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Abstract: This paper deals with the design of static pre- and post- compensators to transform
stable, non-square LTI systems into the class of strongly strict negative imaginary systems. The
pre-compensator plays the role of a control allocator while the post-compensator does sensor
blending in order to make a non-square system square along with satisfying the strongly strict
negative imaginary property. A specific structure of the post-compensator is also given that
guarantees a feasible solution of the LMI conditions when applied to systems with number of
outputs greater than or equal to number of inputs. The proposed pre- and post- compensators
can also stabilize a non-square plant in closed-loop upon satisfying a particular DC-gain
condition and furthermore, they can be utilized to develop a simple constant input tracking
framework for non-square systems. The LMI-based design methodology offers a numerically
tractable solution framework and hence the easy implementation of the proposed scheme in
practical applications. Illustrative examples are provided throughout the paper to demonstrate
the usefulness of the proposed results in widening the scope of the negative imaginary theory to
non-square LTI systems (e.g. safety-critical systems having redundant sensors and actuators).

Keywords: Strongly strict negative imaginary systems; DC-gain; Non-square plants; Positive
feedback; LMIs; Reference tracking.

1. INTRODUCTION

Negative Imaginary (NI) systems theory was introduced
in (Lanzon and Petersen, 2008) and was inspired by the
positive position feedback control of highly resonant flex-
ible structures. NI theory has rapidly attracted the in-
terest of the robust control community due to its simple
internal stability condition for interconnected systems that
depends only on the DC loop gain, and its wide appli-
cability in different areas of control systems engineering.
For example, such systems arise while considering the
transfer functions from colocated force actuator to position
sensor of a lightly-damped flexible structure (Lanzon and
Petersen, 2008), from input voltage to output voltage in
active electrical filters (Patra and Lanzon, 2011), from
input voltage to shaft rotational velocity in DC servo
motor (Song et al., 2012), etc. NI stability results find
widespread applications in vibration control of cantilever
beams (Bhikkaji et al., 2012), nano-positioning systems
(Mabrok et al., 2014b), flexible structures with free-body
motion (Mabrok et al., 2014a), etc. An NI system is a
square, Lyapunov-stable system with real, rational and
proper transfer function matrix R(s) that satisfies the
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frequency-domain condition j[R(jω)−R(jω)∗] ≥ 0 for all
ω ∈ (0,∞) such that jω is not a pole of R(s); while Strictly
Negative Imaginary (SNI) property is defined for square
and stable LTI systems satisfying the strict version of
the aforementioned inequality. For SISO cases, it gives an
appealing graphical interpretation – the Nyquist plot of an
NI (SNI) transfer function lies below (strictly below) the
real axis in the open positive frequency interval (Lanzon
and Petersen, 2008). Another strict subset of SNI systems,
called Strongly Strict Negative Imaginary (SSNI) systems,
was introduced in (Lanzon et al., 2011) which satisfies
two additional frequency-domain constraints at zero and
infinite frequencies alongside the SNI properties. Since its
inception in 2008, NI theory has witnessed rapid progress
during the last ten years in both analysis and synthesis
accompanied by practical applications. To study the most
recent developments on the NI theory and the associated
topics, the following papers (Dey et al., 2016; Bhowmick
and Patra, 2017b,a; Khong et al., 2018; Dey et al., 2020;
Dannatt and Petersen, 2019; Salcan-Reyes and Lanzon,
2019; Kurawa et al., 2019; Liu et al., 2019) can be referred.

