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Abstract: Increasing environmental concerns are a driving force in the search for ways to improve the 

efficiency of mineral nitrogen (N) fertilization. Spectral sensors to determine the crop’s supply status are 

among the most mature precision agriculture technologies to adapt the N dose site-specifically to the crop’s 

need. By using artificial intelligence techniques like expert systems based on fuzzy set theory, the 

algorithms of such sensor systems could be adapted by the farmer to the highly varying conditions among 

the specific fertilization dates. This paper is dealing with the development of a fuzzy logic based model of 

the commercial Yara N-Sensor’s dosing algorithms. Simulations for several sets of input-output data 

acquired in field experiments showed high accordance with the behaviour of the N-Sensor system with 

good adaptability to different calibrations. 
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1. INTRODUCTION 

Mineral nitrogen (N) fertilization is one of the main drivers for 

biomass production in conventional farming. Yet, mean 

recovery rates of around 50% on a worldwide scale are causing 

enormous N excess. In turn, this is causing greenhouse gas 

emissions and pollution of air and water resources (Lassaletta, 

Billen, Grizzetti, Anglade, & Garnier, 2014). For several 

decades, researchers have been working on the topic of 

precision agriculture with a main focus on how to adequately 

respond to in-field heterogeneities by variable rate N 

application (VRNA). VRNA is considered as a promising 

mean to avoid N excess (Balafoutis et al., 2017; Griepentrog 

& Kyhn, 2000; Snyder, Bruulsema, Jensen, & Fixen, 2009).  

Many sensor systems for controlling mineral N fertilization 

based on the spatial variability of the crop have been 

developed up to a commercial product. The Yara N-Sensor is 

one of them and like most of the competing systems, it is 

determining the local N need based on the crop’s spectral 

reflectance at specific wavelengths. Even if several research 

works could prove the advantageousness of the N-Sensor, 

many farmers still do not use VRNA due to different reasons, 

like e.g. higher costs, extra work, doubts of the credibility or 

cost-benefit (Lindblom, Lundström, Ljung, & Jonsson, 2017). 

The algorithms behind the systems for VRNA are usually 

deterministic and not flexible enough to adapt to the strong 

variability of conditions prevailing at each specific 

application.  

With the N fertilization, and thus, the plant growth, the farmer 

is controlling a natural process, which is characterized by high 

vagueness and dynamic, non-linear interactions between 

different influencing parameters. Knowledge-based and 

artificial intelligence techniques are increasingly used to 

model environmental systems (Chen, Jakeman, & Norton, 

2008). Recent research proved their superiority to 

conventional descriptive statistics, analytical methods and 

multiple regression in modelling complex interrelationships 

between multiple factors (Abbaspour-Gilandeh & Abbaspour-

Gilandeh, 2019; Jahangiri, Solukloei, & Kamalinia, 2019).  

Fuzzy systems present an effective and structural way of 

dealing with decisions involving the inherent uncertainties and 

non-linearities of environmental processes and parameters 

(Mendes, Araújo, Dutta, & Heeren, 2019; Papadopoulos, 

Kalivas, & Hatzichristos, 2011). Beyond that, fuzzy logic is 

much closer in spirit to human thinking and natural language 

than traditional logical systems and thereby it provides a 

means to integrate expert knowledge via linguistic terms into 

an automatic control strategy (Lee, 2005). Fuzzy control 

enables a convenient man-machine conversation, as well as a 

non-linear control which is easy to control and operate. 

Furthermore, it has relatively good robustness and fault 

tolerance (Sun, Ma, Li, & Wang, 2018). Fuzzy systems are 

flexible, because the membership functions for the single 

parameters can be changed dynamically according to the 

situation. What’s more, an adaption can be implemented to 

modify the membership functions automatically according to 

changing situations (Sivanandam, Sumathi, & Deepa, 2007).  

Several research works are dealing with the control of plant 

production processes using fuzzy logic and the use of fuzzy 

systems in spatial problems is increasing (Ashraf, Akram, & 

Sarwar, 2014). A comprehensive fuzzy logic based system was 

developed by Badr et al. (2018) to aid in the selection of 

suitable areas for grapevine cultivation by using several 

bioclimatic indices, soil and topographical data. An irrigation 

system based on fuzzy logic is presented by Mendes, Araújo, 

Dutta, & Heeren (2019). It is considered attractive to farmers 

since there is no need for precise measurement or a precise 

model, which may be very complicated and require 

considerable funds, resources and development time.  
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A decision support system based on knowledge elicitation and 

fuzzy logic methodologies for site-specific N fertilization is 

presented by Papadopoulos, Kalivas and Hatzichristos (2011). 

