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Abstract: In this paper, we propose a hierarchical control strategy for a line of electric buses
with the double objective of minimizing energy consumption and providing regular service to the
passengers. The state-space model for the buses is formulated in space rather than in time, which
alleviates the need for integer decision variables to capture their behavior at bus stops. This
enables us to first assemble a fully-centralized multi-objective line problem in the continuous
nonlinear optimization framework. It is then reassembled into a hierarchical structure with
two levels of control in order to improve on scalability and reliability. This new supervisory
structure consists of a centralized line level controller which handles the time headway regularity
of the buses, and of decentralized bus level controllers which simultaneously manage the energy
consumption of each individual bus. Our method demonstrates good battery energy savings and
regularity performances when compared to a classical holding strategy.
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1. INTRODUCTION

Bus networks in general are known to be very vulnera-
ble to disturbances from their surroundings, which can
in turn substantially increase passengers waiting times.
Newell and Potts (1964) first proved that buses have a
natural tendency to bunch if delayed, primarily due to
the accumulation of passengers at stops. More recently,
online control strategies have been proposed, benefiting
from the rapid growth of GPS technology and vehicle-to-
vehicle communications. Some are primarily based on real-
time information, such as those which elaborate on Da-
ganzo (2009) and Bartholdi and Eisenstein (2012). Other
approaches rely on model-based predictions instead (Varga
et al., 2018). However, most of these works focus solely
on reducing bus bunching, and as such run the risk of
sacrificing potential savings in energy consumption.

Due to a reduced dependence on fossil fuels, electric buses
are a promising solution to reduce the environmental
impact of transport systems (Lajunen et al., 2016). But
battery and charging constraints are still hindering their
market penetration today as they entail additional cost for
transit operators. One way to mitigate this is to reduce the
energy consumed by the buses when operated. Energy-
saving driving strategies have been extensively investi-
gated for heavy-duty vehicles in all kind of driving environ-
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Fig. 1. Representation of the bus line considered in this
paper. The electric buses are running on a circular
route and the controllers can estimate and adapt their
predicted time headways (noted H1, ...,Hn).

ments (Murgovski et al., 2016; Held et al., 2018). However,
works on this topic have focused almost exclusively on
trucks, and to the best of our knowledge only Varga et al.
(2019) have addressed the energy-optimal bus line control
problem. In their work, they formulate the line problem in
the time domain and in a fully-centralized way. This may
cause some reliability and scalability issues, which we try
to address here.

In this paper, we focus on a circular route which is
serviced by a single line of electric buses. These buses
are made to keep a constant time headway provided by
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the transit agency between them. Such regularity-based
operating policies are common in an urban context where
small headways between consecutive buses mean that
passenger arrivals can be considered as random (Fan and
Machemel, 2009). Buses are allowed to run at different
speeds between stops, both as a way to absorb deviations
from the goal headway and to adapt to local settings
(location of bus stops, road topography) to spare battery
energy when possible. They are however not allowed to
dwell at stops longer than needed to pick passengers up
in order to avoid disturbing the surrounding traffic. In
addition, we make the assumption that the buses are
operated automatically, i.e. without the supervision of
a human driver. This enables them to react faster and
more accurately to the commands and thus improves their
energy-saving potential.

The main contributions of this paper are twofold. The
first contribution is to assemble the multi-objective bus
line optimization problem as a nonlinear program (NLP)
thanks to a spatial formulation of bus dynamics. Choosing
a temporal formulation for the dynamics would have
required adding integer variables for the decisions of buses
at stops, thus resulting in mixed-integer programs, which
are notoriously harder to solve. The second contribution
is to formulate the bus line problem in a hierarchical
control framework. The proposed hierarchical structure
contains several parallelizable finite horizon sub-problems
which are solved at the bus level, and a simple constrained
quadratic program (QP) at the line level. This allows for
lower computation times compared with a fully-centralized
approach. It also improves the reliability of the control
as the commands can be computed directly in each bus
independently from the rest of the line, thus making the
system more resilient to e.g. communication errors.