Despite its strong theoretical background and potential
applications in variety of control engineering problems, NI
theory ceases to be applicable for non-square plants and
for systems having relative degree more than two. This
necessitates further research to develop some means by
which NI theory can be applied to more general class
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Fig. 1. (a) Post-compensator (H) design for tall/square

plants G(s) ∈ RH l×r
∞ (r ≤ l) and (b) Pre-

compensator (N) design for fat plants G(s) ∈ RH l×r
∞

(r > l), such that Ḡ(s) is SSNI. Here, Ĝ(s) ∈ RH n×r
∞

is an auxiliary plant constructed from G(s);

of LTI systems. In this paper, we propose LMI-based
pre- and post- compensation schemes to transform stable,
non-square/square LTI systems into the SSNI class. The
post-compensator does judicious blending of the sensor
signals, termed as ‘sensor-blending’, to make the number
of inputs (u) and outputs (z) of the synthesized system
equal, as depicted in Fig. 1(a). On the contrary, a pre-
compensator executes the same task for systems having
more inputs than outputs by distributing (or allocating)
the control inputs, known as ‘control-allocation’, as shown
in Fig. 1(b). The proposed pre- and post- compensators
can also stabilize a non-square/square plant in closed-loop
via unity positive feedback invoking the DC-gain condition
of an NI-SNI interconnection (Lanzon and Petersen, 2008).
In this study, we denote the set of non-square systems
G(s) ∈ RH l×r

∞ with l > r as ‘tall’ plants while the
complementary set of systems having r > l is recognised as
‘fat’ plants. Since many overactuated and underactuated
systems (e.g. flexible structures with redundant actuators
and sensors) belong to fat and tall categories respectively,
the proposed theory may find potential applications in
vibration control of large space structures. The pre- and
post- compensators are also used to develop a simple
constant-input tracking framework for non-square/square
systems by exploiting integral controllability (IC) of SSNI
systems (Bhowmick and Patra, 2018).

2. TECHNICAL BACKGROUND

We start by defining the classes of NI and SNI systems
followed by a lemma to describe SSNI systems. After that
we recall the internal stability result for a positive feedback
interconnection of stable NI and SNI systems.

Definition 1. (NI System) (Mabrok et al., 2014a; Lanzon
and Chen, 2017) Let M(s) be the real, rational and proper
transfer function matrix of a square system. M(s) is said
to be Negative Imaginary (NI) if the following conditions
are satisfied:

(1) M(s) has no poles in <[s] > 0;
(2) j[M(jω)−M(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the

values of ω where jω is a pole of M(s);
(3) If s = jω0 with ω0 ∈ (0,∞) is a pole of M(s),

then it is at most a simple pole and the matrix
K0 = lim

s→jω0

(s− jω0)jM(s) is Hermitian and positive

semidefinite;
(4) If s = 0 is a pole of M(s), then lim

s→0
skM(s) = 0 for

all k ≥ 3 and lim
s→0

s2M(s) is Hermitian and positive

semidefinite.

Definition 2. (SNI System) (Lanzon and Petersen, 2008)
Let M(s) be the real, rational and proper transfer function
matrix of a square system. M(s) is said to be Strictly
Negative Imaginary (SNI) if M(s) has no poles in <[s] ≥ 0
and j[M(jω)−M(jω)∗] > 0 for all ω ∈ (0,∞).

SSNI systems (Lanzon et al., 2011) is a particular subset
of the SNI class (Xiong et al., 2010) which satisfies two
additional frequency-domain criteria in the neighbourhood
of ω = 0 and ω = ∞. In a SISO setting, these two extra
conditions indicates the patterns of departure from ω = 0
and arrival at ω = ∞ of the Nyquist plot of an SSNI
transfer function.

Lemma 3. (SSNI Lemma) (Lanzon et al., 2011) Let[
A B
C D

]
be a state-space realization of a real, rational and

proper transfer function matrix R(s) ∈ Rm×m. Suppose,
[R(s)−R(−s)T ] has full normal rank m and the pair (A,C)
is observable. Then, A is Hurwitz and R(s) is SNI with

lim
ω→∞

jω [R(jω)−R(jω)∗] > 0 and

lim
ω→0

j
1

ω
[R(jω)−R(jω)∗] > 0

(1)

if and only if D = DT and there exists a real matrix
Y = Y T > 0 such that

AY + Y AT < 0 and B = −AY CT . (2)

The SSNI Lemma will be invoked later to prove the main
results of this paper. Note that in case of SSNI systems the
full normal rank constraint on [R(s)−R(−s)T ] is implied
by (2) when the B matrix has full column rank. This is
proved in the following lemma.

