ

}
Vk. Therefore, as Vk ap-

proaches zero, (xk, λk) approaches the saddle point (x∗, λ∗).
Corollary 1. When the step sizes ε1 = 2

L+µ and ε2 =(
σ2
max(B)
µ + σmax(B)

γ +
σ2
min(B)
L − γσ3

max(B)
µ2

)−1
2µ
L+µ , the op-

timal rate is achieved.

Proof. Since the geometric factor is determined by c, the
convergence rate is optimal when c is minimized. For a
specific problem, parameters including µ,L, γ, σmax(B),
σmin(B) are fixed and we are able to adjust step sizes
only. It is straightforward to notice that c1 = 1 − µε1 +
ε2σ

2
max(B)
µ + ε2σmax(B)

γ is monotonically decreasing in ε1 and

increasing in ε2 while c2 = 1 − ε2σ
2
min(B)
L +

ε2γσ
3
max(B)
µ2

is monotonically decreasing in ε2 since γ <
µ2σ2

min(B)
Lσ3

max(B) .

Therefore, c is minimized when ε1 takes its upper limit
2

L+µ and c1 = c2, from which we obtain the value of ε2.

Define condition number κ = L
µ . Problems with small κ are

called good-conditioned (Nesterov (2018)). Qualitatively
speaking, smaller κ leads to a faster convergence rate in
Algorithm 1, since c1 and c2 decrease when µ increases and
L decreases. By changing κ of objectives, we can change
the convergence rate when applying Algorithm 1.
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3.2 Augmented Lagrangian

Adding the square of equality constrains as penalty terms
can change the condition number of the original problem
while the optimal solution stays unchanged. This method
is known as the Augmented Lagrangian (AL) method
or method of multipliers. The corresponding augmented
Lagrangian function for problem (17) is

La = f(x) + λT (Bx− b) +
α

2
‖Bx− b‖2 (22)

where α is a scalar. Equation (22) is the Lagrangian for

min
x∈Rn

f(x) +
α

2
‖Bx− b‖2 s.t. Bx = b (23)

which has the same minimum and optimal solution as the
original problem (17) (Bertsekas (1997)).

Let h(x) = f(x) + α
2 ‖Bx− b‖

2
and H = ∇2h(x), then

H = ∇2f(x) + αBTB and λmin(H)In � ∇2h(x) �
λmax(H)In, and its condition number, denoted as κa, is
λmax(H)
λmin(H) . Denote by κ0 the condition number of the stan-

dard primal-dual and κ0 = L/µ. For a specific problem, we
are able to obtain the numerical form of matrix H. Under
this circumstance, we can calculate κa and κ0 precisely.
If κa < κ0, AL is able to improve the convergence rate;
otherwise, α should be set to zero to avoid the influence
of penalty terms. Note that matrix B has a significant
influence on the effectiveness of this method.

Another benefit of using augmented Lagrangian method is
the convexification when f is not strongly convex in Rn.
Proposition 1. Assume that ∇2f(x) is positive definite
on the nullspace of BTB, i.e., yT∇2f(x)y > 0 for all y 6= 0
with yTBTBy = 0. Then there exists a scalar ᾱ such that
for α > ᾱ, we have (See Theorem 4.2 in Anstreicher et al.
(2000) for the proof)

∇2f(x) + αBTB � 0. (24)

Therefore, according to Proposition 1, we can achieve
convexification via augmented Lagrangian.

