
Predictably Reliable Real-time
Transport Services

for Wireless Cyber-Physical Systems

Andreas Schmidt ∗ Pablo Gil Pereira ∗ Thorsten Herfet ∗

∗ Saarland Informatics Campus, 66123 Saarbrücken, Germany
(e-mail: {andreas.schmidt, gilpereira, herfet}@cs.uni-saarland.de)

Abstract: Cyber-physical systems increasingly leverage wireless networks for distributed
control applications. In these systems, control and communication must find explicit agreements
on the resilience and age-of-information (AoI) provided by the transport services to ensure
stability. We present PRRT and its unique features to provide a predictably reliable real-time
service that can fulfil these agreements. These features include cross-layer pacing, i.e. allowing
an application to adapt to the system’s bottleneck to achieve predictably low AoI. Finally, we
highlight future directions for the transport service provided by PRRT with respect to its usage
in constrained devices, where, e.g., energy demands play an important role.

Keywords: Communication Protocols, Communication Systems, Computer Networks,
Transport Delay, Transport Properties

1. INTRODUCTION

Cyber-physical systems (CPS) (Lee (2008)) are increas-
ingly using networked communication to fulfil distributed
control tasks (cf. Baillieul and Antsaklis (2007)). Examples
for this are highly automated manufacturing facilities, self-
driving vehicles, and next-generation power grids. As these
systems are both flexible and distributed, maintaining ded-
icated, proprietary communication infrastructure becomes
an impediment. Therefore, these systems are increasingly
using wireless communication standards, e.g. 5G cellular
networks, 802.11ax local area networks, or low-power wide
area networks. Wireless media is challenging for CPS,
as they must cope with performance degradation due to
mobility, interference, or intermittent connectivity.

Therefore, control and communication must adapt to this
circumstance in a cooperative manner, i.e. taking the
particular properties and assumptions of each other into
account. This demands for explicit control-communication
agreements that are formalized using, for instance, APIs.
With the terms of agreements at hand, the transport layer
in a communication system gets information it can use to
tune or parameterize its various functions such as error
and rate control. This paper presents the PRRT protocol
that implements these functions and is—by exposing an
API for control-communication agreements—able to offer
a predictably reliable real-time transport service. Finally,
we give future research directions with respect to trans-
port layer services that are essential to control in next-
generation wireless networks.

? The work is supported by the German Research Foundation (DFG)
as part of SPP 1914 “Cyber-Physical Networking” under grant
number 315036956. We thank our project partners Stefan Reif
and Wolfgang Schröder-Preikschat (Friedrich-Alexander-University
Erlangen-Nürnberg) for the useful discussions and valuable feedback.

2. COMMUNICATION & CONTROL AGREEMENTS

In distributed and networked CPS, agreements must be
made between the domains of control and communication—
in order to ensure cooperative operations. While some con-
trol designs use jointly optimised and co-designed control
and communication components, we consider designs that
are loosely coupled to allow interoperability, flexibility, and
abstract away implementation details.

2.1 The Need for Agreements (and Get-Out-Clauses)

Agreements between control and communication express
under which transport conditions (i.e. quality-of-service)
a control system’s stability can be ensured. Making this
explicit is essential, because control systems are often
highly sensitive to delay and can start to oscillate if
appropriate actions are not taken (cf. Branicky et al.
(2000); Baillieul and Antsaklis (2007); Chwa et al. (2018)).

By knowing about explicit constraints of the controller,
the transport layer can fine-tune its performance to fulfil
this agreement, or clearly notify if the current channel
conditions disallow this. While this notification looks, at
first sight, like the transport layer is not committed to
fulfil the agreement, this mechanism is essential as there
will always be channel conditions under which a transport
layer cannot fulfil the agreement. As the transport layer is
responsible to inform the control layer, it is ensured that
the layer that knows better about current and upcoming
channel conditions (i.e. the transport layer) shares its
information to serve the other (i.e. the control layer). In
this get-out scenario, the controller has several options:
(a) change to a controller that still maintains stability (e.g.
by gain scheduling, cf. Leith and Leithead (2000)), (b) put
the system into a safe state, or (c) fail as design assump-
tions do not hold anymore. Due to the better perspective

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2638



of the transport layer in comparison to the controller
running on top, it is likely that these circumstances can be
communicated earlier, giving more time to take counter-
measures (making (a) and (b) more likely).