Lemma 4. Let R(s) =

[
A B
C D

]
be an (m×m) SSNI system

with rank[B] = m. Then, [R(s)−R(−s)T ] has full normal
rank m.

Proof. Since AY + Y AT < 0, there exists a square and
non-singular matrix L such that AY + Y AT = −LTL.
For these L and Y , the transfer function matrix N(s) =[

A B
LY −1A−1 0

]
acquires full column rank at s = jω for all

ω ∈ R since A is Hurwitz and rank[B] = m via assumption
and rank[LY −1A−1] = n. It implies from (Xiong et al.,
2010, Corollary 1)

jω[R(jω)−R(jω)∗] = ω2N(jω)∗N(jω) > 0 (3)

for all ω ∈ R\{0} and R(0) − R(0)T = 0 since R(0) =
CY CT +D = R(0)T . This implies that there does not exist
any continuous interval of ω ∈ R for which det[R(jω) −
R(jω)∗] remains zero. This in turn ensures that [R(s) −
R(−s)T ] must have full normal rank. Note minimality is
not required. �

We now present an internal stability condition for a stable
NI system interconnected with an SNI system via positive
feedback. Please see (Lanzon and Chen, 2017) for updated
internal stability results of NI-SNI interconnections with-
out the restrictive suppositions.

Theorem 5. (Lanzon and Petersen, 2008; Lanzon and
Chen, 2017) Let M(s) be stable NI and N(s) be SNI.
Let either M(∞) = 0, or else, let M(∞)N(∞) = 0
and N(∞) ≥ 0. Then, the positive feedback interconnec-
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tion of M(s) and N(s) is internally stable if and only if
λmax[N(0)M(0)] < 1.

3. MAIN RESULTS

This section presents the main theoretical contributions of
the paper. The LMI-based static pre- and post- compen-
sator design techniques are developed to transform stable,
non-square/square, LTI systems into the SSNI class. A
particular structure of the post-compensator is proposed
in this paper which guarantees the SSNI property of any
tall/square LTI plant with a full-rank B matrix. The pre-
compensator, applicable for fat plants, requires to satisfy a
set of sufficient-type LMI conditions and hence it may not
always yield feasible solution. In order to overcome this
limitation in the case of fat plants, a combined pre-post-
compensation scheme is proposed in Subsection 3.3.

3.1 Post-compensator design for tall/square LTI plants

The post-compensation scheme is derived through Theo-
rem 6 for stable, tall/square plants. Note that during the
post-compensator design, it is assumed that all states of
the underlying system are accessible for direct measure-
ment. However, if some of the states are not measurable
then a full-order observer can easily be included in the
proposed scheme to estimate the states.

z
H

u x

( )G s

ˆ ( )G s


r

Fig. 2. A static post-compensation scheme for stable,
tall/square LTI plants.

Theorem 6. Let Ĝ(s) =

[
A B
I 0

]
∈ RH n×r

∞ be con-

structed from the original plant G(s) ∈ RH l×r
∞ having a

minimal state-space realization

[
A B
C D

]
where r ≤ l ≤ n

and rank[B] = r. Suppose there exist real symmetric
matrices Y > 0 and Q0 > 0 such that

AY + Y AT < 0, (4a)[
I (A−1B)T

A−1B Y

]
> 0, (4b)[

Q0A+ATQ0 I
I −Y

]
≤ 0. (4c)

Let z = Hx be defined as an auxiliary output of the system
where H = −BTA−TY −1. Then the post-compensator H
makes the combined system Ḡ(s) = H(sI − A)−1B =[
A B
H 0

]
from input u to the auxiliary output z SSNI and

also stabilizes the closed-loop system with unity positive
feedback as shown in Figure 2.