3.3 Hat-x

Another way is to introduce a free variable x̂ ∈ Rn to
prevent the dramatic change of x. This leads to

min
x,x̂∈Rn

f(x) +
α

2
‖x− x̂‖2

s.t. Bx = b (25)

where α is a scalar. This problem is equivalent to

min
z∈R2n

h(z) s.t. B̄z = b

where z =
[
x
x̂

]
, h(z) = f(x) + α

2 z
T
[
In −In
−In In

]
z, B̄ =

[B 0 ] ∈ Rm×2n. Suppose Assumption 1 holds, then B̄ is
also full row rank and its maximal and minimal singular
values of B̄ are the same as B. The Lagrangian is

Lh = f(x) + λT (Bx− b) +
α

2
‖x− x̂‖2 . (26)

Applying an optimality condition, we have

∇xLh = ∇f(x∗) +BTλ∗ + α(x∗ − x̂∗) = 0 (27a)

∇x̂Lh = α(x̂∗ − x∗) = 0 (27b)

∇λLh = Bx∗ − b = 0. (27c)

Then x̂∗ = x∗ and (27) is equivalent to (20). Therefore, the
value of x∗, λ∗ in the optimal solution (x∗, x̂∗, λ∗) in (25)

is the same as that in (17). Denote the condition number

as κh. Let H = ∇2h(z), then κh = λmax(H)
λmin(H) .

Lemma 2. Assume A,B ∈ Rn×n, if A � B, then
λmax(A) ≤ λmax(B) and λmin(A) ≤ λmin(B) hold.

Proof. For any x ∈ Rn, we have xTAx ≤ xTBx. As-
sume x∗ = arg max

‖x‖=1

xTAx. Then λmax(A) = x∗TAx∗ ≤

x∗TBx∗ ≤ max
‖x‖=1

xTBx = λmax(B). On the other hand,

assume x̄ = arg min
‖x‖=1

xTBx. Then λmin(B) = x̄TBx̄ ≥

x̄TAx̄ ≥ min
‖x‖=1

xTAx = λmin(A).

Proposition 2. Assume Assumption 1 holds, then
2α+µ+

√
µ2+4α2

2α+L−
√
L2+4α2

≤ κh ≤ 2α+L+
√
L2+4α2

2α+µ−
√
µ2+4α2

.

Proof. Since f ∈ Sµ,L, we have µIn � ∇2f(x) � LIn

and the Hessian of h(z) is H =

[
∇2f(x) + αIn −αIn
−αIn αIn

]
.

Then H � H � H, where H =

[
(µ+ α)In −αIn
−αIn αIn

]
and

H =

[
(L+ α)In −αIn
−αIn αIn

]
. Their eigenvalues are λ(H) =

α + µ
2 ±

1
2

√
µ2 + 4α2 and λ(H) = α + L

2 ±
1
2

√
L2 + 4α2.

By applying Lemma 2, we have λmin(H) ≤ λmin(H) ≤
λmin(H) and λmax(H) ≤ λmax(H) ≤ λmax(H). According
to the definition of κh, we obtain the range of κh.

Next we compare κh with κ0. For the lower bound of κh,

let Z =
2α+µ+

√
µ2+4α2

2α+L−
√
L2+4α2

− κ0, x = µ
L and y = α

L with

0 < x ≤ 1 and y > 0, then

Z =
2y + x+

√
x2 + 4y2

2y + 1−
√

1 + 4y2
− 1

x
.

When x tends to 0, Z < 0; otherwise, Z > 0. For the
higher bound of κh, we have

2α+ L+
√
L2 + 4α2

2α+ µ−
√
µ2 + 4α2

− L

µ

=
(2α+ L+

√
L2 + 4α2)(2α+ µ+

√
µ2 + 4α2)− 4αL

4αµ

=
1

4αµ

[
(2α+

√
L2 + 4α2)(2α+ µ+

√
µ2 + 4α2)

+ L(µ+
√
µ2 + 4α2 − 2α)

]
.

Since µ +
√
µ2 + 4α2 > 2α, 2α+L+

√
L2+4α2

2α+µ−
√
µ2+4α2

> L
µ . This

implies that κh can be bigger than κ0. In fact, hat-x
method increases the dimension of the original problems
and works like a low-pass filter. This method slows down
system dynamics but smooths the trajectories.