Prabakaran, Vaithiyanathan, & Ganesan (2018) developed a 

fuzzy system respecting soil, water and agronomy parameters, 

as well as expert knowledge, to reduce fertilizer consumption 

and improving crop productivity. Lavanya, Rani, & 

Ganeshkumar (2018) used fuzzy logic to detect nutrient 

deficiency from soil data. Tremblay et al. (2010) included 

expert knowledge in a FIS to give recommendations for a 

VRNA. The system used several input parameters like spectral 

crop information or site properties. Yet, it cannot easily be 

transferred to different conditions.  

Due to their lifelong work on one complex farm experiment, a 

tacit body of knowledge is inherent to farmers (Hoffmann, 

Probst, & Christinck, 2007). Using a fuzzy system, their deep 

recognition of the plant production process could be 

transferred to an automated VRNA in a straightforward 

manner. The present study aims to describe, how the 

agronomic algorithms of the commercial Yara N-Sensor 

system can be imitated with a model based on fuzzy set theory. 

This would allow the operator to intuitively adapt the 

algorithm to the current needs of a specific application based 

on their expertise. Furthermore, a VRNA system based on the 

fuzzy model could easily be extended by further input 

parameters. The first main step for the development of the 

fuzzy logic based N-Sensor model encompasses the 

identification using input-output data acquired with the 

commercial sensor system. Then the fuzzy model should be 

simulated and optimised for one specific data set. Simulation 

and validation with further data sets should allow assessing the 

transferability to different calibrations. 

2. MATERIALS AND METHODS 

2.1 Instrumentation and field measurements 

A commercial Yara N-Sensor ALS2, which was operated with 

the N-Sensor 4.5 software, was used for field measurements 

(Yara GmbH & Co. KG, Dülmen, Germany). Mounted on the 

tractor roof, this system is measuring the canopy reflectance at 

specific wavelengths (Fig. 1). Based on a crop-specific 

calibration, a normalized sensor value (SN) is calculated, 

which corresponds to the N-Uptake of the crop in kg ha-1. In 

order to calibrate the system for a VRNA within a field, a 

reference strip of around 30 m is measured at a low speed. The 

system is determining the average SN for that strip, and the 

target N-rate (TR) is assigned to that reference value (SNref). 

Based on that calibration, the adequate N dose rate (DRYNS) 

for a specific spot is deduced during the application process 

and forwarded in real-time to the fertiliser spreader control. 

The algorithms behind the calculation of DRYNS
 have been 

developed by Yara over many years and they are not open to 

the public. In order to limit the DRYNS, the operator can set a 

minimum and maximum value, beyond which it is kept 

constant. For documentation and mapping purposes, the N-

Sensor software is logging a variety of parameters with a 

frequency of 1 Hz. The SN value, as well as the DRYNS, were 

of interest for the present study. Furthermore, the TR, the 

SNref, as well as the cutoff SN (SNcut) were considered. The 

latter is defining a biomass threshold, below which the system 

is strongly decreasing the DRYNS. The measurements took 

place on three fields with winter wheat (Triticum aestivum L.) 

during the N fertilizing season 2019 (Fig. 2). The fields were  

 

   

Fig. 1: Yara N-Sensor ALS2 mounted on the tractor roof. 

 

Fig. 2: Satellite view with the georeferenced measuring points 

(green) of the second N application (ESRI Inc., 2020). 

N-Sensor 
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Table 1. Key data of the measurements 

Acronym Field/Subarea Date GS 
SNref’ 

[kg ha-1] 

SNcut 

[kg ha-1] 

TR 

[kg ha-1] 

Range SN 

[kg ha-1] 

