
Sensor Fault Detection for Salient PMSM

based on Parity-Space Residual Generation

and Robust Exact Differentiation

Benjamin Jahn ∗,∗∗ Michael Brückner ∗∗ Stanislav Gerber ∗∗

Yuri A.W. Shardt ∗

∗ Department of Automation Engineering, Technical University of
Ilmenau, D-98684 Ilmenau, Germany

∗∗ Nidec driveXpert GmbH, D-98693 Ilmenau, Germany

Abstract: An online model-based fault detection and isolation method for salient permanent
magnet synchronous motors is proposed using the parity-space approach. Given the polynomial
model equations, Buchberger’s algorithm is used to eliminate the unknown variables (e.g.
states, unmeasured inputs) resulting in analytic redundancy relations for residual generation.
Furthermore, in order to obtain the derivatives of measured signals needed by such a residual
generator, robust exact differentiators are used. The fault detection and isolation method is
demonstrated using simulation of various fault scenarios for a speed controlled salient motor
showing the effectiveness of the presented approach.
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1. INTRODUCTION

Due to their high efficiency and power density, permanent
magnet synchronous motors (PMSM) are frequently used
in various industrial fields. In almost all applications, de-
tecting sensor errors affecting current or speed / position
measurements improves safety and minimizes the environ-
mental impact and economic losses. By implementing an
online fault detection and isolation (FDI) method, the
process can be monitored and unusual behavior can be
identified and appropriate countermeasures taken.

Over the last decades, FDI has been the subject of inten-
sive research for both linear and nonlinear systems leading
to different types of methods (Chen et al., 2001; Ding,
2008). These methods can be broadly classified into two
categories: data-driven FDI and model-based FDI. Unlike
model-based methods, data-driven methods do not rely
on accurate a priori model knowledge but on available
historical data making them more suitable for large-scale
systems in process engineering. Data-driven approaches
range from multivariate statistical to machine learning
approaches (Qin, 2012; Chen et al., 2016, 2017; Hua et al.,
2018).

Within the model-based FDI methods, the parity-space
based approach uses a set of analytic redundancy relations
derived from the model equations that involve only known
quantities and can be used for residual generation (Isidori
et al., 2001; Blanke, 2015). The parity-space approach
was first investigated for linear systems by Chow and
Willsky (1984) and can be generalized to cover polynomial
systems (Frank, 1990; Kinnaert, 2003). The elimination of
unknown quantities can be performed using Buchberger’s
algorithm for finding a Groebner basis, which results in the

final residuals. In Comtet-Varga et al. (1999), a similar
approach has been applied to induction motors. Other
recent results on PMSM make use of different observer-
based approaches (Foo et al., 2013; Kommuri et al., 2018).

In general, evaluation of the resulting residuals requires
the derivatives of measured input and output quantities.
This might be impractical since these derivatives are not
directly available and numerical differentiation of noisy
measured quantities is impractical.

Therefore, this paper will examine the application of
robust exact differentiators, first introduced by Levant
(1998, 2003), to the PMSM system in order to obtain a
practical residual generator based on the found analytic
redundancy relations.

This paper is structured as follows: in Section 2, model-
based FDI in general, the parity-space based approach
in particular and robust exact differentiators are shortly
recapitulated. In Section 3, their combination in order
to implement fault detection for polynomial systems is
proposed. In Section 4, this combination is applied to the
detection of sensor faults of a salient PMSM. For that pur-
pose, suitable analytic redundancy relations are derived
based on the standard dynamic model of a PMSM. Finally,
the proposed sensor fault detection is demonstrated by
means of simulation in Section 5.