4. REDESIGN METHODOLOGY

In this section, we propose the redesign approach and
derive the explicit form of the extra dynamics when
applying augmented Lagrangian and hat-x methods. In
particular, we focus on linear dynamical systems in Class-
S with A11 = In1, as many existing systems fall into that
category. For convenience, we only consider discrete-time
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cases here, and continuous-time cases will be discussed in
a future paper.

4.1 Reconfiguration Steps

The reconfiguration steps are as follows:

(1) Reverse-engineering: For a given system (1) with
A11 = In1, apply Theorem 1 to reverse-engineer it
as a primal-dual gradient algorithm (19) for solving
certain convex optimization problem (12) (i.e., system
dynamics (1) can be rewritten as the form (19)).

(2) Acceleration: Apply augmented Lagrangian or hat-
x method to solve the problem obtained via reverse-
engineering, which results in a redesigned system.

(3) Implementation: Rearrange the redesigned system
and compare it with the original system (19) to obtain
the implementation of the extra dynamics.

4.2 Extra Dynamics Derivation

We derive the explicit form of extra dynamics in step (3).
For augmented Lagrangian, it is straightforward to iden-
tify an extra part compared with the original dynamics:

xk+1 = xk − ε1

(
∇f(xk) +BTλk

)
−ε1αB

T (Bxk − b)︸ ︷︷ ︸
∆uk

(28)

where ∆uk = −ε1αB
T (Bxk − b). Similarly, for hat-x

method, the iteration of primal variables are

xk+1 = xk − ε1

(
∇f(xk) +ATλk

)
−ε1α(xk − x̂k)︸ ︷︷ ︸

∆uk

(29a)

x̂k+1 = x̂k + ε1α(xk − x̂k) (29b)

where ∆uk = −ε1α(xk − x̂k). Note that in both methods,
the extra part is only added to primal variables.

5. EXAMPLE REVISITED

In this section, we revisit two practical examples from
Section 2.2 and 2.3 in order to show the effectiveness of
the proposed retrofit framework.

5.1 Internet Congestion Control

Problem (8) obtained via reverse-engineering is equal to

min
x∈RN

f = −U(x) s.t. Rx ≤ c. (30)

When U(x) is quadratic as expressed in Section 2.2,
∇2f = Q1 � 0, f ∈ SL,u. Usually, the optimal solution
is obtained when constrains are active, i.e., Rx = c.
Following the redesign procedure, applying augmented
Lagrangian and hat-x methods, we obtain the same form
of redesigned dynamics but with different ∆u(k) given by

x(k + 1) = x(k) + ε1diag{kxi
}
(
U ′(x(k))−RT p(k)

)
+ ∆u(k)

p(k + 1) = p(k) + ε2diag{kpl} (Rx(k)− c)+
p(k) .

For augmented Lagrangian method-based redesign,

∆u(k) = −ε1αR
T (Rx(k)− c)

while for hat-x-based redesign,

∆u(k) = −ε1α(x(k)− x̂(k))

where x̂(k + 1) = x̂(k) + ε1α(x(k) − x̂(k)). With the
extra dynamics added to the primal variable, primal-
dual congestion control algorithm can achieve a faster
convergence speed and better transient behavior.

Fig. 1. A 2-link network shared by 3 users.
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Fig. 2. Simulation results of Internet congestion control
algorithms (“OD” stands for original dynamics; “AL”
and “HAT” stand for dynamics via AL and hat-x).

Consider a simple 2-link network shared by 3 users as
shown in Fig. 1. Initially, the capacities of links A and
B are 2, 4 respectively and they change to 4, 2 after some
time. Let kxi = kpl = 1 and utility function Ui(xi) =
log xi. The simulation results of the transmission rates for
the three users are shown in Fig. 2. Both the original and
the redesigned dynamics (AL and HAT) converge to their
optimal values while the redesigned dynamics are faster.