2.2 Conditions of Agreement

With this agreement architecture, the question is how an
agreement between a controller and a transport layer stack
can look like. For a controller, it is essential to state its
demands about the delivery of messages with respect to:

Age-of-information (AoI) or information-freshness
governs how much time is allowed to pass between
sensing a physical quantity and processing it at the
controller or between computing a control action and
applying it through the actuator.

Resilience or tolerance w.r.t. packet dropout (PD)
models how many messages a communication system is
allowed to lose before the controller can no longer be
confident that it can stabilize the physical system.

These two aspects can be modeled as follows: The AoI is
a statistical distribution that the transport layer should
fit within a given time window. A controller states the
maximum tolerable AoI as well as other desired properties,
such as median and latency spread. The spread of the
distribution can in particular support control systems
that are harmed by synchronization effects which a non-
spread distribution would expose. The PD is modeled
as the maximum number of messages that are allowed
to be dropped in a fixed size sliding window—stating
the robustness of the controller with respect to missing
messages. An expired packet is typically considered as a
packet dropout, so these two domains are correlated.

While these models have high fidelity, it is not straightfor-
ward to implement them in practice. The remainder of this
paper considers that these two constraints are expressed
in the form of AoImax and PDmax (within a specific time
window), providing a pragmatic solution to express the
controller’s requirements and expose them to the transport
layer. In Sec. 4, we discuss how agreements can be more
expressive than being scalar upper bounds.

3. TRANSPORT PROTOCOLS

To make networked systems fulfil these agreements and
provide a service to controllers, it is straightforward to
look at the transport layer. Agreements are useful because
they (a) clearly state what the transport layer must ensure
and (b) give headroom in stating what the transport layer
does not need to ensure, i.e. it can transmit as slow as
it wants, as long as it does not violate the agreement. For
networked CPS, there are three essential network functions
that must be ensured due to the nature of communica-
tion (in particular unreliability, cross-traffic, and increased
delays): error, rate, and congestion control. While various
implementations for these functions exist (e.g. for the TCP
protocol), we propose two approaches: Cross-Layer Pacing
and Adaptive Hybrid Error Control.

3.1 Cross-Layer Pacing

Leveraging the full potential of CPS requires interoper-
ability and flexibility that are implemented, for instance,

Step i
Bottleneck P

(btl)
eff

Step i+1
P

(i+1)
eff

Step i-1
P

(i−1)
eff

Data

Data

MUST slow down to P
(btl)
eff

MUST tell others about P
(btl)
eff

MAY slow down to P
(i+1)
eff ∈ [P

(i+1)
eff : P

(btl)
eff ]

MAY tell others about P
(i+1)
eff and P

(btl)
eff

Fig. 1. Cross-layer pacing explicitly communicates paces to
preceding and succeeding steps to attain just-in-time
processing that ensures low age-of-information.

in statistically multiplexed networks—similar to the cur-
rent Internet, whose technology is already used for edge
computing scenarios (cf. Satyanarayanan (2017)). Thereto,
these systems exhibit packet queues within host systems
and at in-network nodes, which are needed for asyn-
chronous process communication, such as the driver queue
in Linux, or to cope with unexpected burst without packet
losses. These queues bear the potential of self- or peer-
incurred congestion—commonly known in the networking
domain as bufferbloat (cf. Gettys and Nichols (2012)). This
is clearly wasteful, especially because control information
loses value while it is stored in a buffer and eventually
becomes irrelevant due to an excessive AoI. This is a
form of waste, considering a well-known definition of the
term in the field of operations research (cf. Ohno (1988)).
Information-processing systems with inherent buffering
are wasteful for additional reasons, namely (a) buffer ca-
pacity must be allocated in the first place, (b) storing and
retrieving from a buffer costs resources, and (c) buffers
tend to be full, requiring drop-policies that cause more
waste by discarding preprocessed units of work.

