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Abstract: Electrical propulsion is gaining popularity in the satellite industry. Their high
efficiency however comes at the cost of decreased thrust and longer transfer times. As such
the interest in solving the large optimization problems associated with these long transfers has
re-surged. This paper presents a heuristic approach to solving such low-thrust satellite trajectory
optimization problems, based on control law blending and averaging. We derive the nonlinear
program resulting from this approach and introduce PANOC, a recent optimization algorithm
well suited for optimal control problems. The resulting controller is considerably faster than
more classical, non-heuristic approaches, without a significant loss in optimality.
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1. INTRODUCTION

The competitive nature of the satellite industry has re-
cently driven the development of electric propulsion (EP)
technology (Feuerborn et al., 2013; Lev et al., 2017).
These engines provide an efficient alternative to classical
chemical propulsion at the cost of lower thrust and longer
transfer times (Bruno, 2014). Finding the spirallike trajec-
tories that are required to perform transfers using the new
thrusters push current optimal control algorithms to their
limit. Onboard trajectory calculation is especially chal-
lenging, since repeated solutions are required and hard-
ware performance/memory is limited.
The challenging nature of these problems has already
driven the development of many new optimal control
methods to deal with large amounts of variables and long
integration times. One method that is especially com-
mon is the collocated approach, where the trajectory is
parametrized using polynomials, which should then sat-
isfy the dynamics exactly at a number of nodes, result-
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and research projects G0A0920N, G086518N and G086318N; Re-
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la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk
Onderzoek – Vlaanderen under EOS project no 30468160 (SeLMA).
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ing in many nonlinear constraints. This technique has
been applied succesfully to many transfer scenarios (Con-
way, 2010; Betts and Erb, 2003; Schäff, 2016). Besides
the collocated approach, many other approaches have
been applied to satellite trajectory optimization as well.
Results from the theory of variations, like Pontryagin’s
Maximum Principle (Chachuat, 2007), have been used to
achieve both numerical (Mazzini, 2014; Huang et al., 2009)
and analytical solutions (Edelbaum, 1965; Fernandes and
Carvalho, 2018) for a couple of transfer scenarios. An-
other category of methods is the class of heuristic ap-
proaches. These parametrize the input based on certain
control laws, which simplifies the associated optimization
problems. Many variations of these techniques exist, like
shape-based approaches (Vicens, 2016; Petropoulos and
Longuski, 2004), where the control law is selected to enable
an analytic evaluation of the states (sacrificing optimality
in the process). Approaches based on Lyapunov feedback
control have also been examined in the past (Petropoulos,
2005). Another approach employs control laws that are
periodic in the true anomaly, which are combined with
averaging methods to integrate the dynamics (Kluever and
Conway, 2010; Kluever, 1998). The approach presented
here lies in this category.
This paper presents a heuristic, sequential approach to
deal with orbit raising problems. The approach is based on
the work presented in (Kluever and Conway, 2010) which
present numerical schemes applied to averaged orbital
dynamics and (Pollard, 2000) who developed control laws
applicable to orbit raising problems. The resulting algo-
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rithm borrows flexibility from direct approaches like the
collocated approach and combines it with the efficiency of
heuristic approaches, without a significant loss in optimal-
ity. We solve the optimization problems with a structured
optimization algorithm called PANOC (Proximal Aver-
aged Newton-type Method for Optimal Control) (Stella
et al., 2017), which unlike other state-of-the-art solvers
does not solve large systems of linear equations, reducing
memory requirements. The terminal state constraints are
enforced using the augmented Lagrangian method (ALM)
(Bertsekas, 1996).
The paper is structured as follows: Section 2 presents the
problem statement and derives the components required
for the heuristic approach. Section 3 then presents the
structured optimization algorithm as well as the method
used to enforce the terminal state constraint. Section 4
validates the approach by applying it to a realistic transfer
scenario and comparing the heuristic approach to the
sequential approach applied directly to the unregularized
dynamics. The capabilities of the approach in a closed-
loop scheme are also illustrated. Section 5 draws some
concluding remarks.