N2 

N2L Lammwirt 01 May 2019 31 54.3 20 30 21.7-75.2 

N2B Binsensee 25 April 2019 31 80.4 20 40 26.9-103.7 

N2S Schafhauser Straße 01 May 2019 31 83.5 20 40 27.7-103 

N3 

N3L Lammwirt 31 May 2019 39 122.2 54 72 45.5-144 

N3BNW Binsensee North+West 31 May 2019 49 142.9 54 47 6.7-194.3 

N3BSE Binsensee South+East 31 May 2019 39 135.2 54 47 85.2-157.1 

N3SN Schafhauser Straße North 31 May 2019 39 134.7 54 87 51.9-153.2 

N3SS Schafhauser Straße South 31 May 2019 39 118.5 54 37 104-157 

located at the research farm ‘Ihinger Hof’ of the University of 

Hohenheim (48°44'41.61''N, 8°55'26.42''E). N fertilization 

was split into three applications at different crop growth 

stages, which is common practice. For each application, 

specific TRs were defined for a whole field or subareas based 

on a crop assessment. For the present study, measurements 

were considered that were made within the scope of the second 

(N2) and third (N3) application, because they represent the 

most common use cases for the N-Sensor. For N3, the yield-

oriented strategy was chosen, which is behaving in a similar 

way to the N2 strategy. For all measurements, the minimum 

and maximum DRYNS was set to 0 and 120 kg ha-1, 

respectively. In order to eliminate implausible values and 

avoid repetitions at the same site, values that were recorded at 

zero speed, as well as measuring points that were located 

outside the field boundaries, were deleted in the recordings. 

Key data from the measurements are given in Table 1, whereby 

GS is indicating the Zadoks growth stage of the crop (Zadoks, 

Chang, & Konzak, 1974).  

2.2 Identification of the fuzzy logic based N-Sensor model 

It is known from the technical documentation of the used N-

Sensor, that for N2 and the yield-oriented strategy for N3, the 

calculated DRYNS is indirectly proportional to the SN for 

values above the SNcut. Below, it is reduced with a decreasing 

SN. In general, the relation between SN and DRYNS is known 

to be piecewise linear. Using the numerical computing 

environment MATLAB R2019a (The Mathworks Inc., Natick, 

Massachusetts, USA), an algorithm was developed that 

created for each field and subarea, respectively, a Takagi-

Sugeno FIS with constant output values. Compared to the 

Mamdani method, it is not that much adapted to human 

intuition and offers less freedom in terms of applying 

principles of fuzzy logic. Yet, it was chosen because of its 

advantages in terms of working with linear, as well as 

optimization and adaptive techniques (Sivanandam, Sumathi, 

& Deepa, 2007). The formation of the FIS was based on 

parameters of the calibration. In particular, those were the 

SNref’ and SNcut, as well as the TR. For the input SN, the 

algorithm was configured to always create four fuzzy sets with 

triangular membership functions (‘cutoff’, ‘low’, ‘medium’ 

and ‘high’). The overall considered input range was always [0 

(2×SNref-SNcut)]. The parameters for the membership 

functions of every FIS were set as follows (parameters a and c 

of [a b c] define the feet of the membership function, and b 

defines its peak): 

Cutoff: [0  0  SNcut] 

Low: [0  SNcut  SNref] 

Medium: [SNcut  SNref  (2×SNref-SNcut)]  

High: [SNref  (2×SNref-SNcut)  (2×SNref-SNcut)] 

In Fig. 3, the membership functions for N2B are presented as 

an example. For the DR outputted from the FIS (DRFIS), four 

constant values were defined (‘cutoff’, ‘low’, ‘medium’ and 

‘high’). For cutoff, the value was always zero, whereas medium 

was TR. Low and high were calculated based on the range of 

the medium membership function of the input SN, as well as a 

constant range factor (RF). In particular, their calculation was 

as follows: 

Low: TR-((SNref-SNcut)/RF) 

High: TR+((SNref-SNcut)/RF) 

The following rules were defined to imitate the behaviour of 

the N-Sensor: 

IF SN is cutoff THEN DRFIS is cutoff. 

IF SN is low THEN DRFIS is high. 

IF SN is medium THEN DRFIS is medium. 

IF SN is high THEN DRFIS is low. 

 

Fig. 3: Input membership function plot for N2B. 
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To limit the range of the DRFIS in the same way as the N-

Sensor software, a minimum and maximum threshold of 0 and 

120 kg ha-1, respectively, were implemented that limited the 

DRFIS in case it was necessary. 