In this context, we have designed the cross-layer pacing
approach that has been presented in Schmidt et al. (2019),
which implements a form of rate control. This approach
is based on two mechanisms: (a) continuously measuring
the pace P, [P ] = sec of each communication and process-
ing step and (b) continuously informing preceding and
succeeding steps about this quantity. This information
is shared as depicted in Fig. 1: Any step i instructs its
preceding step i−1 to run no faster than the pace of i. Step
i− 1 computes the maximum of its own pace and i’s pace
and iterates by telling its preceding step, thereby adapting
the chain in a way that the pace gets faster from first to
last step. In such a scenario, buffers are only needed to
compensate for imprecision in the synchronization process
or unavoidable bursts, i.e. they only have to store a small
number of packets (cf. Nichols and Jacobson (2012)).

Eventually, the scheme must slow down the first step—
the application that generates data packets. In Fig. 2,
we see how an unpaced sensor application produces many
samples (every timestep of 1) but the network bottleneck
only allows one message every 2 timestamps, thereby
deteriorating the received signal at the controller and
eventually producing losses due to buffer overflows in the
network. When the sensor application is paced to the
network (right half of Fig. 2), the signal is sampled and
received appropriately. While cross-layer pacing provides
the mean for the application to adapt to the slowest pace of
the system, the selection of a sampling rate that optimizes

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2639



0 5 10 15

−1

0

1

f
(t
)

Unpaced Sensor

0 5 10 15

−1

0

1

Paced Sensor

0 5 10 15

t

−1

0

1

f
(t
)

Unpaced Controller

0 5 10 15

t

−1

0

1

Paced Controller

Fig. 2. When the sensor participates in cross-layer pac-
ing, the sampling scheme is adapted to match the
bottleneck of the system—achieving high fidelity and
avoiding data loss due to buffer overflows.

the performance of the control algorithm is out of the scope
of this paper. An interesting approach that optimizes the
sampling rate given a real-time communication channel is
introduced in Saifullah et al. (2014).

In order to achieve this, our approach provides an API with
several means to ensure that the application takes part
in the cross-layer pacing: (a) The application can become
pacing-aware by querying the transport protocol for the
bottleneck pace and adapting to it. (b) The application
can passively take part, in being delayed by the underlying
system. This requires no code changes and is transparent.
(c) The application can use synchronous send calls that
block until the next data packet can be created and
sent. This approach requires periodic behaviour, as the
transport layer measures the application and adapts its
blocking behaviour to allow this just-in-time processing.

3.2 Adaptive Hybrid Error Control

Besides predictable timing, CPSs also demand predictable
reliability, which can only be achieved if link charac-
teristics (packet dropout rate, round-trip-time) and the
application constraints (as defined by the agreements)
are considered. This information is used to parameterize
an Adaptive Hybrid Automatic Repeat reQuest (AHARQ)
scheme (Gorius (2012)) to optimize the number of redun-
dancy packets to be generated, which are then transmitted
either proactively, using forward error coding (FEC), or
reactively, using automatic repeat request (ARQ). The
AHARQ scheme finds the optimal balance between FEC
and ARQ as network conditions change. As the choice
of coding parameters is further influenced by energy as-
pects and computing it is non-trivial, we are investigating
learning-based approaches that allow to deploy AHARQ
schemes on embedded devices with constrained power sup-
ply and computing resources.

3.3 Predictably Reliable Real-time Transport (PRRT)

Both cross-layer pacing and AHARQ support control-
communication agreements and are implemented in the
PRRT protocol. PRRT further supports agreements by
taking a tolerable AoI and a tolerable PD as socket
parameters. This has been analysed by Gallenmüller et al.
(2019) to show how the reproducible timing behaviour of
PRRT over wireless networks can support controllers.

First of all, PRRT is aware of the network and system con-
ditions and hence able to notify the application in case the

PE=3

0

t

send()

1

3

recv asap()
returns P
recv ordered()
returns P

w = 1

P expired

Fig. 3. Several receive calls support the different needs
of controllers and govern, for instance, whether the
expiry date (E) is used to delay the receiver-side
delivery to the controller.

