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Jan Komenda, ∗ Tomáš Masopust, ∗,∗∗ Jan H. van Schuppen ∗∗∗

∗ Institute of Mathematics of the Czech Academy of Sciences (e-mail:
{komenda,masopust}@ipm.cz)

∗∗Faculty of Science, Palacky University in Olomouc
∗∗∗Van Schuppen Control Research (e-mail: jan.h.van.schuppen@xs4all.nl)

Abstract: Modular supervisory control is motivated by the gain in complexity of control synthesis of
supervisors. Sufficient conditions for maximal permissiveness of supervisors include mutual controlla-
bility and mutual normality. In this paper, we show how these conditions can be weakened. Namely, we
can relax the requirement that the conditions hold for all pairs of components by putting the tuples of
plants that do not satisfy the given condition for maximal permissiveness into different groups on an
intermediate level of abstraction.
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1. INTRODUCTION

A modular discrete-event system (DES) is defined as the paral-
lel composition of two or more discrete-event systems. Most
current-day engineering systems are networked systems, i.e.
modular DES Hering de Queiroz and Cury (2000). Examples of
modular DES with a large number of components are an MRI
scanner of Theunissen et al. (2014) that we treated in our re-
laxed coordination control framework in Komenda et al. (2015),
or controllers for theme-park vehicles studied by Forschelen
et al. (2012). Modular computation of supervisors has also been
combined with the hierarchical computation (reduced supervi-
sors) by Schmidt et al. (2006).

To ensure that the joint action of locally computed supervisors
is maximally permissive, the conditions of mutual controlla-
bility and mutual relative observability have been proposed
by Wong and Lee (2002) and Komenda et al. (2019). The
known results in these papers then say that if the conditions
hold for all pairs of components, the maximal permissiveness
of locally computed supervisors is fulfilled.

In this paper, we relax the requirement that the conditions need
to hold for all pairs of components, by bringing a modular
DES into a multi-level tree structure that corresponds to a hi-
erarchical structure of partial synchronous products of (subsets
of) components. Multilevel hierarchical structures have already
been used in supervisory control by Goorden et al. (2017) to
achieve significant complexity savings. Our approach is, how-
ever, different, because it is based on structural conditions that
do not depend on specifications and the main issue is maximal
permissivenesses, while the authors of Goorden et al. (2017)
deal with general design issues and form a multi-level struc-
ture based on the coupling between the local components and
various control specifications.

We introduce the notions of multi-level mutual controllability
(MMC) and multi-level mutual relative observability (MMRO)
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as sufficient conditions to achieve, with help of the multi-level
structuring of a modular DES, the same behavior as with the
monolithic maximally permissive supervisor. The conditions
are weaker than mutual controllability and mutual relative
observability for flat modular systems. Our main result states
that a sufficient condition for MMC, respectively MMRO,
is that in all levels of the hierarchy for every subsystem in
one group (of sibling subsystems) there exists a subsystem in
other groups on the same level such that the former subsystem
is controllable, respectively relatively observable, wrt (with
respect to) the latter subsystem, and vice versa. It is based on a
simple formulation of sufficient conditions for controllability,
respectively relative observability of a synchronous product
of languages wrt another synchronous product of languages,
namely that for each individual language from the first product
there exists a language from the second product wrt which it is
controllable, respectively relative observable. Such a condition
is then weaker than the standard condition requiring these
properties to be satisfied for all pairs of local components. This
standard assumption is particularly restrictive in systems with a
large number of local components.

The controllability of a product of specifications wrt a modular
plant has been investigated in the literature, see, e.g., Akesson
et al. (2002); Brandin et al. (2004). Our approach is based
on the observation formulated above, applied to the concept
of mutual controllability that concerns only the plant (and not
also specifications as in the above works), and can be extended
to the properties under partial observations, namely to relative
observability.

Compared to our previous work in Komenda et al. (2016),
we use a general (multi-level) structure as in Goorden et al.
(2017). Moreover, we consider supervisors under partial ob-
servations, where maximal permissiveness of modular closed-
loops in terms of supremal relatively observable sublanguages
has been recently investigated by Komenda et al. (2019), and, in
this paper, the sufficient condition for maximal permissiveness
(mutual observability) is weakened (not required to hold among
all pairs of local plants) by organizing local subsystems into
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a tree structure. The main message of this paper is that using
multi-level hierarchy does not only help to deal with complex-
ity issues of large modular systems, but also helps to weaken
sufficient conditions for maximal permissiveness.