2.3 Simulation, optimisation and validation of the model 

For simulations using the fuzzy logic based N-Sensor model, 

the recordings of the field measurements were used. For each 

recorded SN value, a DRFIS was calculated using the 

automatically created FIS for the affected field or subarea. To 

evaluate the performance of the single FISs in terms of 

imitating the N-Sensor algorithm, the initial DRYNS was 

compared to DRFIS. The Pearson correlation coefficient 𝑟 was 

calculated to assess the strength of the linear correlation 

between DRYNS and DRFIS, respectively:  

 

𝑟 =  
1

𝑁 − 1
∑ (

𝑦𝑚(𝑖) − 𝑦𝑚̅̅ ̅̅

𝜎𝑦𝑚

) (
𝑦𝑠(𝑖) − 𝑦�̅�

𝜎𝑦𝑠

)

𝑁

𝑖=1

 

 

where 𝑦𝑚 and 𝑦𝑠  correspond to the DRYNS and DRFIS 

respectively, at 𝑖-th measurement. 𝑁 corresponds to the total 

number of measurements. The notations 𝑦𝑚̅̅ ̅̅  and 𝜎𝑦𝑚
 are the 

arithmetic mean and the standard deviation of 𝑦𝑚(𝑖), and 𝑦�̅� 

and 𝜎𝑦𝑠
 are the arithmetic mean and the standard deviation of 

𝑦𝑠(𝑖). A very common practice to compare measured and 

simulated data series is the root mean square error (RMSE), 

which was calculated according to:  

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑚(𝑖) − 𝑦𝑠(𝑖))
2𝑁

𝑖=1

𝑁
  

 

In order to enable a relative assessment of the RMSE, it was 

also calculated as a percentage of the mean DRYNS: 

 

𝑅𝑀𝑆𝐸𝑝 =  
𝑅𝑀𝑆𝐸

𝑦𝑚

 

 

The RF for determining the low and high DRFIS was adapted 

in a trial and error procedure with the aim to minimize the 

RMSE for N2B. Trial and error is a common method to design 

and tune FISs (Jahangiri, Solukloei, & Kamalinia, 2019; 

Mehran, 2008; Sivanandam, Sumathi, & Deepa, 2007). Then, 

the factor was kept constant for all the other simulations, in 

order to keep the generation of the FISs as generic as possible. 

For the presented results, it had a value of 0.769. 

3. RESULTS AND DISCUSSION 

3.1 Characteristic curve of the modelled FISs 

For every FIS, the relation between the input SN and the output 

DRFIS can be described by a characteristic curve, whereby the 

basic shape is always the same. As an example, the curve for 

N2B is shown in Fig. 4. In general, the course of the DRFIS over 

the SN has a piecewise linear character. Below the SNcut, the 

DRFIS is decreasing abruptly. Above, it is slightly decreasing, 

until it is limited by the minimum value. For this specific FIS, 

  

Fig. 4: Characteristic curve for N2B. 

the maximum has no function, because it is slightly above the 

peak of the DRFIS. It is noticeable that the FIS would output 

negative DRFIS values beyond a certain SN value, which would 

be implausible. Yet, this is due to the fact that for the input SN, 

a generous surplus was given in terms of its overall range. This 

was supposed to ensure that the characteristic curve is not 

limited at a certain SN value that would correspond to a DRFIS 

above the minimum threshold. Theoretically, negative DRFIS 

values were automatically set to 0 by the algorithm. 

3.2 Simulation results 

Statistics for the identification and validation of the fuzzy logic 

based N-Sensor model are presented in Table 2. The lowest 

value of r was 0.982455 for N3BNW, which is indicating the 

overall strong linear correlation between DRYNS and DRFIS. All 

the RMSE values for N2 are below 40 g ha-1. From a practical 

agronomical perspective, this difference is too small to have 

any measurable effect on the crop, because there are several 

sources within the spreading process that are likely to cause 

more error. Also, the very low RMSEp values indicate that the 

setup for the self-configuring FISs worked well for N2. Yet, it 

has to be noted that it was optimized for N2B and that SNref and 

the range of the SN for N2B and N2S, which are indicated in 

Table 1, are very similar. So, the most objective results for N2 

are the ones of N2L. Unfortunately, the behaviour for values 

below the SNcut could not be tested for N2, because there were 

none. Also, the thresholds for the minimum and maximum 

were neither touched by DRFIS nor by DRYNS, which can be 

seen in Table 2.  

In Table 1, it is obvious that for N3, the testing conditions were 

more variable and the algorithm was partly tested also at the 

borders of the pieces of the characteristic curve. It appears 

suspicious that the minimum SN value of 6.7 for N3BNW is 

smaller than the one for N2B (i.e. 26.9). In general, an 

increasing value can be expected with advancing GSs. 