2. PROBLEM STATEMENT AND METHODOLOGY

This section formulates the transfer problem and intro-
duces the Modified Equinoctial Elements (MEE), which
we regularize using the Sundman transform. Then the
control laws, developed by (Pollard, 2000), are derived for
MEE and the averaging method is presented. Finally the
sequential approach is derived such that it is compatible
with the optimization algorithm presented in Section 3.

2.1 Orbital Dynamics

The motion of a satellite around the earth is approximately
described by the two-body problem (Battin, 1999). It is
well known that the resulting orbits are all conical sections
and their evolution under a disturbance can be described
using orbital elements. A survey of such elements is given
in (Hintz, 2008), which concludes that the MEE, first
presented in (Walker et al., 1985), are well suited for
low-thrust trajectory optimization. They are defined in
function of the classical orbital elements which consist of
the Euler angles (Ω, i, ω) describing the orbital plane and
(a, e, θ) describing the orbit and the position in that plane.
Ω is called the argument of the ascending node, i is the
inclination and ω is the argument of periapsis. The shape
of the orbit is assumed to be an ellipse with eccentricity
e and semi-major axis length a. The true anomaly θ then
describes the position of the satellite on the orbit as the
angle between the periapsis and the current position. The
MEE are then defined as follows:
p = a(1 − e2), f = e cos (ω + Ω), g = e sin (ω + Ω),

h = tan i

2
cos (Ω), k = tan i

2
cos (Ω), L = Ω + ω + θ,

The MEE variational equations are given in Gaussian form
below (Betts and Erb, 2003):

ṗ = 2 pτt

w

√
p
Γ , (1a)

ḟ =
√

p
Γ
(
τr sinL+ ((w + 1) cosL+ f) τt

w − gv
)
, (1b)

ġ =
√

p
Γ
(
−τr cosL+ ((w + 1) sinL+ g) τt

w + fv
)
, (1c)

ḣ =
√

p
Γ

(
1+h2+k2

2w

)
cos (L)τn, (1d)

k̇ =
√

p
Γ

(
1+h2+k2

2w

)
sin (L)τn, (1e)

L̇ =
√

Γp
(

w
p

)2
+ √

pΓv, (1f)
with w = 1+f cosL+g sinL, v = τn

w (h sinL−k cosL) and
Γ the gravitational parameter of earth. The dependency
of the states on time is omitted to simplify the notation.
Note that the only singularities present in the MEE occur
when i = π, i.e. when the orbit flips direction. Since this
will not occur for most transfers it is not considered to
be an issue. τ = (τr, τt, τn) ∈ Rnτ denotes the disturbing
acceleration given in the Gaussian, or radial, tangential
and normal (RTN) satellite-based coordinate system. The
origin is therefore located at the satellite with the radial
vector pointing away from the central body, the normal
vector pointing in the direction of the moment of impulse
vector and the tangential vector completing the right-
handed system (Macdonald, 2014). For simplicity we will
assume that the mass of the satellite remains constant.
As such the length of the acceleration vector τ varies
between 0 and τm, with τm the thrust-to-weight ratio of
the satellite. This assumption does not affect the outcome
of the optimization problem by much and the presented
framework supports the inclusion of a changing mass.
The MEE dynamics can be regularized using the well
known Sundman transform described in (Vicens, 2016). It
is applied by multiplying the right side of the variational
equations with:

dE

dt
=

√
Γ

p(1 − f2 − g2)
w

p
, (2)

which intuitively corresponds to integrating over the ec-
centric anomaly E of the elliptic orbit instead of time.

2.2 Control Laws

In (Pollard, 2000) four laws to describe the acceleration
direction in the orbital plane are considered: tangential
acceleration, acceleration in the direction of the velocity,
acceleration in the direction of the semi-minor axis and
acceleration in the direction of the semi-major axis. For
MEE these laws are written as:

c1 = (0, 1) ,

c2 = (f sinL+ g cosL, f cosL+ g sinL+ 1)√
1 + f2 + g2 + 2g sinL+ 2f cosL

c3 = (sin (L− ω̄), cos (L− ω̄))
c4 = (cos (L− ω̄), sin (L− ω̄)) ,

(3)

where ω̄ = tan−1 (g/f) 2 . To introduce the parameters,
thereby increasing the degrees of freedom for the opti-
mizer, blending is used. The idea is to consider:

Qrt(x, p) = p1c1 + p2c2 + p3c3 + p4c4

max (∥p1c1 + p2c2 + p3c3 + p4c4∥, 10−10)
,

(4)
with Qrt(·, ·) the in-plane control law and x the vec-
tor of orbital elements (p, f, g, k, h, L). The optimization
2 To deal with the singularities associated with ω̄ we will later add
it as an additional variable in the optimization algorithm.
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(a) (b) (c) (d)

Fig. 1. Control laws by Pollard. The bold ellipse depicts
the current orbit and the lines depict the acceleration
vectors. From left to right the control laws are in the
direction of the tangential, velocity, semi-minor and
semi-major.

problem then becomes finding the optimal parameters
p1(t), p2(t), p3(t), p4(t). The max operator is there to avoid
singularities. The acceleration directions for the four con-
trol laws defined in (3) are depicted in Figure 1. Pollard
(2000) originally selected these laws to derive analytic ex-
pressions for the variational dynamics of the classical orbit
elements. Their good variation in acceleration directions
makes them suitable for our application since they provide
enough degrees of freedom and approximate the optimal
behaviour well.
The next step is the parametrization of the acceleration
vector length. For this we consider bang-bang control,
where the acceleration magnitude either takes its maximal
value τm or 0. This behaviour is known to be optimal
for many transfers and its optimality can be verified
using calculus of variations as done in (Prussing, 2010),
which suggests why the parametrization also performs
well in practice. The acceleration control law developed
in (Pollard, 2000) is given as:

Qτ (x(t), p(t)) =


τm −pE0 ≤ E ≤ pE0

τm −pEπ ≤ π + E ≤ pEπ

0 else
, (5)

where E is the eccentric anomaly defined as:

E = 2 tan−1

(√
1 +

√
f2 + g2

1 −
√
f2 + g2

+ tan
(
L− ω̄

2

))
. (6)

pE0(t) ≥ 0 and pEπ
(t) ≥ 0 are later added as variables in

the optimization problem, with the additional constraint
pE0 +pEπ

≤ π. To deal with inclination changes, two more
parameters prt(t) and pn(t) that satisfy p2

rt + p2
n = 1 are

added. The full control law then becomes:
τ = Qτ (x, p) (Qrt(x, p)prt, pn) . (7)

Note that Qrt is a column vector of two elements and
that (Qrt(x, p)prt, pn) denotes a vector concatenation. A
limitation of this parametrization is that the behaviour
will be very suboptimal when ω is not close to 0 or π
(Pollard, 2000).

2.3 Averaging Method

The variational dynamics of the MEE are inherently stiff,
since the orbital elements vary slowly while the anomaly L
varies quickly. Averaging methods allow us to eliminate L
by considering the dynamics used in (Kluever and Conway,
2010):

ż(t) = 1
T

∫ 2π

0
F (z(t), E) dt

dE
dE, (8)

where we take z = (p, f, g, k, h) and F (z(t), E)dt/dE
the Sundman-transformed MEE variational equations ac-
quired by multiplying (1a)-(1e) with (2) (leaving out the
dynamics for L given in (1f)). Note that we need to
eliminate the dependency on τ by using the closed-loop
control law Qτ (x, p) presented in the previous section i.e.
by substituting (7) into (1). The evaluation of the integral
in (8) is done through Gaussian quadrature. We find the
nodes EG and weights wG using the algorithm described
in (Trefethen, 2008). Using the thrust structure described
by (5) we can spread out the quadrature points over the
integration interval by considering the transformed nodes:

ĒG = (pE0EG, pEπEG + ω̄ + π) ,
where the brackets again denote a vector concatenation.
The associated quadrature weights then become: w̄G =
(pE0wG, pEπwG). Note that (1) still depends on L there-
fore we need to evaluate the L associated with the elements
of ĒG by inverting (6).