The paper has the following organization. Section 2 recalls nec-
essary definitions and concepts and results on which the paper
is based. In Section 3 a multi-level framework for large mod-
ular discrete-event systems is proposed. In Section 4 our main
results are presented, in particular weaker and computationally
efficient sufficient conditions for maximal permissiveness of
modular control synthesis. Conclusion is stated in Section 5.

2. PRELIMINARIES

For n ≥ 1, let Zn = {1,2, . . . ,n}. An alphabet E is a finite
nonempty set. A language over E is a subset of the set E∗ of
all finite sequences over E. The prefix closure of a language L
is L = {w ∈ E∗|∃ v ∈ E∗ wv ∈ L}. If L = L, L is prefix-closed.
In the sequel, we consider only prefix-closed languages.

A generator is a quadruple G = (Q,E, f ,q0), where Q is a
finite set of states, E is an alphabet, f : Q×E → Q is a partial
transition function, and q0 ∈Q is the initial state; as usual, f can
be extended to the domain Q×E∗ by induction. The language
generated by G is the set L(G) = {s ∈ E∗ | f (q0,s) ∈ Q}.
A controlled generator is a triple (G,Ec,Γ), where G is a gener-
ator over E, Ec⊆E is a set of controllable events, Eu =E \Ec is
the set of uncontrollable events, and Γ= {γ ⊆ E | Eu ⊆ γ} is the
set of control patterns. A supervisor for a controlled generator
(G,Ec,Γ) is a map S : L(G)→ Γ. The closed-loop system asso-
ciated with a controlled generator (G,Ec,Γ) and a supervisor S
is the minimal language L(S/G) such that ε ∈ L(S/G) and, for
every s ∈ L(S/G) with sa ∈ L(G) and a ∈ S(s), sa ∈ L(S/G).
Intuitively, the supervisor disables some transitions of G, but
never a transition labeled by an uncontrollable event.

A (prefix-closed) language K ⊆ E∗ is controllable wrt a lan-
guage L ⊆ E∗ and Eu if KEu ∩ L ⊆ K. Controllability is pre-
served by language unions, which means that the supremal
sublanguage of K that is controllable wrt L and Eu, always
exists, and we denote it by supC(K,L).

Let G be a generator over an alphabet E. Given a specification
K ⊆ L(G), the aim of supervisory control is to find a supervisor
S such that L(S/G) = K. Such a supervisor exists if and only if
K is controllable wrt L(G) and Eu, cf. Cassandras and Lafortune
(2008); Wonham and Cai (2019).

A projection P : A∗ → B∗, for B ⊆ A, is a homomorphism
defined as P(a) = ε , for a ∈ A \B, and P(a) = a, for a ∈ B.
The inverse image of P, denoted by P−1 : B∗→ 2A∗ , is defined
as P−1(w) = {s ∈ A∗ | P(s) = w}. These definitions can be
naturally extended to languages.

In supervisory control with partial observations, an additional
property, called observability, is required to achieve a given
specification language in the closed-loop system. We use a
stronger property, relative observability, introduced by authors
of Cai et al. (2015), which is stronger than observability, but
weaker than normality. Moreover, it preserves language unions.
Let K ⊆C ⊆ L be languages. Language K is C-observable wrt
L and Eo if for every w ∈ K and w′ ∈ C with P(w) = P(w′),
and for every a ∈ E, if wa ∈ K and w′a ∈ L, then w′a ∈ K.
Note that there is a second condition in the original definition
of relative observability that concerns the prefix closures, which

is not relevant to our study that only concerns prefix-closed
languages. The supremal sublanguage of K, C-observable wrt
L, exists and we denote it by supRO(K,C,L).

The preservation under synchronous composition has recently
been extended by Komenda et al. (2019) to the case of supremal
relatively observable sublanguages. We studied two concepts
of mutual relative observability depending on whether the ref-
erence language C is equal to the specification or to the plant
language. It is more natural in the context of this paper to
have purely structural conditions that depend on the plant only,
i.e., we consider a stronger version of relative (C-)observability,
namely with C = L instead of C =K. Thus, in this paper, we use
C = L, and hence we simplify the notation of supRO(K,L,L)
to supRO(K,L), meaning the supremal sublanguage of K that
is L-observable wrt L. Note that relative observability is still
weaker than normality even in the case C = L.