2× 101 3× 101 4× 101

E2E Delivery Time [ms]

0.0

0.5

1.0

C
D

F TCP-CUBIC

TCP-BBR

PRRT

DTopt

Fig. 4. Using cross-layer pacing, PRRT provides bet-
ter communication characteristics than optimized
TCP (cf. Schmidt et al. (2019)).

agreement cannot be fulfilled temporarily—allowing the
control application to take appropriate actions. Addition-
ally, PRRT’s send and receive calls are designed in a way
that they can support different applications with different
communication approaches. Send-calls can, in combination
with pacing, ensure that a controller can only send a packet
when the end-to-end processing and communication chain
is “free” (as governed by the pacing mechanisms), ensuring
low age-of-information for the sent message.

PRRT further provides multiple receive calls to sup-
port different control strategies, as depicted in Fig. 3.
recv asap() delivers packets as-soon-as-possible, which
makes channel-reordering visible to the application. There-
fore, the tolerable AoI is only used to discard packets when
the constraint cannot be met. recv ordered() delivers
packets that are close to their deadline, i.e. packets arrive
at the application in-time. The application defines a win-
dow w to state how long before the deadline the packet is
considered in-time, thereby controlling residual reordering.

Using PRRT’s unique features, we are able to achieve
delivery times that are predictably low, as can be seen
in Fig. 4. The evaluation compares versions of TCP op-
timized for low-latency (i.e. with small buffers, disabled
aggregation, and several other flags and options set)
with PRRT. This has been carried out over the Inter-
net (RoundTripTime = 30 ms, DataRate = 10 Mbit/s),
where all transport variants are competing with other
traffic and have to face queues that are induced by others.
In private networks with less cross-traffic, PRRT is able to
operate even closer to the optimum (not shown here).

The PRRT procotol is openly available 1 and comes with
a C and a Python API that allow it to be used in
various networked control applications. So far, PRRT is

1 http://prrt.larn.systems

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2640



implemented on top of UDP in most scenarios, but PRRT’s
approaches do neither rely on UDP nor on IP. If a system
implements routing/forwarding and process multiplexing,
PRRT can be used to provide transport with predictable
reliability and real-time characteristics. Finally, PRRT is
analyzed using the X-Lap 2 tool for runtime, cross-layer,
and intra-host analysis of transport stacks for latency and
energy (cf. Reif et al. (2019b)). This tool reveals how much
latency and jitter each processing step causes to messages.

4. FUTURE WORK

Control in wirelessly networked CPS is challenging as
the used devices are fundamentally different from existing
solutions. These devices have constrained computation,
storage, communication, as well as power resources. These
constraints demand system-aware solutions, i.e. that can
fulfil agreements in spite of these constraints (Reif et al.
(2019a)). Limited power supply is increasingly relevant
as many control systems are mobile and energy costs are
likely to increase in the next decades. Therefore, transport
services for CPS must not only be latency- and resilience-
aware, but also energy-aware. With this awareness, the
next step is adaptiveness—allowing trade-offs between
latency and energy, e.g. in the cross-layer pacing scheme
by slowing down processing steps.

Furthermore, the agreements mentioned before only use
scalar upper bounds on AoI and PD over a configurable
window of time. Future work is going to consider models
with higher expressiveness, i.e. using distributions instead
of scalars and use confidence intervals around the distri-
bution to model the area in which the actual distribution
should fall to be acceptable to the controller. In addition,
controllers may assign different values to different mes-
sages, so that a value-of-information metric can be con-
sidered that is depending on (a) the category of message
and (b) the age of the message. As higher expressiveness
comes with higher complexity, these approaches are going
to be investigated with respect to practical, constrained
devices on which future wireless control systems are built.

These challenges are investigated in the Energy-, Latency-
And Resilience-aware Networking (e.LARN) project 3 .

