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Abstract: Variable stiffness actuation and soft robotics are growing fields of interest in research
due to their close link to the feasibility of human-machine-interaction. In this paper, we give the
modeling and control of a pneumatically actuated robot with three degrees of freedom based on
the antagonist principle. The use of pneumatic actuators brings the benefit of an inherit softness
and utilizing the mean force of the antagonists, we can influence the stiffness of the overall
system. We present a cascaded control concept using feedback linearization for the pneumatics,
decoupling the mechanical dynamics, and taking into account the constructive limitations to
the available torque. The control concept is then applied to the robot in an experimental setup
and its performance is validated.

Keywords: Pneumatic Servo Systems, Mechatronics, Pneumatic Muscle Actuator, Robotics,
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1. INTRODUCTION

One of today’s challenges in robotics and automation is
the interaction of man and machine with its deriving
requirements for safety and control concepts. As a human
operator must not be harmed by a machine he is inter-
acting with, special concepts for preventing and handling
the contact of man and machine are necessary. From this
standpoint the field of variable stiffness actuation and
soft robotics arises, bringing a flexibility into robotics and
therefore a certain safety level into the human-machine-
interaction (Bicchi and Tonietti (2004)).

In literature, there exist different control concepts for soft
robotics applications – an overview on such and their
control techniques is given in Albu-Schäffer et al. (2008)
and Verl et al. (2015). The commonly employed concept
of variable stiffness actuation can be realized by two ap-
proaches in general: by design or by control of actuators
(Vanderborght et al. (2013)). Examples for the practical
application of variable stiffness by design can be found
in Grebenstein et al. (2011) where a combination of elec-
tromechanical motors and a variable stiffness mechanism
is used to give the robot its softness, in Laffranchi et al.
(2013) where a variable damping mechanism is used to
achieve a compliant behavior, or in Jafari et al. (2014)
where an actuator with an adjustable stiffness is pre-
sented. On the other hand, the variable stiffness of the
actuators can also be achieved by control: an example

for this is found in Boaventura et al. (2012), where a
variable impedance feedback control is applied to the
hydraulic actuators. In Ficuciello et al. (2015) redundant
manipulators are considered, and in Kronander and Bil-
lard (2016) the stability for robotic manipulators under
variable impedance control is investigated.

In contrast to electromechanical or hydraulic drives as seen
in the previous examples, the use of pneumatic actuators
brings an inherent softness due to the compressibility of
air. For the actuation of robots using pneumatics there
exist different concepts for realization: in Taghia et al.
(2012), a pneumatically actuated robot with rotary joints
is presented. The Bionic-Handling-Assistant (Falkenhahn
et al. (2017)) realizes a soft continuum-robot-approach. By
using pneumatic artificial muscles, a large force to weight
ratio is given due to their low mass. Examples for robots
driven by such pneumatic artificial muscles are found in
Ament and Eichhorn (2010), Hildebrandt et al. (2005), or
Wang et al. (2013).

1.1 Main Contributions

In the present paper, we give the modeling and control
of a novel robot with three rotational degrees of freedom
actuated by pneumatic artificial muscles. The assembly of
the robot reminds of the human arm. Figure 1 illustrates
the experimental setup: the three rotary joints of the
robot are actuated based on the antagonist principle.
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Fig. 1. Experimental setup of the robot actuated by pairs
of pneumatic muscles. The three rotary degrees of
freedom will later be denoted by α1, α2, and α3. In
the experimental setup, the three angles, as well as
the pressures of the pneumatic muscles, pneumatic
valves, and of the air supply are measured in order to
apply the feedback controller.

Once a pneumatic muscle is put under pressure, it causes
a traction force and contracts. Utilizing their lever, the
antagonists of each joint produce a resulting momentum
and thus put the robot into motion. In this paper, we
present a cascaded control scheme for the robot. In an
inner control loop, the pressure of the eight pneumatic
muscles is controlled via exact feed-back linearization.
An outer control loop adds a angle control based on
a computed torque ansatz decoupling the system and
allowing to apply linear control techniques. Via the mean
force of the pneumatic muscles acting on a joint, we can
then specify the stiffness of the overall system.