Proof. Since B has full column rank and AY + Y AT < 0
via (4a), [Ḡ(s)− Ḡ(−s)T ] has full normal rank via Lemma
4. Note that the LMI constraint (4b) is equivalent to

Y −A−1BBTA−T > 0 (5)

via applying Schur-complement Lemma (Boyd et al.,
1994). The new pair (A,H) is designed to be completely
observable since (4c) implies the observability Gramian
condition (Boyd et al., 1994) as shown below:[

Q0A+ATQ0 I
I −Y

]
≤ 0

⇔ Q0A+ATQ0 + Y −1 ≤ 0

⇔ Y [Q0A+ATQ0]Y + Y ≤ 0

⇒Y [Q0A+ATQ0]Y +A−1BBTA−T ≤ 0

[since A−1BBTA−T < Y via (5)]

⇔ Q0A+ATQ0 + Y −1A−1BBTA−TY −1 ≤ 0

⇔ Q0A+ATQ0 +HTH ≤ 0

on noting that H = −BTA−TY −1. The post-compensator
H ensures AYHT = AY (−BTA−TY −1)T = −B. There-

fore, the compensated system Ḡ(s) =

[
A B
H 0

]
satisfies all

the required properties to be an SSNI system according to
Lemma 3. Furthermore, the unity positive feedback inter-
connection of Ḡ(s) shown in Fig. 2 is closed-loop stable
via exploiting the NI-SNI stability condition (Theorem 5)
since Ḡ(0) < I ⇔ HYHT < I ⇔ (A−1B)TY −1(A−1B) <
I ⇔ (4b). This completes the proof. �

Note that we may specify some upper and lower bounds
for the matrices Y and Q0 in Theorem 6 in order to avoid
getting ill-conditioned Y and Q0 due to numerical com-
putational issues. The lower bound on Q0 can be selected
as the observability Gramian W0 of the uncompensated
plant G(s). The upper bound on Y plays a crucial role
in determining the DC-gain of the compensated system
given by Ḡ(0) = (A−1B)TY −1(A−1B). A high upper
bound on Y causes an overall reduction of the eigenvalues
of Y −1 which in turn makes λmax[Ḡ(0)] very small. The
other bounds can be selected depending on the plant. Note
that λmax[Ḡ(0)] cannot be negative or zero since in Fig. 2
Ḡ(0) = HYHT > 0 and H has full rank.

Example 7. Let us consider the two-mode flexible struc-
ture taken in (Joshi and Kelkar, 2001) with two inputs
and four outputs having non-colocated sensors and ac-
tuators where the inputs are generalized forces and the
outputs are rates. The nominal plant model is given by

A =

 0 1 0 0
−1 −0.1 0 0
0 0 0 1
0 0 −4 −0.1

, B =

 0 0
0.1 −0.01
0 0
−0.2 0.05

,

C =

 0 0.8913 0 0.9218
0 0.7621 0 0.7382
0 0.4565 0 0.1763
0 0.0185 0 0.4057

 and D = 04×2 where

[
A B
C D

]
is minimal and A is Hurwitz. Applying Theorem 6 to this
system, the set of inequalities (4a)-(4c) yields

Y =

 0.0340 −0.0017 0.00 0.00
−0.0017 0.0339 0.00 0.00

0.00 0.00 0.0108 −0.0007
0.00 0.00 −0.0007 0.0421

 > 0 and

Q0 =

 677.1593 33.5965 0.00 0.00
33.5965 677.2235 0.00 0.00

0.00 0.00 999.7806 12.8268
0.00 0.00 12.8268 250.0677

 > 0
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using the CVX toolbox (Grant and Boyd, 2014). It is
easy to verify that AY + Y AT < 0, B = −AYHT and
the new pair (A,H) is completely observable. The post-
compensator H = −BTA−TY −1 is now obtained as

H =

[
2.9513 0.1440 −4.6531 −0.0785
−0.2951 −0.0144 1.1633 0.0196

]
.