The synchronous product of languages Li ⊆ E∗i , i ∈ Zn, is
defined as ‖n

i=1Li = ∩n
i=1P−1

i (Li), where Pi : (∪n
j=1E j)

∗ → E∗i
are projections to local event sets. In terms of generators,
L(‖n

i=1Gi) = ‖n
i=1L(Gi), cf. Cassandras and Lafortune (2008).

In the sequel, if a modular plant G = ‖n
i=1Gi is considered, we

denote the local plant languages L(Gi) by Li, and the overall
language L(G) by L, i.e. we have L = ‖n

i=1Li.

We recall that a language K ⊆ E∗ is decomposable wrt (local)
event subsets Ei, i = 1, . . . ,n, if K = ‖n

i=1Pi(K). It is well known
that K is decomposable wrt Ei, i = 1, . . . ,n if and only if there
exists local languages Ki ⊆ E∗i such that K = ‖n

i=1Ki.

Partial observation is denoted by projection Q : E∗ → E∗o with
Eo ⊆ E, the set of observable events. The standard definition
is that controllable and observable event sets are universal
and locally (un)observable and (un)controllable event sets are
simply given by the intersection with Ei.
Definition 1. Existence of universal uncontrollable and observ-
able event sets. Consider a modular DES. There exists event
subsets Eu, Eo ⊆ E such that for all i ∈ Zn the set of locally un-
controllable events is Eu

i = Ei∩Eu and set of locally observable
events is Eo

i = Ei∩Eo.

Local partial observations are then denoted by projections
Qi : E∗i → Eo

i
∗.

Since the number of states of a modular system ‖n
i=1Gi is expo-

nential in the number of components, the monolithic supervi-
sors for the whole composed plant are considered as computa-
tionally unfeasible if the number of components is large. On the
other hand, computationally attractive local control synthesis,
i.e. computation of supervisors Si for individual Gi, i = 1, . . . ,n
with local closed-loop Si/Gi, suffers even in the prefix-closed
case from lack of maximal permissiveness. Namely, it appears
that local (modular) closed-loop ‖n

i=1Si/Gi is typically strictly
included in the monolithic closed-loop S/(‖n

i=1Gi). Let us recall
that under complete observations maximally permissive mono-
lithic closed-loop S/(‖n

i=1Gi) equals the supremal controllable
sublanguage.

We now recall the concepts of mutual controllability of Wong
and Lee (2002) and mutual relative observability of Komenda
et al. (2019) as sufficient conditions for maximal permissive-
ness of local control synthesis.
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Definition 2. Languages Li ⊆ E∗i , i= 1, . . . ,n are mutually con-
trollable wrt (Eu

i ∩E j) if, for every i 6= j, P−1
i (Li)(Eu

i ∩E j)∩
P−1

j (L j)⊆ P−1
i (Li).

The original definition of mutual controllability of Wong and
Lee (2002) was slightly different, namely controllability of Li
was required wrt PiP−1

j (L j) ⊆ E∗i . However, the above defini-
tion that is computationally more attractive (only inverse pro-
jections are used) is shown to be equivalent to mutual control-
lability in the extended version of Komenda et al. (2019) pub-
lished on arxiv. The following result then follows from Wong
and Lee (2002).
Theorem 3. Let ‖n

i=1Ki ⊆ ‖n
i=1Li with languages Ki,Li ⊆ E∗i be

such that the languages L1, . . . ,Ln are mutually controllable.
Then the local control synthesis is maximally permissive, that
is, supC(‖n

i=1Ki,‖n
i=1Li) = ‖n

i=1supC(Ki,Li)

Relative observability, introduced by Cai et al. (2013, 2015)
is weaker than normality , while it still preserves language
unions. Let K ⊆ C ⊆ L. K is C-observable wrt L and Eo if
(∀w ∈ K)(∀w′ ∈C) P(w) = P(w′)⇒ (∀a ∈ E)(wa ∈ K∧w′a ∈
L⇒ w′a ∈ K). The supremal sublanguage of K, C-observable
wrt L, exists and we denote it by supRO(K,C,L). In this paper,
we use C = L and we simplify supRO(K,L,L) to supRO(K,L).
Thus, by supRO(K,L) we mean the supremal sublanguage of
K that is L-observable wrt L.