2. BUS DYNAMICS

In this section, the longitudinal dynamics are first de-
scribed at the bus level, and are then combined at the line
level. For the rest of this paper, we consider a setting where
n buses are running on a circular route of total length L
with q bus stops.

2.1 Longitudinal Dynamics

For an electric bus i ∈ I[1,n], the equations of motion along
a fixed route are

ṡi(t) = vi(t), (1a)

v̇i(t) =
1

mi(si)

(
Fm,i(t)− Fb,i(t)− Fd,i(vi)− Fr,i(si)

)
,

(1b)

where si is the bus position and vi its velocity at time t, mi

is its mass, which is space-dependent, and Fm,i is the force
created at the wheels by the electric motor. The force Fb,i
is generated by the friction brakes, while the aerodynamic
drag Fd,i and a force Fr,i gathering the rolling resistance
and the gravitational effects can be expressed as

Fd,i(vi) =
1

2
ρAbuscav

2
i , (2a)

Fr,i(si) = gmi(si)
(
sinα(si) + cr cosα(si)

)
, (2b)

where ρ is the air density, Abus is the frontal area of the
vehicle, ca is the aerodynamic air drag coefficient and cr

is the rolling resistance coefficient. The function α is the
road gradient, which depends on the position of bus i.

Sincemi is also space-dependent, due to uneven passengers
loads between stops, it is more practical to express (1)
in the space coordinate system s in order to remove the
nonlinearity in the dynamics (Murgovski et al., 2016).
We now consider the travel time ti of bus i as a state
instead of its position. The kinetic energy for a unit mass
Ei(s) = 1

2v
2
i (s) is chosen as a state instead of vi to simplify

the expressions. The modified dynamics read

dti
ds

=
1√

2Ei(s)
, (3a)

dEi
ds

=
1

mi(s)

(
Fm,i(s)− Fb,i(s)− ρAbuscaEi(s)

)
− g
(
sinα(s) + cr cosα(s)

)
, (3b)

where the second equation is a reformulation of (1b). The
state vector for bus i is then xi(s) = [ti(s), Ei(s)]

>. Note
here that equation (3a) imposes that the speed of bus i
should be strictly positive, even though it needs to stop
frequently in reality. This is addressed by enforcing very
low positive speeds around bus stops, and by introducing
additional delays, as explained in the rest of this section.

2.2 Speed Corridor

Some constraints must be introduced for the speed of the
buses in order to e.g. capture that they should slow down
around bus stops and comply with the speed limits. To do
so, we create a space-dependent speed corridor, similar to
Held et al. (2018), inside which the speed of each bus is
constrained to be. Its upper and lower bounds are noted
vmax and vmin and the constraints for a bus i ∈ I[1,n]
materialize as

1

2
v2min(s) ≤ Ei(s) ≤

1

2
v2max(s). (4)

Both bounds are positive, even at stops, to keep the kinetic
energy from becoming null. Fig. 2. displays the appearance
of the speed corridor around one stop, and this can be
extended to the whole route without loss of generality.

Fig. 2. Illustration of the speed corridor around a stop.
The shaded area represents the feasible speeds for the
buses. At the stop, the buses are forced to slow down
to a small velocity ventry. When they are within a
distance dbrk of a stop, it is their acceleration which is
bounded to avoid disturbing the passengers on-board.
Otherwise, the buses are limited by the speed limit of
the road vlim, and by a minimum acceptable speed
vlow that prevents from going too slowly.
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2.3 Electric Motor and Battery

We now elaborate a model to compute the energy con-
sumed by the buses. Since electric motors can be used
both for traction and for generation, the motor torque
can be positive or negative depending on the operat-
ing scenario. For an electric bus i ∈ I[1,n], the mo-
tor torque Tm,i is related to the force at the wheels
through Tm,i(Fm,i) = rw/(Mfηf )Fm,i for the former case
and Tm,i(Fm,i) = (rwηf/Mf )Fm,i for the latter. Similarly,
the motor speed ωm,i is proportional to the bus speed with
ωm,i(Ei) = (Mf/rw)

√
2Ei. Here, rw is the wheel radius,

Mf is the final gear ratio and ηf is the efficiency coefficient
of the final gear, with ηf < 1.