Therefore, the transformed system Ḡ(s) = H(sI −A)−1B
is SSNI according to Theorem 6. Now we check the DC-

gain condition: λmax[Ḡ(0)] = λmax

[
0.5278 −0.0877
−0.0877 0.0175

]
=

0.5424 < 1. This guarantees that the post-compensator
H makes Ḡ(s) SSNI and stabilizes the closed-loop system
shown in Figure 2 via unity positive feedback.

3.2 Pre-compensator design for stable fat LTI plants

The pre-compensation scheme is derived via Theorem 8.

yu
( )G s

( )G sNu


r

Fig. 3. A static pre- compensation scheme for fat plants.

Theorem 8. Let

[
A B
C 0

]
be a minimal state-space real-

ization of a real, rational and proper transfer function
matrix G(s) ∈ RH l×r

∞ with rank[B] = r and l < r ≤ n.
Suppose there exist a full-rank matrix N ∈ Rr×l and the
real symmetric matrices Y > 0, Qc > 0 such that

AY + Y AT < 0, (6a)

BN = −AY CT , (6b)

CY CT < I, (6c)[
AQc +QcA

T BN
NTBT −I

]
< 0. (6d)

Then the pre-compensator N makes the combined system

Ḡ(s) = G(s)N =

[
A BN
C 0

]
from ū to y SSNI and

also stabilizes the closed-loop system with unity positive
feedback as shown in Figure 3.

Proof. Note that rank[BN ] = l applying the matrix
rank inequality rank[B] + rank[N ] − r ≤ rank[BN ] ≤
min{rank[B], rank[N ]} via the assumption rank[B] = r.
Therefore, [Ḡ(s) − Ḡ(−s)T ] has full normal rank via

condition (6a) due to Lemma 4. Since

[
A B
C 0

]
is minimal,

Ḡ(s) =

[
A BN
C 0

]
remains completely observable and via

satisfying the controllability Gramian (Boyd et al., 1994)
condition (6d), the new pair (A,BN) retains complete
controllability. Hence, the pre-compensator N renders the
compensated system Ḡ(s) = G(s)N SSNI via satisfying
(6a) and (6b), and also ensures closed-loop stability of the
scheme shown in Fig. 3 applying the DC-gain condition
Ḡ(0) = CY CT < I. This completes the proof. �

Example 9. Let us consider a (1 × 2) stable, LTI plant

G(s) =

 −5 −6.25 0 4 0
4 0 0 0 0
0 0 −5 0 1

6.25 1.563 −1 0 0

. Now, the set of conditions

(6a)-(6d) is solved for this system and it gives Y =[
0.0827 −0.0291 0.4711
−0.0291 0.0293 −0.1452
0.4711 −0.1452 3.3186

]
> 0, Qc > 0 and N =[

0.0138
−3.0043

]
by using the CVX toolbox (Grant and Boyd,

2014). We now compute the pre-compensated system

Ḡ(s) = G(s)N =
3.35s2 + 17.1s+ 76.84

s3 + 10s2 + 50s+ 125
, the Nyquist plot

of which is shown in Figure 4. It has also been checked
that Ḡ(s) satisfies the SSNI properties: AY + Y AT < 0,
BN = −AY CT and also retains minimality. Finally, we
examine that the DC-gain condition is also satisfied, i.e.,
Ḡ(0) = 0.6147 < 1. Therefore, the unity positive feedback
interconnection of Ḡ(s) shown in Fig. 3 is closed-loop
stable according to Theorem 8.
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Fig. 4. Nyquist plot of the pre-compensated SSNI system

Ḡ(s) = 3.35s2+17.1s+76.84
s3+10s2+50s+125 in Example 9.