1.2 Outline of the Paper

The remainder of this paper is organized as follows: After
this brief introduction, we give the modeling of the system
in Section 2 and present the control design in Section 3.
In Section 4, we show our experimental results and end up
with a short conclusion in Section 5.

2. MODELING

This section presents the mathematical model of the robot.
To distinct its eight pneumatic muscles we use the index

i ∈ {1, . . . , 8}
throughout the paper. From a mechanical point of view,
the robot has three rotary joints which we will address by
the index

l ∈ {1, 2, 3}.

In our setup, each of the three joints is actuated by at least
one pair of muscles (compare Figure 1):

• The first joint α1 is actuated by a pair of Festo DMSP-
20 muscles (i = 1, 2),

• The second joint α2 is actuated by two pairs of Festo
DMSP-10 muscles (i = 3, . . . , 6),

• The third joint α3 is actuated by one pair of Festo
DMSP-10 muscles (i = 7, 8).

With this configuration, the joints can be actuated with
a decreasing torque in their serial order – similar to the
expected torque requirements of the joints.

2.1 Pneumatic Model

The robot is actuated by eight pneumatic muscles. The
behavior of pneumatic muscles with respect to force and
volume has been investigated in Chou and Hannaford
(1996). For a simplified model, the muscle forces Fi and
volumes Vi are approximated by polynomial functions
(Hildebrandt et al. (2003))

Fi(pi, si) = (pi − p0)
5∑
k=0

bks
k
i , i = 1 . . . 8 (1)

Vi(si) =

3∑
k=0

cks
k
i , i = 1 . . . 8 (2)

in dependance of their pressure pi and contraction si, and
the ambiance pressure p0. The relation approximated by
(1) is a monotonically increasing function of pressure and
muscle length: the more a muscle is stretched or put under
pressure, the higher its traction force becomes. The volume
function (2) reveals to be independent of pressure, but
decreasing with the muscle’s length: an inflated muscle has
a larger volume and shorter length than a deflated muscle.

The air inside the muscle is assumed to behave as an ideal
gas, i.e. the ideal gas law

piVi = miRsT (3)

applies. Here, mi represents the mass of air inside the
muscle, Rs is the specific gas constant of dry air, and T is
the temperature which we assume to be constant.

Furthermore, the surface of the muscle allows a partial
heat flow to the ambiance. Therefore, a change of pres-
sure or volume inside the muscle can be described by a
polytropic process with

piV
κ
i = const. (4)

The total differential of (3) combined with (4) results in
the pressure dynamics

ṗi =
κ

Vi(si)

(
RsTṁi − piV̇i(si, ṡi)

)
. (5)

The mass flow ṁi in (5) is a result of the pressure difference
at the valve. The valves used in our experimental setup
are 3/3 proportional valves and as supply pressure we
use 8bar. With the density of air ρ, the conductance C
depending on the control signal v, and pressures pprimi ≥
pseci , the mass flow into the muscle can be expressed by

ṁi = ρ pprimi C(v)Ψ

(
pseci

pprimi

, b

)
. (6)
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Fig. 2. Sketch of the mechanical multibody system: It con-
tains three cylindrical bodies connected by revolute
joints.

The flow function Ψ of the valve is depending on the
ratio of upstream (primary) and downstream (secondary)
pressure, i.e. the pressure in front of and behind the valve:

Ψ

(
pseci

pprimi

, b

)
=



√√√√√1−

 psec
i

pprim
i

− b

1− b

2

pseci

pprimi

≥ b

1
pseci

pprimi

< b

(7)

and the critical pressure ration b. For a more compact
notation we introduce the vector

p :=
[
p1 p2︸ ︷︷ ︸

↓
τ1

p3 p4 p5 p6︸ ︷︷ ︸
↓
τ2

p7 p8︸ ︷︷ ︸
↓
τ3

]T
(8)

incorporating the eight pressures of the eight pneumatic
muscles.