The preservation under synchronous composition has recently
been extended by Komenda et al. (2019) to the case of supre-
mal relatively observable sublanguages. We have studied two
concepts of mutual relative observability depending on whether
the reference language C equals the specification or to the plant
language. It is more natural in the context of this paper to have
purely structural conditions that depend on the plant only, i.e.,
we consider a stronger version of relative (C-)observability,
namely with C = L instead of C = K. It is also possible to
consider C = K, but then all our results depend also on K. We
first recall the result by Komenda et al. (2019).

Note that for n = 2 the above definition means that L1 and
L2 are mutually relatively observable if P−1

1 (L1) is P−1
2 (L2)-

observable wrt P−1
2 (L2) and Eo,1 and P−1

2 (L2) is P−1
1 (L1)-

observable wrt P−1
1 (L1) and Eo,2.

We recall the result by Komenda et al. (2019), which is based
on relative observability of inversed projections of local plant
languages wrt one another and with reference language C given
also by these inverse projections.

Theorem 4. Given Ki ⊆ Li ⊆ E∗i , for i = 1,2. If P−1
1 (L1) is

P−1
2 (L2)-observable wrt P−1

2 (L2) and P−1
2 (L2) is P−1

1 (L1)-
observable wrt P−1

1 (L1), then

supRO(K1‖K2,L1‖L2)⊆supRO(K1,L1)‖supRO(K2,L2).

Note that this inclusion means that local control synthesis is at
least as permissive as the global control synthesis. The opposite
inclusion is considered as obvious in modular control with
prefix-closed specification languages. The extension of this
result to n≥ 2 is straightforward and used below. We now define
mutual relative observability.
Definition 5. The languages L1, . . . ,Ln are mutually relatively
observable if for all i, j ∈ {1, . . . ,n}, i 6= j, P−1

i (Li) is P−1
j (L j)-

observable wrt P−1
j (L j) and Eo,i.

We have the following consequence of Theorem 4.
Theorem 6. Let ‖n

i=1Ki ⊆ ‖n
i=1Li be such that the languages

L1, . . . ,Ln are mutually relatively observable. Then the local
control synthesis is maximally permissive, that is, it holds
for all specification languages that supRO(‖n

i=1Ki,‖n
i=1Li) =

‖n
i=1supRO(Ki,Li)

3. MULTILEVEL APPROACH TO SUPERVISORY
CONTROL

A multi-level framework has been proposed by Goorden et al.
(2017), where the authors consider a modular plant with a
large number of specifications. From a different viewpoint, the
global specification is decomposed into a set of specifications,
each concerning only a small number of components. The
multi-level structure is then designed based on the degree
of interaction of different components, given by coupling of
components via specifications. Otherwise stated, the degree of
interaction between two components is defined as the number
of specifications they share.

A Design Structure Matrix (DSM) is a measure of interaction
between components in a large modular system and it is used
for multi-level clustering that may be viewed as building a
hierarchical block structure. The block structure of a design
structure matrix depends on an optimization criterion chosen,
see the example in Wilschut et al. (2017). It requires further
research to select an appropriate optimization criterion for each
example. Clustering algorithms first compute a permutation of
the rows and columns of the original matrix such that strongly
related components form a cluster (block in the matrix) and the
blocks are further divided into smaller blocks.

In this paper, we use multi-level structuring of local plants in
order to weaken structural conditions of modular supervisory
control that guarantee maximal permissiveness, an issue that is
not discussed in Wilschut et al. (2017), where computational
advantage of multi-level structuring is illustrated without per-
formance analysis consisting in comparing the resulting closed-
loop with the one obtained by the monolithic supervisor. The
multi-level tree structure of a modular system is based solely
on the local plants and not on the specifications. For simplicity
we consider a decomposable (local) specification, because it is
known that problems with global specifications can be replaced
by local ones using conditional decomposability Komenda et al.
(2012) and its extension (weakening) using more levels in the
hierarchy. We show that multi-level structuring helps to weaken
the sufficient structural condition from the flat control architec-
ture (purely modular).

3.1 Multi-level structuring of modular DES

We consider a large modular plant G= ‖n
i=1Gi with its language

L = L(G) = ‖n
i=1Li and a specification language K ⊆ A∗ that is

decomposable wrt (Ei)
n
i=1, i.e. K =‖n

i=1 Pi(K) or (equivalently
Willner and Heymann (1991)) there exist local languages Ki ⊆
E∗i such that K = K1‖ . . .‖Kn.