Due to the power limitation of the electric motor, the
torque is constrained by

|Tm,i(Fm,i)| ≤ Tmax(Ei), (5)

where Tmax is the absolute value of the maximum torque
that can be delivered for a given speed of the bus.

However, the motor torque is not continuously differen-
tiable with respect to the command Fm,i, which can be
problematic for solving optimization problems based on
this model. A numerical work-around is to lift the model
by adding separate force variables for each regime of the
motor, such that

Fm,i(s) = Ft,i(s)− Fg,i(s), (6a)

0 ≤ Ft,i(s) ≤
Mfηf
rw

Tmax(Ei), (6b)

0 ≤ Fg,i(s) ≤
Mf

rwηf
Tmax(Ei), (6c)

where Ft,i and Fg,i are the forces at the wheels for bus
i when the motor is respectively working in traction or
in generation. The command vector for bus i is thus
ui(s) = [Ft,i(s), Fg,i(s), Fb,i(s)]

>. Note that Ft,i and Fg,i
are mutually exclusive due to the subsequent problem
design, as will be motivated in the next section. This yields
a smoother expression for the motor torque

Tm,i(Ft,i, Fg,i) =
rw

Mfηf
Ft,i +

rwηf
Mf

Fg,i. (7)

The internal battery power of bus i can be modeled as a
nonlinear function Pb,i(ωm,i, Tm,i), as in e.g. Murgovski et
al. (2014). The only assumption that we make on Pb,i is
that it is monotonously increasing with respect to Tm,i,
i.e. that a higher motor torque draws more power from
the battery, or equivalently supplies the battery with less
power if Tm,i < 0.

2.4 Delays at Stops

The dwell times of a bus i ∈ I[1,n] at stops are not captured
by the longitudinal dynamics model (3), but they can
be added to the travel time ti as extra delay terms Dj

whenever the bus reaches a stop j ∈ I[1,q]. Each delay Dj

consists of a constant term for stopping at and leaving
stop j, and a variable term for boarding the passengers
currently waiting at that stop.

We note ts the time it takes for a bus to come to a complete
stop from the small velocity ventry and to open its doors. It
is assumed that it also takes ts for it to close its doors and

reach ventry again when leaving the stop. In addition, we
consider that the passengers arrive at stop j at a constant
rate λj , and that it takes each passenger a time b to board
the bus. The general expression for Dj is then

Dj(ti, s) = 111sj (s) (2ts + bλjTj(ti)) (8)

where sj is the position of stop j and Tj is the elapsed
time since the preceding bus has left stop j. The indicator
function 111sj (s) is 1 when s = sj and 0 otherwise.

This expression for the delays ignores the influence of
the alighting passengers, since alighting is usually faster
than boarding (Petit et al., 2018). In addition, we use a
normalized passengers model in order to keep the problem
continuous. This means that the buses have to pick up
passengers at each stop, which is a reasonable assumption
for buses running in a dense urban environment. Other
types of stops could be included, e.g. when buses have to
halt due to traffic, but we choose to ignore those in this
paper in order to keep a deterministic model.

3. HIERARCHICAL BUS LINE CONTROL

In this section, we motivate our choice of treating the line
level optimization problem in a hierarchical framework.
The fully-centralized line optimization problem is assem-
bled and discussed in the first subsection. The following
sub-sections then focus on detailing each step of the pro-
posed hierarchical control formulation.

