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Abstract: The introduction of new technologies and increased penetration of renewable
resources is altering the power distribution landscape which now includes a larger number of
micro-generators. The centralized strategies currently employed for performing frequency control
in a cost efficient way need to be revisited and decentralized to conform with the increase of
distributed generation in the grid. In this paper, the use of Multi-Agent and Multi-Objective
Reinforcement Learning techniques to train models to perform cost efficient frequency control
through decentralized decision making is proposed. More specifically, we cast the frequency
control problem as a Markov Decision Process and propose the use of reward composition
and action composition multi-objective techniques and compare the results between the two.
Reward composition is achieved by increasing the dimensionality of the reward function, while
action composition is achieved through linear combination of actions produced by multiple
single objective models. The proposed framework is validated through comparing the observed
dynamics with the acceptable limits enforced in the industry and the cost optimal setups.
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1. INTRODUCTION

Over recent years, the field of electrical power systems has
been experiencing the beginning of what may prove to be a
structural transformation. Renewable resources have been
increasing their penetration in the marketplace, which
may displace traditional sources. Decreasing costs of solar
panels lead to increased adoption in households, to the
extent that there are already legal provisions for household
customers to sell stored energy back into the electrical
grid as mentioned in Ambrose (2019). Vehicle to grid and
smart charging technologies are posed to enable electric
cars to contribute to balancing the power grid see, e.g.,
Steitz (2019). This represents a significant increase in the
complexity of the grid, shifting away from a small number
of large scale producers to include an ever increasing
number of micro-sized sources in the form of individual
households, electric cars, etc. Such manifold structure, in
turn, will intensify the need for intelligent, automated and
decentralized control solutions. Modern electrical energy
distribution is largely done by means of wide-ranging
synchronous grids. Being synchronous means the entirety
of the grid is electrically connected and thus every element
attached to the grid shares the same observed operating
frequency. This is true for both the consumers as well as
the producers (generators). In these systems the observed
operating frequency changes over time according to i)
the total power being injected into the system by all the
generators; ii) the total power being consumed by all loads.
To electrically balance the system, independent system
operators (ISOs) send signals to generators to modify their
output such that load and generation are balanced and the
system frequency is nominal.

Multiple techniques have already been proposed to achieve
frequency control decentralization. From a traditional con-
trol standpoint, Apostolopoulou et al. (2015a) propose

methods for approximating the automatic generation con-
trol (AGC) algorithm while solving the economic dispatch
in semi-decentralized fashion by restricting the Balancing
Authority (BA) areas communication and, thus, avoid-
ing congestion associated with the exponential increase
of connections in the network (see Apostolopoulou et al.
(2015a) and Apostolopoulou et al. (2015b)). Additionally,
Model Predictive Control (MPC) techniques have been
proposed to perform decentralized frequency control whilst
satisfying predetermined constraints (see Ali et al. (2017),
Kumtepeli et al. (2016) and Heydari et al. (2019)). In the
Reinforcement Learning realm, Rozada (2018) proposes
the use of Multi-Agent Reinforcement Learning (MARL)
techniques, more specifically, the Multi-Agent Deep De-
terministic Policy Gradient (MADDPG) algorithm, which
proved able to successfully perform primary and secondary
control but failed to perform tertiary control. Despite
being separate layers of control, both primary and sec-
ondary control share a common overarching objective re-
lated to frequency deviation. Tertiary control, however, is
associated with a slightly different objective: to minimize
the total cost of electricity production. These differences
in objective alignment could explain why the MAADPG
algorithm, as implemented in said paper, successfully per-
formed primary and secondary controls but failed with
tertiary control. For this end, this paper proposes the addi-
tion of Multi-Objective Reinforcement Learning (MORL)
techniques to the algorithm.

In this paper we propose an Reinforcement Learning (RL)
technique for training autonomous, decentralized agents
able to perform frequency control in an electric power sys-
tem to: i) maintain the system frequency within predefined
tolerated limits; ii) minimize the cost of production. More
specifically, we frame the frequency control problem as
a Markov Decision Process to allow for the use of rein-
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forcement learning techniques (Section 2); ii) propose the
incorporation of two distinct multi-objective reinforcement
learning techniques to the MADDPG algorithm to perform
frequency control in a cost-efficient way (Section 3); iii)
compare the performance of both techniques through nu-
merical studies (Section 4); and iv) draw conclusions from
the observed behaviours (Section 5).