2.2 Mechanical Model

The robot represents a mechanical multibody system as
sketched in Figure 2. We model the sections as cylinders
with an evenly distributed mass and furthermore take a
mass at the tool-center-point into account. The mechanical
model is derived using Lagrange’s equations of the second
kind leading to a compact representation of the mechanical
model. Introducing the vector of generalized coordinates

q = [ α1 α2 α3 ]
T

(9)

and assuming only conservative generalized forces act on
the system – except the driving torques – the Lagrange
formalism yields the mechanical equations of motion

M(q)q̈ + c(q, q̇) + g(q) = τ (q,p). (10)

In (10), M(q) describes the positive definite mass-matrix,
c(q, q̇) the Coriolis momenta, g(q) the weight momenta,
and τ (q,p) the driving torque. At this point, note that

Valve, (6), (7)

Pressure Dynamics, (5)

Force, lever, (1)

Mechanical Dynamics, (10)

Pneumatics

Mechanics

v

ṁ

p

τ

q, q̇

Fig. 3. Scheme of the overall model structure containing
the pneumatic and mechanical subsystems.

the driving torque τ (q,p) also depends on the pressures
p, as they are a result of the muscle forces and their
corresponding lever. The forces depend on the pressures
as well as on the lengths of the muscles, which in turn are
depending on the angles q.

As the actuation of each joint is based on the antagonist
principle, the driving torque at each joint l is a superposi-
tion of the forces F pos

l (resulting in a positive momentum)
and F neg

l (resulting in a negative momentum) multiplied
by the lever dl:

τl = dl(F
pos
l − F neg

l ). (11)

Later in Section 3, when introducing the control, we will
express the forces by their mean value Fmean

l and difference
∆Fl as

F pos
l = Fmean

l + ∆Fl (12)

F neg
l = Fmean

l −∆Fl. (13)

Then, the driving torque becomes

τl = dl∆Fl (14)

and the mean Force Fmean
l is a degree of freedom utilized

for determining the stiffness of the controlled joint.

2.3 Overall System

Combining the pneumatic model (5), (6), (7) and the
mechanical model (10), we arrive at the overall system
description illustrated in Figure 3. The pneumatic part
of the system is divided into the valve function and the
pressure dynamics. The valve function is modeled as a
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(20), (22)

Torque-Pressure
Calculation,
(19), Sec. 3.3

Press. Control,
(15), (17) Valve−1 Plant Σ

Fmean,d

p0 pH

qd, q̇d, q̈d τ d pd, ṗd ṁ v

p
q, q̇ q q

Fig. 4. Closed-Loop System resulting from the design process in Section 3. The inner control loop regulates the pressure
– and therefore torques – while the outer mechanical control loop ensures the trajectory tracking for q.

static relation from control input v to mass flow ṁ and
will later be inverted. Therefore, we will use the mass flow
ṁ as the input to our system for control design purposes. It
can also be seen that the pneumatic and mechanical part
of the system are not decoupled since the volumes and
their derivatives play an important role for the pressure
dynamics.

3. CONTROL DESIGN

To achieve the goal of trajectory tracking for a given tra-
jectory of the angles q, we employ a cascaded control struc-
ture: underlying the mechanical control loop, a pressure
controller is implemented. We first describe this pressure
controller in the following section before presenting the
mechanical feedback control.

3.1 Pneumatic Control

The pneumatic part of the system consists of eight decou-
pled nonlinear differential equations of the form (5). As
mentioned before, the valve function (6) is inverted and
we therefore assume to have the mass flows ṁi as control
inputs.