3.1 Fully-centralized Line Optimization Problem

Let us assume that we are looking at a snapshot of the bus
line at a given time, such as the one presented in Fig. 1.
Each bus i is currently at a position pi. The bus preceding
it on the line has index i + 1 and is at position pi+1. In
order to keep a schedule with a constant time headway H
between the buses, each bus i should aim to travel from
pi to pi+1 as closely to H as possible. In what follows, we
note Hi the predicted time for bus i to travel that distance,
which is defined as Hi = ti(pi+1). Note that Hi can be seen
as the current headway between i and i + 1. Therefore,
the buses do not try to keep a headway H directly at the
stops, but at whatever positions they have on the snapshot.
The idea is that enforcing regular time headways at each
point on the route will result in constant headways being
enforced at the stops too. Based on the previous models,
the centralized line control problem can now be written as

min
U

n∑
i=1

(Hi(xi)−H)2

+ α

n∑
i=1

(Hi(xi)−Hi−1(xi−1))2

+ β

n∑
i=1

∫ pi+1

pi

Pb,i(xi(s), ui(s))√
2Ei(s)

ds, (9a)

s.t. ∀i ∈ I[1,n] :

Ei(pi) = Ê0,i, ti(pi) = 0, (9b)

∀s ∈ [pi, pi+1] :

dxi
ds

= fi
(
xi(s), ui(s)

)
+

q∑
j=1

Dj(ti, s) [1, 0]>, (9c)

hi
(
xi(s), ui(s)

)
≤ 0, (9d)
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where U = [u1, ..., un]> is the vector containing all the
command functions, which are assumed to be piecewise
constant. The initial kinetic energy of bus i is noted Ê0,i.
The evolution function fi corresponds to the dynamics
(3), while hi gathers the inequality constraints from (4),
(6b) and (6c). Finally, α and β are trade-off parameters to
weigh the relative importance of the different objectives in
the cost function.

Remark 1: The second term in the cost function includes
a look-back feature which constrains headways of neigh-
boring buses to be similar. This ensures that the rate of
service remains somewhat homogeneous locally, even as
the headways are made to converge to H by the first term.
The preponderance of each is adjusted with the parameter
α. The competing objective of energy minimization is
added as the third term and β regulates the trade-off.

However, the nonlinear optimal control problem (9) suffers
from some practical issues. Indeed, centralized compu-
tations cause it to be unadapted to an on-line setting,
and vulnerable to communication losses between the buses
and the central coordinator. They also forbid to run any
computations in parallel to ease the computational load.
Therefore, we choose to structure (9) as a bi-level opti-
mization problem instead by splitting it into a line level
problem and bus level sub-problems to increase reliability.
We respectively refer to each as the high-level or the low-
level hereafter. At the high-level, the quadratic terms of
the cost function (9a) are gathered into a static QP, which
can be solved very quickly. The energy consumption is
dealt with at the low-level, and can now be computed in
parallel on each separate road segment [pi, pi+1] instead of
on the whole route at once. The dialogue between the high
and the low-level is summarized in Fig. 3.

3.2 Low-level Optimal Control

Let us assume that a bus i ∈ I[1,n] has received from
the high-level controller a travel time goal tf,i to reach
the preceding bus at pi+1. This command concerns the
predicted time headway Hi, and bus i should adapt its
predicted trajectory such that Hi(xi) = tf,i if possible.
Note that tf,i can be quite different from the goal headway
H, e.g. if the line is currently very disturbed.

The following NLP is assembled to find the energy-optimal
control of bus i that meets the travel time goal tf,i

min
ui

Ji(xi, ui) =

∫ pi+1

pi

Pb,i(xi(s), ui(s))√
2Ei(s)

ds+ C κi

s.t. Ei(pi) = Ê0,i, ti(pi) = 0, (10a)

κi ≥ Hi(xi)− tf,i, κi ≥ tf,i −Hi(xi), (10b)

∀s ∈ [pi, pi+1] :

dxi
ds

= fi
(
xi(s), ui(s)

)
+

q∑
j=1

Dj(ti, s)[1, 0]>, (10c)

hi
(
xi(s), ui(s)

)
≤ 0, (10d)

where most functions have already been introduced for
problem (9). We note Ji the cost function of this problem,
κi is a slack variable, and C is a large constant coefficient.
Note that this problem only needs to be solved locally, i.e.