2.4 Sequential Approach

To formulate the optimal control problem, based on the
dynamics described in the previous section we will employ
the sequential approach (Rawlings et al., 2017). This
involves solving the following optimization problem:

min
u

ℓ(u) =
K∑

k=0

ℓk(uk, ψk(u))

s.t. uk ∈ U , ∀k = 0 . . .K − 1
x0 = x̄, ψK(u) = zf ,

(9)

where uk = (p1,k, p2,k, p3,k, p4,k, pE0,k, pEπ,k, ω̄k, prt, pn) ∈
Rnu denotes the discretized inputs, u = (u0, . . . , uK−1) ∈
RnuK and U ⊂ Rnu denotes the set of feasible inputs, given
by pE0 ≥ 0, pEπ

≥ 0, pE0 + pEπ
≤ π and p2

rt + p2
n = 1.

x0 = (p0, f0, g0, k0, h0, L0) ∈ Rnx denotes the initial
state vector and zf ∈ Rnx−1 denotes the target orbital
elements (pf , ff , gf , kf , hf ), where the constraint on L is
omitted since only the shape of the final orbit matters. The
dynamics are enforced by using ψk(u) : RnuK → Rnx−1,
which corresponds to the numerical integration of the
averaged dynamics from t0 to t0 + kTs, with Ts = tf/K
the sample time, K the amount of integration intervals
and tf the time of the transfer. We use a RK4 integrator
for the numerical integration, where the input is applied
using zero-order hold.
For the continuous-time case the cost of the optimization
problem is given by ℓ(u) =

∫ tf

t0
Qτ (x(t), p(t)) dt, which

is related to the ∆v and indirectly to the fuel usage. As
such we can introduce an extra state ẋℓ(t) = Qτ (x(t), p(t))
that keeps track of the used ∆v. Since this state follows
dynamics just like all of the other states, averaging can
be applied on these as well. The stage cost ℓk(uk, xk) then
corresponds to the increment in xℓ over time step k as
evaluated by the RK4 integrator.

3. FAST NUMERICAL OPTIMIZER

This section presents the proximal averaged Newton-type
method for optimal control (PANOC), which is described
in (Stella et al., 2017). It is a structured optimization
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algorithm ideal for operation on systems with little avail-
able memory/performance. The iterative algorithm takes
steps that are a weighted average between steps provided
by forward-backward stepping (FBS) and quasi-Newton
methods. As such it gains the advantages from both meth-
ods; the fast convergence of the quasi-Newton methods
and the global convergence of FBS, which is maintained
by using the forward-backward envelope (FBE) as a merit
function for determining the weighting in the average. The
algorithm solves problems of type:

min
u∈U

φ(u), (10)

where the cost φ(u) is continuously differentiable in u
with a Lipschitz-continuous gradient and where U is a
possibly nonconvex set onto which it is easy to project.
In our case the differentiability does not hold globally,
however this does not cause issues since, in practice, the
optimization variables remain in the differentiable region
while optimizing. Also note that the input constraint
U = U1 × U2 × U3 × U4 is seperable. Therefore the
projection on U can be defined as a concatenation of
Euclidean projections onto the components U1,...,4. The
projection for U1 = R4 is the identity map given by:
PU1(p1, p2, p3, p4) = (p1, p2, p3, p4). For the projection onto
U2 =

{
(pE0 , pEπ

) ∈ R2
∣∣pE0 ≥ 0, pEπ

≥ 0, pE0 + pEπ
≤ π

}
associated with the thrust parametrization inputs we get
the following:
PU2(pE0,k, pEπ,k) = (( 1

2
)

max {0,min [2π, pE0,k + min(pE0,k, π − pEπ,k)]} ,( 1
2
)

max {0,min [2π, pEπ,k + min(pEπ,k, π − pE0,k)]} ) ,
which is a simplification of the projection onto a general
intersection between a half-space and a box derived in
(Beck, 2017, Chapter 6). The projection onto U3 = R is
again the identity map: PU3(ω̄) = ω̄. And the projection
onto U4 =

{
(prt, pn) ∈ R2

∣∣p2
rt + p2

n = 1
}

is given by:

PU8,9(prt, pn) = (prt, pn)√
p2

rt + p2
n

.