Remark 10. It is sometimes possible that the set of suffi-
cient conditions (6a)-(6d), given in Theorem 8, may not
be feasible. For instance, in Example 12, there does not
exist any feasible pre-compensator for the system that
renders the compensated system Ḡ(s) into the SSNI class.
Moreover, a necessary condition for bi-proper fat plants
G(s) to be transformed into an NI system is that DN =
NTDT , which is an excessively restrictive assumption in
practice. To handle such cases, a post-compensator (H)
with a specific structure can be used in addition to the pre-
compensator (N) such that the condition BN = −AYHT

becomes easier to satisfy. This requires us to discard the
output equation y = Cx+Du and work only with the state
equation ẋ = Ax+Bu. Such a scheme with combined pre-
post-compensator is discussed in the next subsection.

3.3 Combined pre-post-compensator design for fat plants

The theorem given below suggests a combined pre-post-
compensator design technique to transform stable, fat LTI
plants G(s) ∈ RH l×r

∞ where r > l into the SSNI class
leading to a closed-loop control scheme with unity positive
feedback as shown in Fig. 5.

Theorem 11. Let Ĝ(s) =

[
A B
I 0

]
∈ RH n×r

∞ be con-

structed from the original plant G(s) ∈ RH l×r
∞ having a
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Fig. 5. A combined pre-post-compensation scheme for
stable fat LTI plants.

minimal state-space realization

[
A B
C D

]
where l < r ≤ n

and rank[B] = r. Suppose there exist a full-rank matrix
N ∈ Rr×l and the real symmetric matrices Y > 0, Q0 > 0
such that

AY + Y AT < 0, (7a)[
I (A−1BN)T

A−1BN Y

]
> 0, (7b)[

Q0A+ATQ0 I
I −Y

]
≤ 0. (7c)

Let z = Hx be defined as an auxiliary output of the system
where H = −NTBTA−TY −1. Then the compensated

system Ḡ(s) = H(sI −A)−1BN =

[
A BN
H 0

]
from ū to z

is SSNI and the closed-loop system is stabilized with unity
positive feedback as shown in Figure 5.

Proof. The proof follows directly by combining Theo-
rems 6 and 8 on noting that rank[BN ] = l, the pair
(A, H) is completely observable via (7c), AYHT =
AY (−NTBTA−TY −1)T = −BN and Ḡ(0) < I ⇔
HYHT < I ⇔ Y − (A−1BN)(A−1BN)T > 0 ⇔ (7b)
applying Schur-complement Lemma. �

Note that (7a) holds for any stable system G(s) and BN =
−AYHT automatically holds sinceH = −NTBTA−TY −1.
Henceforth, the combined pre-post-compensator guaran-
tees the SSNI property of the compensated system Ḡ(s)
when G(s) is a stable, fat plant with a full-rank B matrix.
Sufficiency of Theorem 11 arises due to satisfying other
two conditions (7b) and (7c).

Example 12. Consider the transfer function matrix G(s) ∈

RH 1×2
∞ =


0 1 0 0 0 0
−3 −1 2 0 1 0
0 0 0 1 0 0
2 0 −3 −1 0 1
0 1 0 0 0 0

 of a non-colocated

spring-mass-damper system as shown in Figure 6. Discard-
ing the output equation and applying Theorem 11, the set
of inequalities (7a), (7b) and (7c) yields a set of solution
matrices

Y =

 0.6071 −0.0777 0.3323 −0.0137
−0.0777 0.9565 −0.0152 −0.0525
0.3323 −0.0152 0.5976 −0.0759
−0.0137 −0.0525 −0.0759 0.9532

 > 0,

Q0 =

 38.1796 5.3918 −9.6688 3.2305
5.3918 15.3312 3.2276 5.5535
−9.6688 3.2276 38.1888 5.3939
3.2305 5.5535 5.3939 15.3335