Fig. 3. This diagram represents the information exchanged
by the two control levels. The high-level controller
sends a travel time command tf,i to each and every
bus i of the line. Each low-level controller responds
with the corresponding energy sensitivity function
Ĵ∗i . Both control levels are operated with the same
frequency until convergence of the loop, as they each
need updated information from the other level.

separately for each and every bus i. The low-level control
can therefore always be carried out by using the latest
available information, even for cases where commands
from the high-level are temporarily unavailable.

Remark 2: The cost function Ji is the sum of the total
electric energy consumed on the space-horizon and the
slack variable. The motivation for introducing this last
term is to guarantee that the problem is feasible, regardless
of the travel time command tf,i. Indeed, using this slack
variable is akin to having a penalty term |tf,i −Hi(xi)| in
the objective function while keeping it smooth at the same
time. And choosing a large coefficient C strongly penalizes
solutions where the final time Hi(xi) is different from tf,i,
which imposes Hi(xi) = tf,i whenever it is feasible.

Remark 3: Since (10) is an energy-minimization problem,
the command function ui is chosen to be as energy-efficient
as possible. For a given feasible force requirement at the
wheel, the lowest torque (and hence the lowest battery
power) is achieved in (7) by having either Ft,i or Fg,i
equal to 0 depending on the sign of the required force. This
holds because we have assumed Pb,i to be monotonously
increasing with respect to the torque earlier. Therefore,
Ft,i and Fg,i are mutually exclusive for this problem.

Remark 4: Numerical simulations are carried out to solve
this optimal control problem. For bus i, we use multiple
shootings to split the route segment [pi, pi+1] into uniform
shooting intervals. The standard Runge-Kutta method is
then used to integrate the dynamics of the discretized
system on each shooting interval. The shooting points
corresponding to the stops are known beforehand thanks
to the sampling in space, so no integer variable needs
to be added. In addition, even if the indicator function
from (8) makes the NLP (10) discontinuous, its discretized
counterpart becomes continuous in the optimization vari-
ables since the stops locations are known. Finally, having
a decentralized control at the low-level means that these
problems can be solved in parallel for each and every bus.
In practice, they are found to be several time faster to
solve than the fully-centralized problem (9).

3.3 Sensitivity Analysis

Once the energy-optimal low-level control is known, we
are interested in knowing the sensitivity of the energy
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consumption to the travel time command tf,i for a bus
i ∈ I[1,n]. This information is crucial to address the
trade-off between energy consumption and regular time
headways, and will be used at the high-level of control.

Problem (10) can be seen as a parametric optimization
problem, with the travel time command tf,i acting as a
scalar parameter (Still, 2018). Let J∗i (t0f,i) be the para-

metric optimal cost for a given parameter value t0f,i. We
know from Remark 2 that this cost is equal to the energy
consumption if and only if t0f,i is a feasible time command.
So the sensitivity analysis is only carried out if this condi-
tion holds, which is the case most of the time in practice.