2. BACKGROUND

The basic principle of model-based FDI is to compare
the expected system behavior (by means of a model)
with the actual one. In order to quantify the level of
mismatch or discrepancy a set of residual signals is gen-
erated. Figure 1 shows the quantitative model-based FDI
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approach involving two stages: diagnostic / residual signal
generation and decision making or diagnostic classification
(Chen et al., 2001). Such a residual signal has to satisfy
specific properties given by Definition 1 such that their
generation/construction is a non-trivial task especially for
nonlinear systems. Many different approaches for resid-
ual generation have been proposed that can be divided
into three categories: observer-based, parity-space based
and parameter estimation/identification based approaches
(Frank, 1990).

supervised
plant g(·), h(·)

residual
generator

decision making

measured
input u(t)

measured
output y(t)

residual r(t)

diagnosis

unmeasured
input d(t) fault f(t)

Fig. 1. Two stages of quantitative model-based FDI (after
(Chen et al., 2001))

Definition 1. A residual is a signal that is zero when
the system under diagnosis is free of faults, and nonzero
when particular faults are present in the system. Addition-
ally, a residual must be invariant to any unmeasured and
therefore unknown input signals (e.g. disturbances) as their
influence is not considered as a fault.

2.1 Parity-space based approach for polynomial nonlinear
systems

The parity-space approach was first investigated for linear
systems by Chow and Willsky (1984) and can be general-
ized to cover polynomial systems (Kinnaert, 2003; Isidori
et al., 2001). The approach is based on analytic redun-
dancy relations (ARR), which can be used for residual
generation and subsequent FDI (Chen et al., 2001).

Consider the class of polynomial multiple-input multiple-
output (MIMO) systems

ẋ = g(x, u, d, f) (1a)

y = h(x, u, d, f) (1b)

where g : R
n × R

p × R
nd × R

nf → R
n and h : R

n ×
R

p × R
nd × R

nf → R
q are polynomial functions of their

arguments, i.e. x the state vector, u the vector of known
inputs, d the vector of unknown inputs or disturbances and
f the vector of faults. Further, consider the sj successive
time derivatives of the jth output

Y
(sj)
j = Hj(x, U

(sj), D(sj), F (sj)) (2)

where Y
(sj)
j is a vector consisting of yj and its derivatives

up to order sj . The same notation applies to the measured

and unmeasured inputs U (sj), D(sj) and faults F (sj) as well

as their derivatives up to order sj . The concatenation of
this equation for all outputs leads to the following system
of

∑
j(sj + 1) equations

Y = H(x, U (s), D(s), F (s)) (3)

where s = maxj sj
1 . Since the states x and the unmea-

sured inputs d are not available, they need to be eliminated
in order to get analytic redundancy relations that can be
used for FDI. Elimination can be performed by finding
a Groebner basis using Buchberger’s algorithm (Buch-
berger, 1985; Cox et al., 1992). Alternatives for computing
Groebner bases are p-adic and modular methods that have
been successful in limiting intermediate coefficient growth,
which is a prominent challenge of Buchberger’s algorithm
(Arnold, 2003). Another constructive method to eliminate
variables of a given set of polynomial equations can be
found in Ritt’s algorithm (Ritt, 1950), which is also used
in nonlinear system identification (Ljung and Glad, 1994).

This elimination results in a set of polynomials (ARR) 2

P (Y, U, F ) = 0 (4)

which can then be decomposed due to their polynomial
structure as

P (Y, U, F ) = Pr(Y, U) + Pf (Y, U, F ) = 0 (5)

where Pf (Y, U, F ) equals zero in faultless operation, if
decomposition has been made such that each polynomial
of Pf (Y, U, F ) is of degree of at least one with respect to
any entry of F . Finally, the resulting polynomials Pr(Y, U)
can be interpreted as the parity / residual signal used for
fault detection (to achieve isolation, structured residuals
have to be calculated), that is

r(t) = Pr(Y (t), U(t)) (6)

However, the fact that these expressions consist of the
derivatives of the measured input and output constitutes
the main drawback of this method for residual generation.
As it is often the case, in practice, these derivatives
are not accessible using numerical differentiation due to
measurement noise. This problem becomes worse as the
order of derivatives needed increases. Most often it is
proposed to generate a filtered version of the residual
signal; thereby avoiding the need for the derivatives. Here
another method to evaluate (6) for residual generation is
used in order to deal with the noise.