 > 0,

and N =

[
1.00
0.00

]
. The post-compensator is then obtained

asH = −NTBTA−TY −1 = [ 0.9047 0.0779 0.1722 0.0310 ]

x y x

1u 2k
1x 2y x

2u1k

1m
d

2mk
2d1d 2d

Fig. 6. A non-colocated spring-mass-damper system with
two inputs and one output considered in Example 12.

and the compensated system is computed as

Ḡ(s) =
0.07791s3 + 0.9826s2 + 1.2s+ 3.058

s4 + 2s3 + 7s2 + 6s+ 5
,

which satisfies all the criteria to be SSNI and retains both
controllability and observability properties. The Nyquist
plot of Ḡ(s) is given in Figure 7. Furthermore, the DC-gain
condition is also satisfied: Ḡ(0) = 0.6117 < 1. Therefore,
the unity positive feedback interconnection is closed-loop
stable via Theorem 11.
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Fig. 7. Nyquist plot of the pre-post-compensated SSNI
system Ḡ(s) designed in Example 12.

3.4 A constant input tracking scheme for non-square and
square LTI plants using pre- and post- compensators

The static pre- and post- compensators can be utilised
to develop a simple integral control framework with sen-
sor/actuator failure tolerance for stable, non-square/square
LTI systems by exploiting integral controllability (IC) and
decentralized integral controllability (DIC) properties of
SSNI systems having positive definite DC-gain matrix
as discussed in (Bhowmick and Patra, 2018). DIC prop-
erty facilitates constant-input tracking and preserves the
closed-loop stability of an integral control scheme upon
occurrence of sensor/actuator faults including the faulty
channels while maintaining satisfactory tracking perfor-
mance of the healthy channels. A sufficient condition for
the DIC property when operated in a negative feedback
loop is to check whether a stable and square system pos-
sesses positive definite DC-gain matrix. Fig. 8(a) shows the
tracking scheme for a stable, fat plant G(s), that requires
a static pre-compensator N such that Ḡ = G(s)N is SSNI
satisfying det[G(0)N ] 6= 0. The decentralized integral gain
block has the structure Kg = diag{k1, k2, . . . , kl} where
ki ∈ [0, k?] for all i ∈ {1, . . . , l} with a finite upper bound
k? > 0. Since Ḡ(0) = G(0)N = CY CT > 0, Ḡ(s) satisfies
the DIC property and hence, facilitates constant input
tracking with failure-tolerance. Similarly, for stable square
plants, the tracking scheme is shown in Fig. 8(b) where
the post-compensated plant Ḡ(s) = H(sI−A)−1B satisfies
DIC property due to being SSNI with Ḡ(0) = HYHT > 0.
An input-shaping matrix S = Ḡ(0)G(0)−1 is designed so
that the plant output y can track the actual reference
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Fig. 8. A constant input tracking framework (a) for fat
plants and (b) for square/tall plants, where Kg de-
notes the decentralized integral gain matrix.

r while the auxiliary output z automatically tracks the
shaped reference r̄. Note that the scheme shown in Fig.
8(b) can also be applied to tall plants by choosing the
right set of outputs matching with the appropriate set of
reference inputs.

4. CONCLUSION

This paper enables NI theory to be used on non-square LTI
systems (e.g. safety-critical systems with redundant actu-
ators and sensors) by designing static pre- and post- com-
pensators. A specific structure of the post-compensator
is also given such that any stable tall/square plant with
a full-rank B matrix can be transformed into the SSNI
class. Moreover, upon imposing the DC-gain condition on
the compensated system, the pre- and post- compensators
stabilize respectively fat and tall plants in closed-loop
with unity positive feedback. Furthermore, the proposed
compensators can be used to design a simple constant
input tracking framework for stable non-square/square
plants. The LMI-based design techniques offer numerically
tractable solution framework and hence may find potential
applications. In the future, we aim to develop observer-
based post-compensation scheme to replace the state feed-
back by output feedback for applications where not all
states are measurable. Furthermore, these compensation
schemes can be modified to facilitate control effort alloca-
tion in case of large-scale flexible structure systems.
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