Since there is no direct way to compute the implicit
function J∗i , we will approximate it with the function Ĵ∗i
based on the first two terms of its Taylor series instead

Ĵ∗i (tf,i) = J∗i (t0f,i) +
∂J∗i
∂tf,i

(
t0f,i
)(
tf,i − t0f,i

)
+

1

2

∂2J∗i
∂t2f,i

(
t0f,i
)(
tf,i − t0f,i

)2
. (11)

Let Li be the Lagrange function of (10) and λi and µi the
vectors of dual variables corresponding to the equality and
inequality constraints respectively. Let zi = [wi, λi, µi]

>

be the solution vector, which gathers the primal and dual
variables, with wi = [xi, ui]

>. By noting z∗i the optimal
solution, which is a function of the parameter tf,i, and
applying the chain rule we have (Still, 2018)

∂J∗i
∂tf,i

(
t0f,i
)

=

(
∂Li
∂tf,i

)
z∗
i
(t0

f,i
),t0

f,i

(12a)

∂2J∗i
∂t2f,i

(
t0f,i
)

=

(
∂2Li
∂t2f,i

+∇2
tf,izi
Li

∂z∗i
∂tf,i

)
z∗
i
(t0

f,i
),t0

f,i

(12b)

Note that the first two derivatives of J∗i are not too expen-
sive to obtain here since the parameter tf,i only appears
in the constraints (10b). Let nzi and nµi

respectively
be the length of the solution vector zi, and the number
of inequality constraints in problem (10). For simplicity,
we assume that the constraints (10b) are the last two
inequality constraints. Then it holds that

∂J∗i
∂tf,i

(
t0f,i
)

= µi(nµi
)− µi(nµi

− 1), (13a)

∂2J∗i
∂t2f,i

(
t0f,i
)

= yi(nzi − 1)− yi(nzi), (13b)

where yi = R−1z,i
(
z∗i (t0f,i), t

0
f,i

)
e , e = [0, ..., 0,−1, 1]>, and

where Rz,i is the Jacobian of the KKT conditions vector
with respect to the solution vector zi (Hult et al., 2016).

Therefore, only one matrix inversion is needed to get a
quadratic approximation Ĵ∗i of the energy consumption
sensitivity for bus i. The n sensitivity functions obtained
are then passed as inputs to the high-level.

3.4 High-level Controller

The role of the high-level controller is to find the best
travel time commands tf,1,...,tf,n. This is formulated as a
supervisory control problem with a static constrained QP:

min
tf,1,...,tf,n

n∑
i=1

(tf,i −H)2 + α(tf,i − tf,i−1)2 + βĴ∗i (tf,i),

s.t. tmin
f,i ≤ tf,i ≤ tmax

f,i , ∀i ∈ I[1,n]. (14)

The approximate minimum and maximum feasible time
commands tmin

f,i and tmax
f,i for any bus i are estimated from

the solutions obtained by forcing the velocity of the buses
to be equal to vmin and to vmax respectively. Thus they can
provide a good approximation of the feasible set of the QP,
which can be solved efficiently using dedicated toolboxes.

The travel time commands found from solving this QP are
then fed in to the low-level again, and the loop continues
until convergence. Note that both control levels are run
with the same frequency during this process. Once the
optimal solution of the overall problem is found, the bus
line is updated in a MPC-like fashion with a sampling time
∆t by implementing the low-level solutions from (10). This
sampling time is unrelated to the low-level programs as it is
common for all buses, and denotes the frequency at which
the overall line problem is solved.

4. NUMERICAL RESULTS

In this section, we present some simulation results to
assess how well our hierarchical control method is able
to maintain a regular level of service in an energy-efficient
way. To do so, we chose to compare it to a bus holding
benchmark method, as is done in Varga et al. (2019). In
this scenario, buses go at the maximum allowed speed
in-between stops, and then wait at some predesignated
control points until the headway regularity condition is
met. Many transit systems operators enforce this control
method in practice as it is relatively inexpensive and easy
to deploy. Following our previous notations, this means
that the benchmark buses are forced to run at vmax.