2. BACKGROUND

In this section, the frequency control problem is formulated
and the reinforcement learning techniques employed to
perform such control are presented.

2.1 Load frequency control and Economic Dispatch

Frequency control can be divided into three hierarchical
layers: Primary, Secondary and Tertiary control. Primary
control acts to counterbalance changes in the total system
load by adjusting the output levels of all generators at-
tached to the grid by an amount proportional to the differ-
ence between the observed and nominal frequency Miller
and Malinowski (1994). Primary control has the benefit of
being completely decentralized as each generator is able
to observe individually the current frequency in the sys-
tem. Secondary control or Automatic Generation Control
(AGC) systems act upon the steady state error resulted
by the limitations in primary control. These algorithms
are often centralized to some extent, with an individual
entity overseeing the entire grid and issuing commands for
the individual generators. The power system dynamics of
the secondary control system are as follows:

P (t+ 1) = P (t) +
Ztotal(t)− 1

RD
∆ω(t)− P (t)

TG
,

ω(t+ 1) = ω(t) +
P (t+ 1)− L(t)−D∆ω(t)

M
,

Ztotal(t) =

I∑
i=1

Zi(t), Ltotal(t) =

J∑
j=1

Lj(t),

∆ω(t) = ω(t)− ωnominal,

where P (t) is the total power injected into the grid at time
t, Z(t) is the secondary control action, Zi(t) is the control
action of generator i at time t, L(t) is the load at time t,
Lj(t) is the load by consumer j at time t, ω(t) is the system
frequency at time t, RD is the droop control coefficient
selected for the system, D is the damping coefficient of
the system, M is the electrical inertia of the grid, I is
the number of generators, J is the number of loads in the
system, and ωnominal is the nominal frequency.

Also referred to as Economic Dispatch, the objective of
tertiary control is to minimize the total production costs
of the grid. Doing so requires a centralized entity with
knowledge of each generating power output and cost of
production curve, as well as relevant physical limits with
regards to minimum and maximum output levels. For a
power system with I generators and J loads, the following
set of equations apply at time t:

min
pi(t)

Ctotal(t) =

I∑
i=1

Ci(t) =

I∑
i=1

(
αi + βipi(t) + γip

2
i (t)

)
,

s.t.

I∑
i=1

pi(t) =

J∑
j=1

Lj(t),

pmin
i ≤ pi(t) ≤ pmax

i , for i = 1, . . . , I,

Fig. 1. Actor/Critic relationship in MADDPG

where Ctotal(t) is the total cost of production at time t,
Ci(t) is the cost of production of generator i at time t, pi(t)
is the output level of generator i at time t, αi, βi, γi are
constants, pmin

i and pmax
i are, respectively, the minimum

and maximum output levels for generator i, and Lj(t) is
the power consumption of load j at time t. Solving tertiary
control entails finding the power output combination set
{p?1(t), p?2(t), p?3(t), . . . , p?I(t)} that minimizes the global
cost Ctotal(t) while respecting the constraints of keeping
the system balanced and every generator output within
its operational limits. The system reaching steady state
operation entails that ∆ω(t) = 0 and, therefore, P (t) =

Ztotal(t) =
∑I

i=1 p
?
i (t).

2.2 Reinforcement Learning

Reinforcement Learning can be defined as a family of tech-
niques used to train agents based on their interactions with
the environment and the associated rewards/punishments
observed. Given enough observations the trained agent be-
comes able to issue commands so as to find an optimal pol-
icy. The problem approached in this paper can be classified
as fully cooperative as the agents work together to reach
two objectives: i) electrically balance the system within
the tolerated range indicated by the frequency deviation;
ii) minimize the total cost of production. MORL relates to
RL problems with multiple, sometimes conflicting, objec-
tives. Successfully trained MORL agents should be able
to perform tradeoffs, intentionally sacrificing adherence
to one objective while advancing towards a more desired
global state. To this end, there are a number of different
techniques that can be employed, ranging from weighted-
sum to Pareto dominating policies see, e.g., Liu et al.
(2015), and Moffaert and Nowé (2014). The choice of which
approach to take becomes an integral part of the design
process of the solution.