By choice of

ṁi =
1

RsT

(
Vi(si)

κ
νpneui + piV̇i(si, ṡi)

)
(15)

we achieve an exact input-to-state linearization with the
newly introduced, virtual input νpneui by plugging in the
mass flow to the pneumatic system (5):

ṗi = νpneui . (16)

Following this exact linearization we apply the feedback
control

νpneui = ṗdi +Ki(p
d
i − pi) (17)

with the desired pressure pdi , its time derivative ṗdi , and the
control gains Ki > 0. By this the pressure dynamics (5)
result in the asymptotically stable closed loop dynamics

(ṗi − ṗdi ) +Ki(pi − pdi ) = 0. (18)

3.2 Mechanic Control

The input to the mechanical system is given by the
pressures p. Our following mechanical control law will use
the three torques at the rotary joints as control input.
Hence, a computation of the desired pressures

p = f(q, τ d) (19)

depending on the desired torque τ d has to be applied.
This relation is given by the force function of the muscles
(1), combined with the force-torque relation (11). The
pressure-torque-relation (19) is a static relation bringing
the mean force for each muscle pair as a degree of freedom.
The assignment of those mean forces is described in
Section 3.3.

The outer mechanic control loop is designed using a
computed-torque ansatz. Applying the torque

τ = M(qd)νmech + c(qd, q̇d) + g(qd) (20)

to the mechanical system (10) yields the exact input-to-
state linearized, decoupled system

q̈ = νmech (21)

for the newly introduces virtual input νmech. The system
described by (21) consists of three double integrators, for
which a PD-control law

νmech = q̈d +KP(qd − q) +KD(q̇d − q̇) (22)

is a suitable choice. Here, qd represents the desired trajec-
tory of the angles with its corresponding time derivatives
q̇d, q̈d and

KP = diag
( [

KP
1 KP

2 KP
3

] )
(23)

KD = diag
( [

KD
1 KD

2 KD
3

] )
(24)

are the control gains. The remaining closed-loop mechan-
ical dynamics then become(

q̈ − q̈d
)

+KD
(
q̇d − q̇

)
+KP

(
qd − q

)
= 0 (25)

which is an asymptotically stable system for a proper
choice of the control gains KP and KD with KP,KD � 0.

3.3 Stiffness of the System

The mean force of each of the joints represents its stiffness:
a low mean force results in a soft behavior, while a large
mean force at a joint corresponds to a very stiff system.
However, the single muscle forces Fi are bounded

• from below since pneumatic muscles can only produce
traction forces, i.e. Fi ≥ 0, and

• from above since there is a maximal force Fmax
i (q, pH)

achieved at supply pressure pH and depending on the
joint configuration.

Thus, the robot cannot realize every stiffness in any
configuration q. To optimally exploit the range of possible
mean forces, we propose the following procedure, explained
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Fig. 5. Time plot of the angles of the feedback controlled
robot with a desired sample trajectory (red, dotted).

for a single joint l. After a desired mean force Fmean,d
l and

a demanded difference force ∆Fl = τl/dl for a joint is given
do the following:

(1) Compute the maximal force Fmax
l (q, pH) and the

minimal force Fmin
l (q, pmin) ≥ 0 of the antagonists

of joint l.
(2) Determine the minimal and maximal mean force

Fmean,min
l and Fmean,max

l , which are given by con-
straining the demanded difference force ∆Fl on the
interval of possible forces [Fmin

l , Fmax
l ]. If the de-

manded difference force cannot be achieved in the
current configuration q, i.e. |∆Fl| >

∣∣Fmax
l − Fmin

l

∣∣,
we choose the mean value of Fmin

l and Fmax
l as the

mean force Fmean
l .

(3) If |∆Fl| ≤
∣∣Fmax
l − Fmin

l

∣∣, set the mean force
as the constrained desired mean force Fmean

l =

max(min(Fmean,d
l , Fmean,max

l ), Fmean,min
l ).