2.2 Differentiation using robust exact differentiators

In Levant (2003), an arbitrary order differentiator that is
exact on a large class of signals and robust with respect
to small amounts of noise of any frequency is proposed.
In order to estimate the successive derivatives x(i)(t), i =
1, . . . , n− 1 of a measured base signal x(t), it uses a high-
order sliding mode observer based on the following signal
model (xn = x(n−1))

x = x1, ẋ1 = x2, ẋ2 = x3 . . . ẋn−1 = x(n)(t) (7)

1 depending on the relative degree of u, d and f the maximum order

of the derivatives needed might be smaller than s
2 for the sake of convenience, the maximum order will be omitted

in the following, e.g. U (s) = U
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with a known upper bound for the Lipschitz-constant L >
0 of its n-th derivative. The (n− 1)-th order differentiator
is then

˙̂xi = −ki⌈x̂1 − x1⌋
n−i
n + x̂i+1, i = 1, . . . , n− 1 (8a)

˙̂xn = −kn sgn(x̂1 − x1) (8b)

where ⌈x⌋p = |x|p sgn(x). To guarantee finite-time exact
convergence in the absence of noise, k1, . . . , kn need to be
chosen with respect to L, as shown by Levant (2003). In
applications requiring a wide range of operation, it may
be necessary for L to be very large resulting in high ob-
server gains. In the presence of considerable measurement
noise, this degrades the performance of the differentiator.
To tackle this problem, filtering differentiators which are
capable of both rejecting large noise and exactly differenti-
ating smooth signals have been proposed recently (Levant
and Livne, 2019). Another extension given by variable gain
exact differentiators (Levant, 2006, 2014) deals with the
case where the n-th derivative is not uniformly bounded,
but its bound is given by a time-varying function. Al-
though other variants exist, the approach chosen in the
paper was selected due to its simplicity.

3. PROPOSED RESIDUAL GENERATION

Robust exact differentiators as presented before can be
used to generate all needed derivatives in the ARR (see
Equation (6)) to give an exact, robust and nonlinear fil-
tered residual signal. Figure 2 shows the proposed residual
generator

(8) with x = u1, n ≤ s+ 1

(8) with x = up, n ≤ s+ 1

(8) with x = y1, n = s1 + 1

(8) with x = yq, n = sq + 1

(6)

:

:

u1(t)

up(t)

y1(t)

yq(t)

Û1(t)

Ûp(t)

Ŷ1(t)

Ŷq(t)

r(t)

Fig. 2. Schematic of the proposed residual generator using
robust exact differentiators for ARR evaluation

where Û1, . . . Ûp are the estimates of every input and

their needed derivatives and Ŷ1, . . . Ŷp are the estimates of
every output and their needed derivatives for evaluation
of (6). Instead of using the unavailable derivatives for the
evaluation of the ARR, estimates provided by multiple
robust exact differentiators are used. Therefore, for each
input signal a robust exact differentiator of order n ≤ s+1
(depending on the minimal relative degree of the input
w.r.t. to each output) and for each output signal of order
n = sj + 1 is needed.

4. SENSOR FAULT DETECTION AND ISOLATION
FOR PMSM

Given the importance of PMSM in industry, background
information about PMSM will be provided in this section.

Then the proposed method will be applied to the PMSM
system.

4.1 Permanent Magnet Synchronous Machines (PMSM)

All AC phase currents and voltages of three-phase syn-
chronous machines are usually expressed in a rotor-fixed
(rotating) coordinate system (the d/q-frame) using the
Clarke and Park transformation. Figure 3 shows a rotating
motor with angular position ϕ and the resulting projection
of a sample stator current vector is onto the axes of the
rotor-fixed d/q-frame.