The technique used in this paper is named MADDPG and
is considered an extension of Deep Deterministic Policy
Gradient (DDPG), combined with some elements of actor-
critic RL techniques see, e.g., Lowe et al. (2017). The
MADDPG algorithm applies the actor-critic concept to
multi-agent scenarios by centralizing learning whilst de-
centralizing execution, see Fig. 1. Once trained, the agents
rely solely on their actors to take actions in the execution
environment. Actors, therefore, remain decentralized in
nature, having access only to the same information said
agent would have in execution time. The critics, however,
are centralized and have additional information in the form
of the actions taken by all the other actors in the system.

3. PROPOSED FRAMEWORK

In this section, the details of the proposed implementation
are described. This includes the neural networks archi-
tectures, the guidelines used for determining the reward
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functions used, and the approaches taken to incorporate
multi-objective capabilities in the trained agents.

3.1 Neural Networks

The MADDPG algorithm leverages fully connected deep
neural networks to model both the actor and the critic. In
this study, both networks follow the same schema, with
slight changes in the input/output layers. Additionally,
this study employs the same algorithm to learn different
policies to achieve different objectives. Often this requires
changes in both the reward function and the set of vari-
ables that compose the Si(t) input, i.e., the state observed
by agent i at time t. These changes are further described
in Section 4 on a case by case basis. Common among
all case studies are the output layers. The actor network
outputs the action, in the form of change in total secondary
action (∆Zi(t)), where Zi(t) = ∆Zi(t) + Zi(t − 1), to
be taken by its respective generator at time t. The critic
network takes as input the outputs from all actor networks
(∆Z0(t), . . . ,∆ZI(t)) and outputs the estimated quality
(Q-value) for that state-action for its respective generator.
The base neural networks used are depicted in Fig. 2.

3.2 Reward Function Design

Reward functions play a pivotal role in the success of
Reinforcement Learning models. In multi-objective scenar-
ios, the proportion between each reward component has
increased importance. With these characteristics in mind,
a collection of guiding principles shaped the design process
of the reward functions used, namely: Finite upper and
lower bounds act as points of reference for comparing given
rewards, facilitating the assessment of their quality. Define
the global reward function as a composition, of individual
reward functions designed for each objective. While keep-
ing the adherence to all other objectives constant, increas-
ing adherence to a given objective should monotonically
increase the total reward. This is only possible if the objec-
tives are not intrinsically contradictory. Having the global
maxima of all individual objectives reward functions co-
incide means that the state which provides the maximum
reward globally is the same which maximizes rewards for
all individual objectives. For the purpose of streamlining
the design process, all individual reward functions share

the same base function f(x) = a2−bx2

, where x is the
input of the reward function, which varies according to the
objective (e.g., ∆ω for balancing frequency), and a and b
are parameters in R+. This function provides some useful
traits: It is symmetric with respect to the y-axis, which
is instrumental if the objective is to minimize deviation.
Besides, the base function has one single maximum at the
origin, which means that composition by either multipli-
cation or addition retains a single global maximum at the
same point. Finally, parameters a and b can be used ad
hoc for deforming the function while keeping the symmetry
and maximum location characteristics.

Fig. 2. Actor and Critic neural networks.

3.3 Multi-Objective

This investigation sets out to test two distinct strate-
gies for obtaining multi-objective optimization: reward-
composition and action-composition. The former strives to
accomplish the overall objective by learning a single policy
that is able to fulfil multiple objectives. This is achieved
by consolidating multiple objectives and their hierarchical
relationship into a single reward function. Conversely, the
action-composition approach trains one single-purpose set
of agents per objective. During execution, actions from
all sets of agents are consolidated into individual final
actions. For a system with K agents and M objectives
this composition is expressed as:

Ak(t) =

M∑
m=1

ρmÃ
m
k (t),

M∑
m=1

ρm = 1, 0 ≤ ρm ≤ 1,

where Ak(t) is the action to be taken by agent k at time

t, ρm is the weight given to objective m, Ãm
k (t) is the

action assigned to agent k, at time t, by the model aimed
at optimizing objective m.