A multi-level tree structure over {1,2, . . . ,n} is obtained as
follows, see Fig. 1. Let ` ≤ n be the number of (hierarchical)
levels in the tree. At the top level we have the top element
of the tree, namely (1,1), which corresponds to the whole set
of indices of the subsystems {1,2, . . . ,n}. This set is split into
two or more subsets such that the union of the subsets is again
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{1,2,3,4,5,6,7,8}

{1,2,3,4}

{1,2}

{1} {2}

{3,4}

{3} {4}

{5,6,7,8}

{5,6}

{5} {6}

{7,8}

{7} {8}

Fig. 1. Example of a tree structure of a multi-level clustering.

{1,2, . . . ,n}. This way we continue all the way to the bottom
level, where we have n singleton sets, namely {1}, . . . ,{n}.
Element (m, i) ∈ T of the tree then denotes the ith subset (of
{1,2, . . . ,n}) from the left at the level m (counted from the
top). For example, (3,2) refers to the subindex set {3,4} A
simple example of such a tree structure is in Figure 1. Let
chi(i, j)⊆{1, . . . ,n} denote the set of all children of node (i, j),
and let par(i, j) denote the parent of node (i, j). We use chi∗ for
the transitive closure of chi(i, j) with an obvious meaning.

In terms of plant languages, such a tree over {1,2, . . . ,n}
induces the corresponding hierarchical tree of (partial) syn-
chronous products of subsystems, namely the product of sub-
systems with indexes from (m, i) ∈ T , i.e. G(m,i) = ‖ j∈(m,i)G j.
At the lowest level, we have one element subsets of {1,. . . ,n},
i.e. {i}, i = 1, . . . ,n. These corresponds to local plants Gi, i =
1, . . . ,n, that is, we have G(`,i) =Gi for i= 1, . . . ,n. The systems
are composed into groups (`− 1, i) ∈ T , for i = 1, . . . ,n`−1 at
the second lowest level consisting of the respective plants, i.e.,
Gi, i ∈ (`− 1, i). These groups are further merged into large
groups at the next higher level until at the top level there is a
singleton (1,1)∈ T with the meaning of the whole composition,
i.e., G1,1 = G1‖G2‖ . . .‖Gn.

Since for every (m, i) ∈ T we have simply (m, i) = { j =
1, . . . ,n : j ∈ (m, i)}, it is natural to define the tree structure
of plants as partial composition, i.e. Lm,i = ‖ j∈(m,i)L j. Note
that using this natural notation we have that for L =‖n

i=1 Li
it automatically holds that Lm,i = ‖(m+1,i′)∈chi(m,i)Lm+1,i′ for
m = 1, . . . , `− 1. For instance, for m = 1 this means that L =
L1,1 = ‖(2,i)∈chi(1,1)L(2,i).
We have for all levels m = 1, . . . , `−1, and for all (m, i) ∈ T

Lm,i = ‖(m+1,i′)∈chi(m,i)Lm+1,i′ , (1)

that is, Lm,i is decomposable wrt the alphabets (Em+1,i′), where
(m+1, i′) ∈ chi(m, i).

Similarly, it easily follows from decomposability of specifica-
tion language K, i.e. existence of local languages Ki ⊆ E∗i that
the tree structure over {K1, . . . ,Kn}, induced by tree structure T
over {1,2, . . . ,n}, defined by Km,i = ‖ j∈(m,i)K j, satisfies Km,i =
‖(m+1,i′)∈chi(m,i)Km+1,i′ for m = 1, . . . , `− 1. In particular, for
m = 1 we have

K = K1,1 = K1‖ . . .‖Kn = ‖(2,i)∈chi(1,1)K2,i.

We have for all m = 1, . . . , `−1, and for all (m, i) ∈ T \\

Km,i = ‖(m+1,i′)∈chi(m,i)Km+1,i′ , i.e. (2)

Km,i is decomposable wrt the alphabets (Em+1,i′)(m+1,i′)∈chi(m,i).