5. CONCLUSION

Upcoming networked CPS incorporate controllers that
must increasingly deal with the unique features of wireless
communication. Therefore, it is essential that the control
and communication domains formalize agreements that
describe under which communication conditions a system’s
stability can be ensured. The presented PRRT protocol
leverages a first form of these agreements by consider-
ing the maximum age-of-information as well as maximum
packet-dropout of a controller—and notifies the controller
if these can no longer be fulfilled, allowing countermeasures
to be taken. PRRT uses error and rate control to provide
the adequate service to the controller; using unconven-
tional approaches such as cross-layer pacing and adaptive
hybrid error control, thereby providing better services to
control applications than other transport protocols, such
2 http://xlap.larn.systems
3 http://larn.systems

as TCP, even when those contenders are tuned for low-
latency. Based on this, future PRRT versions are expected
to support application constraints that go beyond single
scalar values—allowing control engineers to better model
their requirements towards the transport service.

REFERENCES

Baillieul, J. and Antsaklis, P.J. (2007). Control and com-
munication challenges in networked real-time systems.
Proc. of the IEEE, 95(1), 9–28.

Branicky, M.S., Phillips, S.M., and Zhang, W. (2000).
Stability of networked control systems: Explicit anal-
ysis of delay. In Proc. of the 2000 American Control
Conference., volume 4, 2352–2357. IEEE.

Chwa, H.S., Shin, K.G., and Lee, J. (2018). Closing the gap
between stability and schedulability: a new task model
for cyber-physical systems. In 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium
(RTAS), 327–337. IEEE.

Gallenmüller, S., Glebke, R., Günther, S., Hauser, E.,
Leclaire, M., Reif, S., Rüth, J., Schmidt, A., Carle,
G., Herfet, T., Schröder-Preikschat, W., and Wehrle,
K. (2019). Enabling wireless network support for gain
scheduled control. In Proc. of the 2nd Intl. Workshop
on Edge Systems, Analytics and Networking, EdgeSys,
36–41. ACM, Dresden, Germany.

Gettys, J. and Nichols, K. (2012). Bufferbloat: Dark
Buffers in the Internet. Communications of the ACM,
55(1), 57 – 65.

Gorius, M. (2012). Adaptive Delay-constrained Internet
Media Transport. Ph.D. thesis, Saarland University.

Lee, E.A. (2008). Cyber Physical Systems: Design Chal-
lenges. In Proc. of the 11th IEEE Intl. Symposium on
Object and Component-Oriented Real-Time Distributed
Computing (ISORC).

Leith, D. and Leithead, W. (2000). Survey of gain-
scheduling analysis and design. Intl. Journal of Control,
73(11), 1001–1025.

Nichols, K. and Jacobson, V. (2012). Controlling Queue
Delay. Communications of the ACM, 55(7), 42–50.

Ohno, T. (1988). Toyota Production System: Beyond
Large-scale Production. CRC Press.

Reif, S., Gerhorst, L., Bender, K., and Hönig, T. (2019a).
Towards low-jitter and energy-efficient data processing
in cyber-physical information systems. In Proc. of
the 52nd Hawaii Intl. Conference on System Sciences,
HICSS. IEEE, Maui, Hawaii, USA.

Reif, S., Schmidt, A., Hönig, T., Herfet, T., and Schröder-
Preikschat, W. (2019b). ∆elta: Differential energy-
efficiency, latency, and timing analysis for real-time
networks. ACM SIGBED Review, 16(1), 33–38. Special
Issue on 16th Intl. Workshop on Real-Time Networks.

Saifullah, A., Wu, C., Tiwari, P.B., Xu, Y., Fu, Y., Lu,
C., and Chen, Y. (2014). Near Optimal Rate Selection
for Wireless Control Systems. ACM Trans. Embed.
Comput. Syst., 13(4s).

Satyanarayanan, M. (2017). The emergence of edge com-
puting. IEEE Computer, 50(1), 30–39.

Schmidt, A., Reif, S., Gil Pereira, P., Hönig, T., Herfet,
T., and Schröder-Preikschat, W. (2019). Cross-layer
pacing for predictably low latency. In Proc. of the 6th
Intl. IEEE Workshop on Ultra-Low Latency in Wireless
Networks, ULLWN. Paris, France.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2641