3.4 Practical Realization of the Control Scheme

For the practical realization of the control law, the pres-
sures p, angles q, and their time-derivatives q̇ have to be
known. They either have to be measured and filtered or re-
constructed using an observer. To improve the robustness
of the closed-loop system, we use the desired values qd,
q̇d to exactly linearize the mechanical equations in (20)
and hence implement a feed-forward linearization of the
mechanical system. Furthermore, we made simplifications
during the modeling process in Section 2. In order to
eliminate steady-state errors of the closed-loop system,
mainly caused by model errors, an anti-wind-up integrator
term can be added to the mechanical control law (22).
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Fig. 6. Mean Forces with their boundaries for the angle
trajectories in Figure 5. In situations where the de-
sired mean force cannot be realized, it is adapted to
the boundaries.

Preceding the feed-back control laws of the pneumatic and
mechanical system, the trajectories pd(t), ṗd(t), qd(t),
q̇d(t), and q̈d(t) have to be calculated. We provide the
trajectories qd(t), q̇d(t), q̈d(t) as polynomial functions,

and the desired mean forces Fmean,d
l to the controller. On-

line, the controller then computes the pressure trajectories
pd(t) and their time derivatives ṗd(t).

3.5 Overall Control Scheme

The here presented control scheme is depicted in Figure 4.
The derivative of the desired pressures ṗd used as the
feed-forward signal for the pressure dynamics is obtained
via differentiation. Due to this differentiation or high-pass
filtering, a sufficiently smooth input trajectory for the
angles qd(t) has to be provided in order to increase the
performance of the system.

4. EXPERIMENTAL RESULTS

The control law introduced in the previous section has
now been applied to the real system. Figure 5 shows the
time behavior of the angles for a desired trajectory with
variations in all three joints. The (red dotted) desired
trajectory is tracked well by the measured angles, even
for the quite large variations in the desired angles and
situations with coupled motions.

Figure 6 illustrates the corresponding time plot of the
mean forces Fmean

l with their boundaries Fmean,min
l and

Fmean,max
l according to the procedure described in Sec-

tion 3.3. In the shown case, the system cannot realized the
(constant) desired mean force of the three joints in every
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Fig. 7. Effect of couplings in α2 and α3. An excitation
of α3 (red: desired) results in an oscillation of α2 if
the couplings are neglected in the control law (blue).
Taking the couplings into account keeps α2 at its
desired constant value (green).

situation. Therefore, the mean force is adapted to ensure a
proper trajectory tracking of the closed-loop system. The
major influences on the realizable mean force are

• structural limitations – i.e. the pneumatic muscles
have a maximal force depending on their length,

• dynamical aspects – e.g. if a motion requires a large
torque, hence a large difference of forces of the an-
tagonists, but the muscle forces are constraint to a
certain interval, and

• limitations du to weight compensation – i.e. to com-
pensate the gravitational forces, a certain torque has
to be applied. Depending on the desired mean force
and the actual configuration q, this weight compen-
sation can limit the range of realizable mean forces.

Completing, Figure 7 illustrates the effect of dynamical
couplings between the α2 and α3 of the robot. Having
the same rotational axis, they influence each other. In the
given plot, α3 is excited with a sinusoidal signal of 3Hz,
while α2 should be a constant angle (desired trajectories
printed in red color). The blue line illustrates the behavior
without the decoupling effects of the computed torque
controller (20), i.e. using only the diagonal elements of
the mass-matrix M(q). The green trajectory corresponds
to the fully applied control law. In the illustrated case,
neglecting the couplings in the feedback control law results
in an undesired excitation of α2 with an amplitude of
about 5 degrees. At this point, note that the seemingly
better tracking behavior of the blue line in α3 is only a
better amplitude response and arises from the resonance
of α2.

5. CONCLUSIONS

We have presented a model-based cascaded control con-
cept for a robotic arm with three rotational degrees of free-
dom. The robot’s actuation is based on antagonistically
arranged pneumatic muscles. We regulate the pressure
inside the muscles by feedback linearization and have given

a mechanical control law for the robot. The stiffness of the
overall system can then be set by the mean force of the
antagonists. We further provided a strategy to adapt the
mean force online in case it is required due to dynamical
or other physical constraints. The designed control law
was implemented to an experimental setup and shows a
good closed-loop behavior and reveals the necessity of
considering the mechanical couplings for the given system.
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