We use the following notation for alphabets, E(i, j) means the
alphabet of Gi, j, i.e. the union of alphabets of the subsystems of

which Gi, j is formed. The notation for uncontrollable, respec-
tively observable event subsets of E(i, j) are then Eu

(i, j) = Eu ∩
E(i, j), respectively Eo

(i, j) = Eo ∩E(i, j) to be consistent with no-
tation for flat modular systems. This structuring is illustrated in
the following example.
Example 1. Let G = G1‖G2 . . .‖G8 and `= 4. We can consider
the following 4-level tree structure on the set {1,2, . . . ,8}
displayed in Fig. 1. We have (4, i) = i for i = 1,2, . . . ,8. At the
second lowest level, we merge the lowest level nodes into four
groups, namely (3,1) = {1,2}, (3,2) = {3,4}, (3,3) = {5,6},
and (3,4) = {7,8}. At the second highest level, we have only
two groups (2,1) = {1,2,3,4} and (2,2) = {5,6,7,8}. Finally,
at the highest level, all nodes are merged into a single top node,
i.e., (1,1) = {1,2, . . . ,8}. The corresponding partial modular
plants are then: G(4,i) = Gi for i = 1,2, . . . ,8. We have, for
instance, G(2,1) =G1‖G2‖G3‖G4 with E2,1 = E1∪E2∪E3∪E4.

4. COMPARISON OF MODULAR AND MONOLITHIC
SUPERVISORS

In this section, we propose weaker and computationally ef-
ficient sufficient conditions for modular control synthesis to
equal monolithic control synthesis based on multi-level struc-
ture of the last section. Consider a large modular DES G =
‖n

i=1Gi. It is interesting to look for weaker sufficient conditions
for achieving equality supRO(K,L) = ‖n

i=1supRO(Pi(K),Li)
than mutual relative observability, cf. Theorem 3. We show
that the concepts of multilevel mutual controllability and multi-
level mutual normality are such sufficient conditions, which are
weaker then standard structural condition of mutual controlla-
bility and mutual normality.
Definition 7. A modular DES with a multilevel structure T is
multilevel mutually controllable (MMC) if, for m = 1, . . . , `−1,
every (m, i) ∈ T , and every (m + 1, j),(m + 1, j′) ∈ chi(m, i)
such that (m+ 1, j) 6= (m+ 1, j′) , the languages L(m+1, j) and
L(m+1, j′) are mutually controllable wrt Eu

(m+1, j)∩E(m+1, j′). /

Similarly, we have the following concept.
Definition 8. A modular DES with a multilevel structure T
is multilevel mutually relatively observable (MMRO) if, for
m = 1, . . . , `− 1, every (m, i) ∈ T , and every (m+ 1, j),(m+
1, j′)∈ chi(m, i) such that (m+1, j) 6= (m+1, j′), the languages
L(m+1, j) and L(m+1, j′) are mutually relatively observable as
defined in Definition 5. /

We are now ready to state the following result.
Theorem 9. Let G = ‖n

i=1Gi and let K = ‖n
i=1Ki be decompos-

able wrt local event sets (Ei)
n
i=1. If there exists a tree struc-

ture over local plants such that the modular plant is MMC,
then for any decomposable specification K, supC(K,L) =
‖n

i=1supC(Ki,Li). 2

For supremal relatively observable sublanguages we have the
following result.
Theorem 10. Let G= ‖n

i=1Gi and let K = ‖i=1n Ki be decompos-
able wrt local event sets (Ei)

n
i=1. If there exists a tree structure

over local components such that the modular plant is MMRO,
then for any decomposable specification K, supRO(K,L) =
‖n

i=1supRO(Ki,Li).

Theorems 9 and 10 can be generalized to the case of indecom-
posable specifications using multi-level conditional decomposi-
tion proposed by Komenda et al. (2016) for three levels (`= 3).
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It can be easily extended to the general number of levels based
on the concept of tree decomposition. Specifically, we can ex-
tend the formula of equation (2) to non decomposable speci-
fications by replacing the partial products of local languages
with projections of a global language to the alphabets of these
products enriched by coordinator events whenever necessary.
However, in this paper we deal with the special case of a
decomposable specification language, hence our approach is
based on an arbitrary tree structure that will satisfy MMC and
MMRO conditions. This is useful in the case, where some local
plant languages (say Li and L j,) are not mutually controllable
or are not mutually observable, because these plants can be put
into different groups on an intermediate level of abstraction and
we will show (based on Propositions 11 and 12 below) that we
do not always need Li and L j to be mutually controllable and
mutually observable for MMC and MMRO to hold true.