La

L
b

L
c

αα

ββ

dd

q

q

ϕϕ

iα

iβ

id

iq

is

N

S

Fig. 3. Stator current expressed in rotor-fixed (rotating)
d/q-frame using the Clarke and Park transformation

Using these transformations, the electrical dynamics of the
PMSM is commonly described as (Schröder, 1995)

Ld
d

dt
id = −Rid + pωLqiq + ud (9a)

Lq
d

dt
iq = −Riq − pωLdid − pωΨ + uq (9b)

where id, iq and ud, uq represent the direct (in-phase) and
quadrature components of the motor currents and voltages
expressed in rotor-fixed coordinates and ω the angular
velocity of the rotor. The strictly positive parameters
Ld, Lq, R,Ψ and p are respectively the direct/quadrature
inductivity, phase resistance, flux linkage of the permanent
magnet and the number of pole pairs. In general, for a
salient motor the direct component of the inductivity is
smaller than the quadrature component, i.e. Ld < Lq.

The rotor shaft dynamics are determined using Newton’s
second law of motion as

Jω̇ = −dω + τm + τd (10)

while the torque produced by the PMSM equals τm =
3p
2 (Ψ + (Ld − Lq)id)iq. The parameters J and d are
the rotor’s moment of inertia and the viscous friction
coefficient. The term τd represents any additional torque
applied to the rotor shaft, e.g. the load torque. The state
vector is composed of the motor’s d/q-currents and the
angular speed x = [id, iq, ω]

⊤.

Considering additive sensor faults fd, fq, fω, the output
equations y = [yd, yq, yω]

⊤ are given by

yd = id + fd yq = iq + fq yω = ω + fω (11)

Remark. It is important to note that id and iq are only
computational quantities after Clarke and Park transfor-
mation of measured phase currents. A constant phase cur-
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rent sensor fault will result in a combined sensor fault in
fd and fq depending on the angular position of the motor.

4.2 Residual generation

Taking the derivative of the output Equation (11) and
substitution of the dynamic Equations (9) and (10) gives

Ldẏd = −Rid + pωLqiq + ud + Ldḟd (12a)

Lqẏq = −Riq − pωLdid − pωΨ + uq + Lqḟq (12b)

Jẏω = −dω + Jḟω + τd +
3p

2
(Ψ + (Ld − Lq)id)iq)

(12c)

Together with the output equations they constitute a set
of 6 equations. Following the procedure from Subsection
2.1, elimination of the unknown states id, iq, ω can be
achieved by simply substituting the output equations.
To eliminate the unmeasured input τd, the approach of
finding a Groebner basis using the Buchberger’s algorithm
(Buchberger, 1985; Cox et al., 1992) for a set of polynomial
equations is used as in Guernez et al. (1997). The sym-
bolic computations have been performed using SymPy, a
library for the programming language Python for symbolic
computations.The derived set of polynomial expressions
according to Equation (4) is given in Appendix A.

The next step is to decompose this Equation (4) into
Pr and Pf , while Pf contains all terms depending on
the faults fd, fq, fω and their derivatives. This guarantees
that Pf equals zero in the faultless case, i.e. fd, fq, fω ≡
0. Finally, the residual signal needed for fault detection
Pr(yd, ẏd, yq, ẏq, yω, ud, uq) = [r1, r2, r3]

⊤ is given by

r1 =+ L2
dẏdyd + LdΨ ẏd + LdRy2d − Ldudyd

+ L2
q ẏqyq + LqRy2q − Lquqyq +ΨRyd −Ψud (13a)

r2 =− LdLqp
2ydy

2
ω − LdRẏd − L2

qẏqpyω

− LqΨp2y2ω + Lqpuqyω −R2yd +Rud (13b)

r3 =+ L2
dẏdpyω − LdLqp

2yqy
2
ω − Ldpudyω

− LqRẏq −ΨRpyω −R2yq +Ruq (13c)

As explained in Section 2, a robust exact differentiator can
be used to estimate the derivatives of the system’s outputs
yd and yq needed for the residual signals in Equation (13).
Since only first-order derivatives are needed, the estimator
reduces to a classical super-twisting sliding mode (second
order) observer as introduced by Levant (1998)

˙̂x = −k1|x̂− x|
1/2 sgn(x̂− x) + v (14a)

v = −k2 sgn(x̂ − x) (14b)

As proposed, these estimates of the derivatives of the
system’s outputs yd and yq are used to evaluate the ARR
of the PMSM given by Equation (13) so as to complete
the residual generator design.