When performing action-composition, the reward func-
tions used for each overarching objective does not intrin-
sically carry information regarding such preferences, these
are declared in the form of the weights ρm, form = 1, ...,M
used in runtime. One prerequisite for performing action
composition is for the action-space to be quantitative.
In categorical action environments, action consolidation
cannot be done via arithmetic operations.

3.4 Reward Composition vs Action Composition

We propose two different methods of achieving multi-
objective learning, reward composition and action compo-
sition. Besides observed performance, there are multiple
factors that are taken into account when choosing a tech-
nique to be used in an industrial setting. In that sense,
it can be argued that the action composition approach
is superior from a systems design standpoint. Among the
benefits provided by this strategy, one can single out the
following: Breaking down the global model into a single ob-
jective ones decreases coupling between the models, facil-
itates reuse, and simplifies debugging (Separation of Con-
cerns). Crafting bespoke multi-objective reward functions
is a time-consuming enterprise. Breaking down into single
objective rewards could speed up development as single ob-
jective reward functions behave in a more predictable way
(Simplified Modeling). Declaring the objective priorities at
the runtime means that these priorities can be seamlessly
changed. Furthermore, finding the optimal priorities ratio
can be done faster as the test feedback loop is tighter
(Variable Priorities). Individual models can have different
inputs. If different objectives of the system are associated
with different Service Level Agreements (SLAs), the infor-
mation sources which provide the inputs can be designed
to match these SLAs. In a single model, all inputs are
necessary to sample the actions, therefore have to provide
an SLA that is compatible with the most critical objective.
Using the studied scenario as an example, balancing the
system frequency is critical at all times while optimizing
for cost albeit still important is something that can be
overlooked in critical situations. If those objectives are
tackled by individual models, the inputs for balancing the
system should be kept available and with minimum delay
at all times. Conversely, the inputs for optimizing the cost
can have their requirements relaxed — if they become
offline, the system still can be operated at a degraded
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level by relying only on the frequency balancing model
(Separate Data Sources).

3.5 Decentralization

We are using Multi-Objective RL techniques to solve pri-
mary, secondary, and tertiary control in a multi-agent-
based model. The system designed in this analysis, albeit
decentralized from the decision-making standpoint, still re-
lies on some centralized information regarding the current
state of the system, in particular Ztotal(t) the secondary
control action at each time t. Although not completely
fulfilling the decentralization requirement, this marks an
important step towards full decentralization, as it changes
the nature of the centralized entity from a fully-fledged
decision maker to an information broker.

4. NUMERICAL STUDIES

The software developed for performing these case studies
is fully configurable and allows for further experimentation
with different configurations for electrical systems with
any number of loads and generators electrical constants,
and even reward functions and state inputs. The source
code is open for future use and can be found at https://
github.com/melloflavio/2019-MSc_Thesis.

4.1 Electrical System

We performed a multitude of experiments aimed at assess-
ing the feasibility of leveraging multi-objective techniques
to perform primary, secondary and tertiary control in an
electrical power system. In order to perform the control
experimentation, an electrical system simulator was im-
plemented according to the equations described in Section
2.1. A consistent system topology was used across all
experiments: three generators (G1, G2, and G3) and one
single load (L1). The electrical constants were also kept
the same for all the experiments; RD = 0.1 pu, TG = 30 s,
D = 0.016 pu, and M = 0.1 pu. In this context, pu refers
to the 100 MVA base power used throughout this paper.

Each simulation episode begins at t = 0 considering that
the system is fully balanced (P (0) = L(0), ∆ω(0) = 0)
and a perturbation occurs at t0 in the form of a change
in the total load. The task being performed then is to
balance the system after this initial perturbation. In the
interest of increasing the robustness of the models trained,
the application developed is able to introduce noise in the
simulated environment in the form of changing the initial
values for the loads and generators power levels. The noise
takes the form of a uniform distribution with magnitude
of 0.5% of the initial value. The models were trained by
running simulations lasting 15000 episodes each.