We will propose in Theorem 13 computationally efficient con-
ditions, which involve only local plants and no partial com-
position of local plants need to be computed. Theorem 13 is
based on the following result, which gives a weaker sufficient
condition for controllability of one synchronous product wrt
another synchronous product. Note that a similar property is
known from Brandin et al. (2004).
Proposition 11. Consider languages K j ⊆ E∗j , j ∈ L , with
E1 = ∪ j∈L E j, and Lm ⊆ E∗m, m ∈M , with E2 = ∪m∈M Em for
disjoint index sets L and M . If (1) for every j ∈ L , there
exists m ∈M such that P−1

j (K j) is controllable wrt P−1
m (Lm)

and Eu
j ∩ E2, and (2) for every m ∈M , there exists j ∈ L

such that P−1
m (Lm) is controllable wrt P−1

j (K j) and Eu
m ∩ E1,

then ‖ j∈L K j is mutually controllable wrt ‖m∈M Lm.

For relative observability the condition of Theorem 13 is based
on the following result.
Proposition 12. Consider languages K j ⊆ E∗j , j ∈ L , with
E1 = ∪ j∈L E j, and Lm ⊆ E∗m, m ∈M , with E2 ∪m∈M Em for
disjoint index sets L and M . If (1) for every j ∈ L there
exists m ∈M such that P−1

j (K j) is P−1
m (Lm)-observable wrt

P−1
m (Lm) and Eo

j , and (2) for every m ∈M there exists j ∈L

such that P−1
m (Lm) is P−1

j (K j)-observable wrt P−1
j (K j) and Eo

m,
then ‖ j∈L K j and ‖m∈M Lm are mutually relatively observable.

The following example illustrates the previous result.
Example 2. Consider the languages L1, L2, L3 defined by the
respective generators of Fig. 2, where the set of uncontrollable
events is {u1,u2}. It can be verified that the languages L1
and L2 are mutually controllable as well as the languages L1
and L3. However, the languages L2 and L3 are not mutually
controllable, because the language P−1

3 L3 is not controllable
wrt P−1

2 (L2) and {u1}. Consequently, we cannot use Theorem 3
to conclude that the locally computed supervisors are optimal.

However, notice that both L1 and L2 are controllable wrt L3,
and L3 is controllable wrt L1 and the set {u1,u2}. Then, by
Proposition 11, L1‖L2 and L3 are mutually controllable.

Thus, if the specification can be decomposed wrt the structure
{L1,L2} and {L3} (it is implied, e.g., by K = ‖3

i=1Pi(K)), we
obtain optimality of the composition of locally computed su-
pervisors. Indeed, if Ki ⊆ Li, i = 1,2,3, are local specifications,
then, by Theorem 3, we have that supCN(K1‖K2,L1‖L2) =
supCN(K1,L1) ‖ supCN(K2,L2). Moreover, since L1‖L2 and

Fig. 2. Generators for languages L1, L2, and L3, respectively

L3 are mutually controllable, Theorem 3 implies that

supCN((K1‖K2) ‖ K3,(L1‖L2) ‖ L3)

= supCN(K1‖K2,L1‖L2) ‖ supCN(K3,L3)

= supCN(K1,L1) ‖ supCN(K2,L2) ‖ supCN(K3,L3) /

From Propositions 11 and 12 we can derive the following
computationally efficient result, which formulates a sufficient
condition for modular system to be MMC and MMRO.
Theorem 13. If for m = 1, . . . , `−1, (m, i) ∈ T and every (m+
1, j) 6= (m+1, j′) ∈ chi(m, i),

(1) for every (`,k)∈ (m+1, j), there exists (`,k′)∈ (m+1, j′)
such that L`,k is controllable wrt L`,k′ and Eu

(`,k)∩E(m+1, j′)
and L`,k′ -observable wrt L`,k′ and Eo

(`,k), and
(2) for every (`,k′)∈ (m+1, j′), there exists (`,k)∈ (m+1, j)

such that L`,k′ is controllable wrt L`,k and Eu
(`,k′)∩E(m+1, j)

and L`,k-observable wrt L`,k and Eo
(`,k′),

then the conditions MMC and MMRO both hold true.

It should be clear that in view of Theorems 9 and 10 the
previous result (Theorem 13) states sufficient conditions for
maximal permissiveness that are weaker than known results,
e.g. requiring structural conditions of mutual controllabilty to
hold for every pair of local plants.

Example 3 illustrates how MMC and MMRO get weaker with
the growing number of levels.
Example 3. Let G=G1‖ . . .‖G8 and consider multi-level struc-
ture of this modular plant depicted in Fig. 1.