4.3 Residual evaluation and decision making

In real application, the residual signal will always deviate
from zero due to measurement noise and modeling errors.
Therefore, in terms of residual evaluation, the simplest
method is to introduce a threshold below which the
residual is considered to be inactive. Such a threshold

might be determined by conducting simulations with noisy
measurements and/or actual plant measurements.

Since the diagnosis system should not only detect faults
but also isolate them, the influence of individual faults on
the residual signal needs to be studied. Further inspections
of Equation (A.1) for the case of constant faults shows
the influence of individual faults on the residual signals
as shown in Table 1. For example, assume that residuals
r1 and r3 are active (i.e. above the relevant threshold)
while r2 is inactive. Then the second column of Table
1 tells us that fault fq must have occurred. It is clear
that only individually occurring faults can be isolated.
As soon as two or more faults occur, they cannot be
distinguished by residual evaluation using the proposed
residuals. Unfortunately, as it was stated in the last
remark, a phase current sensor fault results in a combined
sensor fault in fd and fq. As all three residuals are active
in such a case, this cannot be distinguished from an
additional speed sensor fault occurring. Therefore, if all
three residuals are active, one cannot decide whether it
is a phase current sensor fault only or also an additional
speed sensor fault.

Table 1. Effect of faults on each individual
residual signal (coding table)

fd fq fω

r1 x x

r2 x x

r3 x x

5. SIMULATION STUDIES

The proposed FDI method is simulated for a speed con-
trolled salient PMSM with parameters given in Table 2.
The control strategy follows a classical field-orientated vec-
tor control law with current set points chosen according to
the motor’s maximum-torque-per-ampere (MTPA) curve.

The control and FDI algorithms are simulated to run at
a fixed sampling rate of Ts = 0.1ms while the plant
is modeled continuously and numerically solved using
the Dormand-Prince method (ode45) with variable step
size. The gains of the robust exact differentiators used
to estimate the derivatives of yd and yq have been set
to k1 = 50, k2 = 75. For this simulation study, it is
assumed that the speed can be measured and does not
need to be estimated based on position measurements.
Gaussian white noise with standard deviations σi = 0.5A
and σω = 1.5 rpm (min−1) is added to the d/q-current
and speed sensors. At the beginning of the simulation, the
motor is accelerated to a target speed of 1800 rpm(min−1).
At t = 2 s, an external load torque of 0.5Nm is applied to

Table 2. Parameters of PMSM

parameter value

phase resistance - R 9.25mΩ

d-axis inductance - Ld 0.895 µH

q-axis inductance - Lq 1.044 µH

flux linkage - Ψ 4.8751mWb

pole pairs - p 5

rotor inertia - J 0.0113Nms2

friction coefficient - d 0.002Nm s rad−1
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the motor such that about 45A phase current is required in
steady state. During the interval t = [4, 5)s, sensor fault
fd = 4A is active; t = [5, 6)s, sensor fault fq = 4A is
active; and t = [6, 7)s, sensor fault fω = 250 rpm (min−1)
is active.