For each generator, a distinct cost profile was selected with
the purpose of ensuring that the optimal setup is such that
no generator is in either minimum (0.5 pu) or maximum
(3.0 pu) output values. Table 1 indicates the cost profiles
of all generators:

Table 1. Generator Cost Profiles

Generator α [$/h] β [$/(h · MVA)] γ [$/(h · MVA2)]
G1 510.0 7.7 0.00142
G2 310.0 7.85 0.00194
G3 78.0 7.55 0.00482

4.2 Case Study I - Frequency Control

In this study the objective was to minimize frequency
deviation ∆ω(t) at each time t which is the only state
input. Based on Section 3.2 the reward function used was:

rI(∆ω(t)) =
(

9 · 2−
∆ω2(t)

2 + 2−
∆ω2(t)

100

)
1
10 . The results are

depicted in Fig 3. After approximately 20 seconds, the
load was successfully balanced and the power output and
system frequency oscillates within 0.05 Hz (0.1%) of the
nominal setpoint, which falls inside the accepted range
of 0.5 Hz (1%) established by National Grid Electricity
Transmission (2017).

In this case study we see that the two generators learn to
reach their minimum output as fast as possible (Fig. 4),
while the third generator controls its output to stabilize
the system gradually reducing the steady-state error. This
“cooperation by omission” approach does not appear to be
the most efficient way to balance the system. One possible
reason for this behaviour could be that reaching the
maximum/minimum limits may be the best way to ensure
stable output for the other generators, as these limits
are enforced in the simulation, and not in the modelled
neural networks themselves (i.e., once the secondary action
reaches whichever limit, the neural network may still
issue commands to go beyond such limits, but they are
disregarded by the electrical system simulation). Future
work will focus on training with more diverse loads that
better cover the full spectrum of the systems total power
capacity to obtain more robust cooperative strategies.

4.3 Case Study II - Reward Composition: Cost and
frequency deviation minimization

This case study follows the reward-composition strategy
where the state used as input in the algorithm is a triplet
containing ∆ω(t), Zi(t) and Ztotal(t). Additionally, a single
reward function that reflects both objectives was crafted
following the guidelines set in Section 3.2 and may be
written as follows:

rII(∆Ptotal(t),∆ω(t)) = f(∆Ptotal(t))g(∆ω(t)), (1)

Fig. 3. Case I: Observed frequency

Fig. 4. Case I: Generator output
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f(∆Ptotal(t)) = 2
−∆P2

total
(t)

4 , (2)

g(∆ω(t)) =

(
9 · 2−

∆ω2(t)
2 + 2−

∆ω2(t)
100

)
1

10
. (3)

The frequency component — g(∆ω(t)) — is similar to
the function used in case study I. The cost component —
f(∆Ptotal(t)) — is expressed in terms of the total power
deviation from the cost optimal setup with a normalization

component denoted by ∆Ptotal(t) =
∑I

i=1

∣∣∣ pi(t)
p?
i
(t) − 1

∣∣∣ ,

where pi(t) is the power produced by generator i at time
t, and p?i (t) is the power output of generator i at time t
which minimizes the total cost for the total output of all
generators observed at time t.

The frequency, see Fig. 5, remains within 0.12 Hz the
nominal value, and exhibits a consistent downward shift of
approximately 0.05 Hz. This falls inside the the accepted
range of 0.5 Hz (1%) established by National Grid Electric-
ity Transmission (2017). As seen in Fig. 6, Generators G1
and G2 follow closely their optimal outputs for the given
total output at any given point. While G3 moves directly
to and remains at the minimum output. Such behaviour
could be interpreted as being associated with G3’s optimal
output being close enough to the minimum value that the
model as a whole benefits more by having G3 remain at a
flat level, and thus providing more certainty to G1 and G2,
than by actively attempting to follow its optimal value.

4.4 Case Study III - Action Composition: Cost and
frequency deviation minimization

This case study tests the action-composition strategy
where for each overarching objective, one set of agents is
trained. Set 1, aimed at balancing the system load, is in
fact the same model trained in case study I. In Set 2, the
state input is composed by the duple Zi(t), Ztotal(t). The
model is trained with a single objective reward function
aimed at finding the minimum cost of production for every
total output as seen below:

rIII−2(∆Ptotal(t)) =

(
9 · 2−

∆P2
total

(t)

2 + 2−
∆P2

total
(t)

100

)
1

10
.