Given these mappings, the problem described in (10) is
compatible with (9). The constraint ψK(u) = zf is the only
exception, since it is intractable to evaluate the associated
projection. Hence we instead enforce the constraint by
adding an extra term to the cost function that penelizes
deviations from zf . The augmented Lagrangian method
(Bertsekas, 1996) does this by including both a quadratic
term µ∥ψK(u) − zf ∥2/2 and a term containing an esti-
mate of the Lagrangian multipliers ⟨ψK(u) − zf , λ⟩. The
algorithm then works by starting from an initial guess of
the multipliers λk and solving (10) for an ϵ-approximate
stationary point u∗ by using PANOC, where φ(u) in (10)
contains both the cost function ℓ(u) and the penalty terms.
The estimate is then updated according to λk+1 = λk −
µ(ψK(u∗) − zf ). If the residual wk = µ−1∥λk+1 − λk∥
is smaller then a tolerance δ then the algorithm returns
a solution. If the residual is decreased sufficiently, i.e.
wk+1/wk smaller than a parameter ϑ, then the penalty
parameter µ and tolerance ϵ remain the same. Otherwise
µ is multiplied by ϱ > 1 and the tolerance is divided
by β > 1. A version of this algorithm with only the
quadratic penalty was implemented in (Hermans et al.,
2018) and compared to other state-of-the-art optimization
algorithms.

4. NUMERICAL RESULTS

In this section the heuristic approach developed in Sec-
tion 2 is applied to a realistic transfer scenario presented
in (Koppel, 1999). The result is compared to that of the se-
quential approach applied to the unregularized dynamics.
To correct the integration error due to averaging a closed-
loop controller scheme is also presented and validated.

4.1 Comparison with classical sequential approach

The heuristic approach is validated by comparing it to the
classical sequential approach, where we integrate over the
Sundman-transformed MEE variational dynamics instead
of the averaged dynamics. It is used as a reference since
the resulting optimization problem can be solved using
PANOC. As mentioned before, integrating the Sundman-
transformed dynamics corresponds to integrating over the
eccentric anomaly E instead of over time. Another termi-
nal state constraint t(Ef ) ≤ tf is therefore introduced,
where Ef is the eccentric anomaly at the end of the
transfer and time t(E) is added as an additional state.
To add some flexibity to the solution, Ef is introduced as
a variable in the optimization problem. The variables are
then the elements of the thrust vector τ in each discretized
interval and Ef . The terminal state constraints are once
again enforced using ALM.
We consider the transfer described in (Koppel, 1999)
starting from an orbit with a = 36 463.5km, e = 0.818,
Ω = ω = 0° and inclination i = 28.5°. The target orbit is a
geostationary orbit with a = 42 157km and e = i = 0. We
consider a satellite with τm = 3 · 10−4m/s. The optimizer
is tuned with δ = 10−3, µ0 = 60, ϱ = 2, ϵ0 = 0.1, β = 1.2
and ϑ = 0.95 for both approaches. The evaluation of the
gradient of φ(u), which is required by PANOC, is done
by using CasADi (Andersson et al., 2016), an algorithmic
differentiation toolbox. For the sequential approach we
add a constraint Ef < 200 · 2π and take tf = 250 days.
The duration of the sequential transfer is provided to the
heuristic approach as the transfer time in order to create
a comparable transfer setup. For the sequential approach
we needed 12 000 integration steps before finding a good
solution, while the heuristic approach worked with only
150 integration intervals. The fact that we can reduce
the amount of intervals explains the massive performance
boost associated with the heuristic approach. To evaluate
the integral in (8) we used 30 quadrature nodes in total.
The results for both the heuristic and the sequential ap-
proach are depicted in Figure 2, where the optimal ∆v is
1.7891km/s and 1.7535km/s for the heuristic approach and
the sequential approach respectively (note that the theo-
retical optimum is ∆v = 1.6676km/s, which is achieved for
impulsive trajectories). The difference is explained by the
fact that the control laws reduce the degrees of freedom
in the heuristic optimization problem. The total transfer
length is 217.43 days. The heuristic transfer is visualised
in Cartesian coordinates in Figure 3, where the red curves
depict the arcs where thrust is applied. The optimization
process took 16 iterations of ALM and a total of 755 inner
iterations of PANOC for a CPU time of 9.23 minutes which
is a massive improvement compared to the 59.2 minutes
required by the sequential approach when applied to the
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Fig. 2. The state trajectory for the long transfer with in-
clination change and a relaxed revolution constraint,
acquired using the heuristic and sequential approach.
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Fig. 3. The trajectory for the long transfer with inclination
change acquired using the heuristic method. The
coordinate system is earth-centric (Macdonald, 2014).