The route considered is that of bus line 17 in Gothen-
burg, Sweden, with some minor adjustments. Both control
methods operate from the same initial disturbed state of
the bus line in 5 different scenarios, ordered from least
to most disturbed (i.e. scenario 1 is the least disturbed).
Since no external disturbances have been added to the
model, the controlled bus line will converge back to a state
of regular service in all the scenarios. Two metrics are
used to monitor each method’s performances: the energy
consumed per distance unit ∆E and the mean value ∆Ĥ
of the absolute headway deviations last observed at each
of the stops. Both of them are computed at the line
level. The numerical values for the relevant parameters are
summarized in Table 1. The space-dependent functions α
and mi, for i ∈ I[1,n], as well as the rates λj , for j ∈ I[1,q],
are obtained directly from bus line 17 data.

Table 1. Simulation parameters. SI units: H,
L, vlim, vlow, ventry, ρ, Abus, rw, dbrk, ts, b, g.

Unitless: n, q, ca, cr, Mf and ηf .

Parameter n q H L vlim vlow ventry
Value 5 28 360 16492 13.89 11.11 1.39

Parameter ρ Abus ca cr rw Mf ηf
Value 1.18 5.14 1 0.0047 0.49 2.8 0.98

Parameter dbrk ts b g

Value 95.5 3 1.5 9.81
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Fig. 4. Average observed headway deviations at stops
with respect to time for both methods in scenario 3.
The dashed line is the 15 seconds threshold. This is
obtained with α = 1 and β = 0.05.

For each set of initial conditions, the bus line is simulated
for niter iterations with a sampling time ∆t = 40s. Due to
the different initial disturbance strengths of the scenarios,
the time required to converge back to a state of regular
service varies. So niter is set separately for each scenario as
the number of iterations required for the deviations ∆Ĥ of
both methods to become smaller than a threshold value,
which we set to 15 seconds. The trade-off parameters α
and β are chosen accordingly to make the deviation of the
hierarchical control method reach that threshold value in
the same number of iterations as the bus holding method
when possible, as is illustrated for scenario 3 in Fig. 4. The
results for each scenario are presented in Table 2.

Table 2. Results.

Scenario 1 2 3 4 5

∆E control [kWh/km] 0.649 0.635 0.646 0.639 0.627

∆E holding [kWh/km] 0.668 0.658 0.666 0.672 0.677

Energy savings [%] 2.9 3.6 3.1 5.2 8

niter 33 39 43 61 75

The hierarchical control method consistently consumes
less energy to reach the headway deviation threshold,
regardless of the initial conditions of the line. More energy
can in fact be saved for scenarios with larger initial
disturbances. This may be the consequence of needing
longer simulation times to reach a regular level of service,
as some buses will reach the desired headway sooner and
have more time to drive in an energy-aware fashion.

For the most disturbed cases (scenarios 4 and 5), the hier-
archical control method is not able to reach the 15 seconds
threshold as fast as the bus holding method, regardless of
the trade-off parameters values. This is mainly due to an
imbalance in what each method can do. Indeed, the bus
holding method can rapidly absorb strong disturbances by
having the buses wait at the control points, whereas the
hierarchical control constrains the buses to be running at
vmin or faster all the time. So it must be noted that this
is not an inherent limitation of the hierarchical control
strategy, as a bus-holding feature could be added to it to
handle strongly disturbed lines.

5. CONCLUSION

In this paper we set to find a scalable and reliable control
strategy that could solve a multi-objective bus line control

problem. We chose to avoid formulating that problem as
a mixed-integer program, but preferred a classical NLP
formulation. It was first assembled as a fully-centralized
problem based on the bus and line models developed
before. But due to practical constraints (e.g. sensitivity
to communication deficiencies), we split it into a bi-level
hierarchical control structure. This new control structure
only needs to solve independent sub-problems at the bus
level, and a single quadratic problem at the line level.
When implemented on a simple test case, it demonstrates a
promising potential for sparing battery energy and keeping
constant headways in weakly disturbed situations.

However, it was also found that our approach should be
augmented with an additional intervention method to ab-
sorb strong disturbances more quickly. Another direction
for future works is to evaluate quantitatively the com-
plexity of different problem formulations to find the most
appropriate one for a future on-line implementation.
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