(4)

In order to test the performance of the action composition
approach we choose two scenarios: i) Frequency Domi-
nant: ρfrequency = 0.7, ρcost = 0.3; ii) Cost Dominant
ρfrequency = 0.3, ρcost = 0.7.

In the frequency dominant study, as in case study I,
the trained frequency model relies basically on a single
generator to provide most of the output and change its
output to gradually balance the system. Furthermore, in
this particular instance of the trained model, the generator

Fig. 5. Case II: Observed frequency

Fig. 6. Case II - Generator output vs cost optimal

elected for that role was G3, which also has the charac-
teristic of being the least cost-efficient generator among
the set. Together, these characteristics result in a clashing
behaviour between both models (Figs. 7, 8). For generators
G1 and G2, the frequency model simply acts to reduce the
power indefinitely, relying on the enforcement of the mini-
mum floor. The mixing weights are such that the frequency
model continuously overrides the actions issued by the cost
model. G3 initially rises much like in the frequency model.
As it approximates the output which would balance the
system, the frequency model issues increasingly smaller
actions to perform the fine-grained balance of the system.
Meanwhile, the cost model continues to issue actions to
dramatically lower G3’s by virtue of it being the least
cost-effective generator and having an output significantly
above its optimal value. These divergent actions eventually
reach an equilibrium at a point in which the frequency is
far enough from the nominal so that the magnitude of the
frequency and cost actions are counterbalanced.

In the cost dominant study, the system is balanced within
0.03 Hz of the nominal setpoint, while the power output
levels approach those that lead to the minimum cost of
production (see Figs.9, 10). In this case, the downward
shift in frequency seen in the frequency dominant test is
no longer observed.

5. CONCLUSIONS

In this paper, we formulated the load frequency control
problem as a Markov Decision Process and employed
reinforcement learning techniques to train autonomous
agents able to perform decentralized primary, secondary
and tertiary control. We then proposed two strategies
for dealing with the tradeoffs associated with multiple
objectives, each with its own benefits and disadvantages.
Reward Composition consolidates multiple objectives into
a single reward function used to train a single set of
models, whereas Action Composition trains one set of
models per objective and then consolidates the actions
issued by all sets. Both methodologies decentralize decision
making, but retain some degree of centralization in the

Fig. 7. Case Study III (Frequency Dominant): Observed
frequency
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Fig. 8. Case Study III (Frequency Dominant): Generator
output vs cost optimal

form of the total secondary action used in the state input
for the models during the training phase. Overall both
approaches were able to restore the system frequency in a
cost efficient way.

More work would be required to assess the reproducibility
of such results in high-fidelity simulations, demonstrating
its generalizable capabilities, applying it to industrial sce-
narios and comparing it with existing control solutions
employed in the industry. Furthermore increasing the num-
ber of generators significantly increased the computational
power required for training. Further work could deal with
such scalability issues at the model/algorithm level (e.g.,
increase sample efficiency, or a training curriculum), as
well as a system architecture one (e.g., deploy replicas of
pretrained models). The algorithm of choice, MADDPG,
intensifies the scalability issues by requiring a single critic
to be trained for every actor, rather than relying on a
global critic for all actors. Moreover, being it an online
algorithm, when deploying in real-world applications, one
would encounter sub-optimal performance during training.
To circumvent that, one could pretrain models in highly
detailed simulation environments and deploy to real-world
applications once the models achieve sufficiently consistent
and acceptable performance. Additionally, one could also
perform tests with different neural network architectures
to assess its impact in the observed performance. Future
research includes the introduction of more objectives, such
as ecological impact of powering the grid, as the methodol-
ogy employed and codebase developed have no restriction
regarding the number of objectives being pursued. Regard-
ing decentralization, one possibility would involve the use
of accessory metadata such as timestamps associated with
the total secondary action. Intuitively, this could help relax
the real-time constraint of the information centralization
by enabling agents to rely on offline information.
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