same problem 3 . Approximately 70% of that time was
spend on evaluating the gradient, showing that it is the
main bottleneck in the design.
Note that due to the integration error associated with the
averaging method, the terminal orbit deviates 1035 km
in a, 0.0385 in e and 0.0124° in i from the target orbit.
To compensate for this error, the heuristic approach can
be applied in a Model Predictive Control (MPC) scheme
(Rawlings et al., 2017) described in the next section. The
sequential approach would require less compensation.

4.2 Closed-Loop Heuristic Approach

To correct the integration error identified in the previous
section we design a scheme that corrects the integration
error online. The setup consists of the optimizer described
in the previous section, which provides a sequence of inputs
uk. The first input u0 is then applied for Ts = tf/K
seconds and the evolution of the state is evaluated by a
RK4 integrator applied to the MEE variational dynamics.
The new value of the state is then assigned to x̄ in (9) and
the optimization problem is solved once more, but now for
a horizon with K − 1 integration intervals. This process is
repeated until the target destination is reached. Note that
the additional cost associated with the repeated solution
3 Tested on a Dell XPS 13 - 9360 developer edition, running Ubuntu
16.04 (Intel i7 quadcore, 16GB of RAM).
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Fig. 4. The state trajectory for the open-loop and closed-
loop transfers for a many-revolution transfer.
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Fig. 5. The state trajectory for the long transfer acquired
using the heuristic method. Both the Sundman-
transformed and averaged dynamics are depicted.

of (9) is limited since the solution from the previous
iteration 4 can be used as an initial guess.
The setup is validated by applying it to a simplified
version of the problem described in the previous section
where we consider the inclination of the initial orbit to
be zero. The parameters of the optimization algorithm
are kept the same. The optimal trajectory for the open-
loop solution and the closed-loop trajectory are compared
in Figure 4. Note that the open-loop trajectory is not
exact since it is integrated using the averaged dynamics,
while the closed-loop trajectory is more accurate. The
required ∆v for the closed-loop trajectory is 1.5656km/s,
which is less then the open-loop ∆v of 1.6107km/s. In
fact the cost becomes comparable with the solution found
by the sequential approach (1.56km/s) and the theoretical
optimum (1.47km/s). Figure 5 illustrates the reason by de-
picting the open-loop trajectory when integrated through
the Sundman-transformed dynamics and the averaged dy-
namics. Note that the satellite overshoots the target orbit.
As such the closed-loop scheme is able to detect this
overshoot and corrects it by applying less thrust, especially
by the end of the transfer. This behaviour is depicted in
Figure 6, which shows the thrust control-law parameters
over time. Such fuel-saving would not occur if the error
due to averaging would be corrected by using a reference
tracker that attempts to track the open-loop trajectory.

5. CONCLUSION

A heuristic approach based on control laws and averaging
was derived and applied to a realistic transfer scenario.
The averaging of the dynamics introduces an integra-
tion error, which is corrected using a closed-loop control
4 Both u∗ and λ∗ are passed to the next iteration as well as the final
value of µ and ϵ.
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Fig. 6. The fuel related inputs for the open-loop and closed-
loop transfers for a many-revolution transfer.

scheme. The resulting performance closely approximates
that of the sequential approach, showing that the subop-
timality expected from the heuristic approach is minimal.
Further improvements are possible by dropping the con-
stant mass assumption, which would make the dynamics
more accurate. Other control-laws and better gradient
evaluation, i.e. the algorithmic differentiation executed by
CasADi, could significantly reduce computation time.
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