However, the smaller minimum SN value for N3BNW 

originated from the north-western corner of field Binsensee, 

where the sensor partially measured an area outside the field 

during a turn. Furthermore, the crop was damaged at this spot 

because of preceding turns and due to field entries.  

It is apparent from the range of the SN in Table 1 and the 

DRYNS range in Table 2, that data set N3BNW offered the best 

prerequisites to test the algorithm at border conditions. In 

Table 2, it is indicated that there were the biggest errors. 

(2) 

(3) 

(1) 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16002



 

 

     

 

Table 2: Statistics for the identification and validation of the fuzzy logic based N-Sensor model 

Data set 
Range DRYNS 

[kg ha-1] 

Mean DRYNS 

[kg ha-1] 

Range DRFIS 

[kg ha-1] 

Mean DRFIS 

[kg ha-1] 
r 

RMSE 

[kg ha-1] 

RMSEp 

[%] 

Identification 

N2B 9.75-109.52 55.26 9.70-109.57 55.26 0.999997 0.0384 0.0695 

Validation – N2 

N2L 2.78-72.39 32.36 2.82-72.39 32.36 0.999995 0.0377 0.1165 

N2S 14.59-112.50 56.84 14.64-112.56 56.85 0.999998 0.0378 0.0664 

Validation – N3 

N3L 43.60-120 79.77 43.65-120 79.78 0.999640 0.4746 0.5949 

N3BNW 0-120 34.74 0-120 35.44 0.982455 5.2974 15.2483 

N3BSE 18.59-112.00 44.10 18.52-112.02 44.10 0.999996 0.0381 0.0864 

N3SN 63.01-120 93.86 62.94-120 93.86 0.999926 0.1916 0.2041 

N3SS 0-55.90 25.08 0-55.86 25.08 0.999997 0.0359 0.1430 

 

Fig. 5: Simulation results for N3BNW (a) showing whole data set and (b) showing a section with high variations. 

In Fig. 5., the simulation results for N3BNW are presented as a 

data series. On the x-axis of each subplot, the chronologic 

sequence of the measurement, the SN, the DRYNS and the 

DRFIS that was calculated from the corresponding SN are 

plotted. It is apparent in Fig. 5a that, for large parts, the fuzzy 

logic-based algorithm performed well in terms of imitating the 

behaviour of the N-Sensor. Around the minimum SN value, 

the DRFIS does not follow the DRYNS very well, which is 

indicated in Fig. 5b. The most probable explanation for that 

pattern is that the characteristic curve was supposed to fall 

more sharply to 0 below the SNcut than it actually did.  

Also for N3L and N3SN one can observe a deterioration of 

RMSE and RMSEp. After examining these simulation data, it 

became clear that this was also due to outliers, where the slope 

of the cutoff was not imitated properly by the FIS. Yet, for all 

of the three critical data sets, it seems that the DRFIS could 

follow the DRYNS very well even at areas where the DR was 

limited by the maximum value. N3BSE and N3SS show similarly 

good results like N2, which is an indication for the good 

transferability of the algorithm. For N3SS, many values with a 

minimum DR are existing for high SN values. This shows that 

the corresponding FIS was able to cover also these border 

conditions. 

4. CONCLUSIONS 

An algorithm was developed that created a Takagi-Sugeno 

FIS, which was configured to imitate the agronomic 

algorithms of the commercial Yara N-Sensor ALS2. Even 

though it was optimized for one field at N2, it could be 

transferred to other fields or subareas by an automated 

adaption of the input and output parameters based on new 

calibration values. A validation for different fields and 

subareas in N2 and N3 has shown that for SN values beyond 
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the SNcut, the commercial system could be imitated very well 

by the fuzzy logic-based model. For values below the SNcut, 

however, the corresponding piece of the characteristic curve 

should have fallen steeper to 0. In an iterative process, the 

algorithm could be further optimized to cover a wider range of 

different field conditions. Based on the presented algorithm, 

an expert can situationally modify the input membership 

functions, the output values or the rules depending on the 

circumstances of a specific application date. Furthermore, the 

algorithm can be extended by further input parameters like e.g. 

soil information. Using Mamdani FISs, a lower accuracy in 

terms of imitating the N-Sensor algorithm, but more intuitive 

adaptability of the output can be expected. 
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