Figure 4 shows the simulation results. Until t = 4 s
the residuals are close to zero and only the effect of
measurement noise can be observed. Note that the load
change at t = 2 s has no influence on the residuals, as
expected. Introduction of a suitable threshold for each
residual (above measurement noise and modeling error
band and below active fault output) allows the following
residual evaluation and decision to be made based on the
effects of the faults on each residual (see Table 1)

• for t = [4, 5)s : R = {r1, r2} → fd detected
• for t = [5, 6)s : R = {r1, r3} → fq detected
• for t = [6, 7)s : R = {r2, r3} → fω detected

with R = {ri | ∀i ∈ {1, 2, 3} : ri active} being the set of
active residuals.

time in s

re
si
d
u
a
ls
×
1
0
0

r1
r2
r3-6

-4
-2

0
2

4

0 1 2 3 4 5 6 7

τd applied fd occurred

fq occurred

fω occurred

Fig. 4. Residual signals during motor run and sensor faults

The transient behavior of r3 in case of a speed sensor
fault fω needs to be highlighted at this point. The reason
for this can be found in the last line of Equation (A.1c),
where the influence of fω on the third ARR depends on the
speed output yω. Since the simulated PMSM is speed con-
trolled, the controller slowly compensates for the output
disturbance resulting in transient behavior of the angular
velocity which can be seen in the third residual. Apart
from that, the residual signals react immediately to the
fault actions due to the use of robust exact differentiators.
This enables fast fault detection and reaction.

6. CONCLUSION AND FUTURE WORK

This paper has presented the design of a residual generator
for sensor fault detection of PMSM. The main contribu-
tion is to combine ARR evaluation based on the parity-
space based approach with robust exact differentiators in
order to derive an exact, robust and nonlinear filtered
residual signal. This result has been applied to a model
of a PMSM. For this purpose three analytic redundancy
relations, which are robust against unknown load torques,

have been obtained by elimination according to Buch-
berger’s algorithm for finding a Groebner basis of poly-
nomials. Simulation results show that speed and current
sensor faults can be detected. A weakness of the proposed
approach is that it cannot distinguish between the cases of
phase current sensor faults only and an additional speed
sensor fault, since both cases have the same residual signa-
ture. However, in both cases, the current measurements are
defective, which normally makes the control of the PMSM
unsafe and uneconomic.

As next step, the proposed method is to be applied to an
actual PMSM in order to evaluate its performance under
real conditions. Furthermore, since, in real applications,
measurements are normally provided by phase current
sensors and position sensors, the influence of faults on
these measurements needs to be investigated.
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Appendix A. COMPUTED GROEBNER BASIS

The elimination of the external load τd has been achieved
by Buchberger’s algorithm for finding a Groebner basis.
The vector of polynomials P = [P1, P2, P3]

⊤ given by
Equation (A.1) depends only on the outputs yd, yq, yω,
the output derivatives ẏd, ẏq, the inputs ud, uq, the fault

signals fd, fq, fω and the fault signal derivatives ḟd, ḟq.

P1 =− L2
dḟdyd + L2

dẏdyd − LdΨ ḟd + LdΨ ẏd + LdRy2d

+ LdRf2
d − Ldudyd − L2

q ḟqyq + L2
q ẏqyq + LqRy2q

+ LqRf2
q − Lquqyq +ΨRyd −Ψud

− (−L2
dḟd + L2

dẏd + 2LdRyd − Ldud +ΨR)fd

+ Lq(Lqḟq − Lqẏq − 2Ryq + uq)fq (A.1a)

P2 =− LdLqp
2ydy

2
ω − LdLqp

2 (2yω − fw) fdfw

+ LdRḟd − LdRẏd + L2
q ḟqpyω − L2

q ẏqpyω

− LqΨp2y2ω − Lqp
2 (Ldyd +Ψ) f2

w + Lqpuqyω

+ Lqp(2Ldpydyω − Lqḟq + Lqẏq + 2Ψpyω − uq)fw

−R2yd +Rud + (LdLqp
2y2ω +R2)fd (A.1b)

P3 =− L2
dḟdpyω + L2

dẏdpyω − LdLqp
2yqy

2
ω − Ldpudyω

− LdLqp
2 (yqfw + 2yωfq − fqfw) fw + LqRḟq

− LqRẏq −ΨRpyω −R2yq +Ruq

+ (LdLqp
2y2ω +R2)fq

+ p(L2
dḟd − L2

dẏd + 2LdLqpyqyω + Ldud +ΨR)fw
(A.1c)
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