The centralized closed-loop is given by ‖8
i=1L(Si/Gi). Given a

decomposable specification K = ‖8
i=1Pi(K), one computes max-

imally permissive local supervisors as ‖8
i=1supCN(Pi(K),Li),

where Li = L(Gi). A sufficient condition for equality with
monolithic supC(K,L) is according to Theorem 3 mutual con-
trollability and for supRO(K,L) mutual relative observability
of Li wrt Li′ for all i 6= i′ ∈ {1, . . . ,8}. Hence, 56 conditions
are required for both mutual controllability and mutual relative
observability (all pairs of subsystems).

Now, using the multi-level coordination control architecture,
we need (cf. Theorem 9) to check multi-level mutual control-
lability and multi-level relative observability. According to the
definition of MMC we need to check that

• L2,1 = L1‖L2‖L3‖L4 and L2,2 = L5‖L6‖L7‖L8 are mutu-
ally controllable.

• for every (2, i) ∈ chi(1,1) and every (3, j) 6= (3, j′) ∈
chi(2, i), L3, j and L3, j′ are mutually controllable.

• for every (3, i) ∈ T and every (4, j) 6= (4, j′) ∈ chi(3, i),
L4, j and L4, j′ are mutually controllable.
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However, we know from Theorem 13 that it suffices to check
that for every (`,k)∈ (2,1), there exists (`,k′)∈ (2,2) such that
L(`,k) is controllable wrt L(`,k′) and Eu

(`,k) ∩ E(m, j′). Otherwise
stated, for the first condition to hold true it suffices that for
all i = 1,2,3,4, there exists j ∈ {5,6,7,8} such that Li is
controllable wrt L j. This is stated in the first item (m = 2) of
Theorem 13. Note that this follows directly from Proposition 11
on which Theorem 13 is based. We thus need in principle
only 4× 2 = 8 conditions of mutual controllability instead of
requiring mutual controllability of all pairs in modular control.

The second item (m = 3) requires that for (2,1) ∈ chi(1,1),
L3,1 = L1‖L2 and L3,2 = L3‖L4 are mutually controllable, and
for (2,2) ∈ chi(1,1), L3,3 = L5‖L6 and L3,4 = L7‖L8 are mu-
tually controllable. By Propositions 11 it suffices that for all
i ∈ {1,2}, there exists j ∈ {3,4} such that Li is controllable wrt
L j and vice versa, for all j ∈ {3,4} there exists i ∈ {1,2} such
that L j is controllable wrt Li. Similarly, it suffices that for all
i ∈ {5,6}, there exists j ∈ {7,8} such that Li is controllable wrt
L j and vice versa.

Finally, recalling that L4, j = L j = L(G j), then the last item
requires that L1 and L2 are mutually controllable, L3 and L4
are mutually controllable, L5 L6 are mutually controllable, and
L7 and L8 are mutually controllable. Clearly for the second
and third items we also need 8 conditions per item. Thus, we
need in total 8×3 = 24 controllability conditions as opposed to
8×7 = 56 conditions required by modular architecture.

Similarly, if this example is extended to 16 components orga-
nized in a binary tree with 5 levels, we would obtain even more
impressive weakening of MMC and MMRO conditions that
guarantee maximal permissiveness in the multi-level coordina-
tion architecture compared to the pairwise mutual controllabil-
ity and relative observability of centralized coordination, where
in total 2×16×15= 480 conditions would be required. For this
example we would need only 16 conditions for all m= 2,3,4,5,
i.e. 64 conditions, which is already much less than 480 condi-
tions needed for flat modular system. Note however that the
interest is not in the number of conditions to be checked, but
rather in the fact that we have weaker sufficient conditions for
maximal permissiveness, because much less pairs need to be
mutually controllable and mutually relatively observable.

The last example illustrates that replacing flat modular structure
by adding more levels for the same system not only brings
better complexity, but can be also used for proving that even
for purely modular control addressed in this paper maximal
permissiveness holds under weaker sufficient conditions.

5. CONCLUDING REMARKS

We have shown that multi-level(tree) architecture for large
modular DES is not only useful for complexity savings as
already documented in the literature, but also for weakening
sufficient structural conditions that guarantee maximal permis-
siveness of locally computed (modular) supervisors. We plan to
extend the results to the case of non decomposable specifica-
tions using multi-level conditional decomposability.
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