5.2 Distributed PI Control for Single Integrator Dynamics

Problem (11) obtained via reverse-engineering is equal to

min
y∈Rn

f =
ρ2

2
yTLy +

δ

2
yT y − yT d− δyT y(0) (31)

s.t. ρ1L̃
T y = 0.

Since ∇2f = ρ2L + δIn � 0, f ∈ SL,u. Following the
redesign procedure, after applying augmented Lagrangian
and hat-x method, we obtain the same form of redesigned
dynamics but with different ∆u(k) given by

y(k + 1) =y(k)− ε1

(
ρ2Ly(k) + δy(k)− d− δy(0)

+ ρ1L̃z(k)
)

+ ∆u(k)

z(k + 1) =z(k) + ε2Dy(k).

For augmented Lagrangian method-based redesign,

∆u(k) = −ε1αL̃L̃
T y(k)

while for hat-x-based redesign

∆u(k) = −ε1α
(
y(k)− ŷ(k)

)
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Fig. 3. A regular network of 6 agents.
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Fig. 4. Simulation results of distributed PI control (“OD”
stands for original dynamics; “AL” and “HAT” stand
for redesigned dynamics via AL and hat-x).

where ŷ(k+ 1) = ŷ(k) + ε1α(y(k)− ŷ(k)
)
. With the extra

dynamics added to the primal variable, the distributed PI
controller could reach consensus faster.

Consider a network of 6 agents with its topology as shown
Fig. 3. Let the constant disturbance d = [0, 2, 0, 0, 0, 0]T ,
the initial condition x(0) = [5,−6, 8, 2,−4, 0]T , the in-
tegral gain ρ1 = 10, the static gain ρ2 = 0.5, δ = 1.
Fig. 4 shows the simulation results of both the original
dynamics and redesigned dynamics. They all converge to
the optimal values while redesigned dynamics is faster via
AL and smoother via hat-x.

6. CONCLUSION AND FUTURE WORK

This paper has proposed a control redesign approach to
improve the performance of one certain class of dynam-
ical systems. This approach is to firstly reverse-engineer
a given dynamical system as a primal-dual method to
solve a certain convex optimization problem. Then, by
utilizing the augmented Lagrangian or hat-x method, the
extra control term is obtained and added to the original
control structure. Under this retrofit procedure, system
performance could be improved, as demonstrated by both
theoretical results and practical applications.
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NešIć, D. and Grüne, L. (2005). Lyapunov-based
continuous-time nonlinear controller redesign for
sampled-data implementation. Automatica, 41(7),
1143–1156.

Nesterov, Y. (2018). Lectures on convex optimization,
volume 137. Springer.

Shu, H., Zhang, X., Li, N., and Papachristodoulou, A.
(2020). Control Reconfiguration of Dynamical Systems
for Improved Performance via Reverse-engineering and
Forward-engineering. arXiv e-prints, arXiv:2003.09279.

Srikant, R. (2004). The Mathematics of Internet Conges-
tion Control. Springer Science & Business Media.

Rajkumar, R., Lee, I., Sha, L., and Stankovic, J. (2010).
Cyber-physical systems: the next computing revolution.
In Design Automation Conference, 731–736. IEEE.

Rockafellar, R.T. (1970). Convex analysis, volume 28.
Princeton university press.

Zhang, X. and Papachristodoulou, A. (2014). Improv-
ing the performance of network congestion control al-
gorithms. IEEE Transactions on Automatic Control,
60(2), 522–527.

Zhang, X., Papachristodoulou, A., and Li, N. (2015).
Distributed optimal steady-state control using reverse-
and forward-engineering. In 2015 54th IEEE Conference
on Decision and Control (CDC), 5257–5264. IEEE.

Zhang, X., Papachristodoulou, A., and Li, N. (2018).
Distributed control for reaching optimal steady state
in network systems: An optimization approach. IEEE
Transactions on Automatic Control, 63(3), 864–871.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4768


