
The `1−Exact Penalty-Barrier Phase for
Degenerate Nonlinear Programming

Problems in Ipopt

David Thierry, Lorenz Biegler ∗

∗ Chemical Engineering Department, Carnegie Mellon University,
Pittsburgh, PA 15213 USA (e-mail: biegler@cmu.edu)

Abstract: Failure to satisfy Constraint Qualifications (CQs) leads to serious convergence
difficulties for state-of-the-art Nonlinear Programming (NLP) solvers. Since this failure is often
overlooked by practitioners, a strategy to enhance the robustness properties for problems without
CQs is vital. Inspired by penalty merit functions and barrier-like strategies, we propose and
implement a combination of both in Ipopt. This strategy has the advantage of consistently
satisfying the Linear Independence Constraint Qualification (LICQ) for an augmented problem,
readily enabling regular step computations within the interior-point framework. Additionally,
an update rule inspired by the work of Byrd et al. (2012) is implemented, which provides
a dynamic increase of the penalty parameter as stationary points are approached. Extensive
test results show favorable performance and robustness increases for our `1−penalty strategies,
when compared to the regular version of Ipopt. Moreover, a dynamic optimization problem with
nonsmooth dynamics formulated as a Mathematical Program with Complementarity Constraints
(MPCC) was solved in a single optimization stage without additional reformulation. Thus, this
`1−strategy has proved useful for a broad class of degenerate NLPs.

Keywords: Nonlinear programming; Interior point methods; Numerical methods for optimal
control; Constraint Qualifications; Complementarity Constraints

1. INTRODUCTION

Nonlinear optimization algorithms have evolved to a state
where they demonstrate reasonable performance in solv-
ing large-scale problems. This has been enhanced with
the availability of accurate first and second-derivatives by
means of Automatic Differentiation, and efficient sparse
linear algebra packages. These elements are reflected in
the implementation of state-of-the-art solvers like Knitro,
(Byrd et al. (2006)) and Ipopt, (Wächter and Biegler
(2006)). Nevertheless, in many cases nonlinear optimiza-
tion is avoided by practitioners in favor of convex program-
ming or metaheuristic frameworks, because of the inherent
assumptions that NLP entails. Often these assumptions
are either overlooked or not understood well enough by
the users, so the success rate of the nonlinear optimization
solvers is often underappreciated.

Typically, most NLP solvers require several assumptions
for convergence, among which regularity of the linearized
constraints is fundamental. Moreover, as the nonlinear
nature of the problem makes it difficult to satisfy the
constraints at all iterates, the linearized problem may
become degenerate, i.e., constraint gradients are linearly
dependent. Additionally, numerical and modeling errors
can lead these constraints to lose consistency even at
feasible points, and convergence cannot be established.
Examples of inconsistent linearizations include problems
with bilinear terms, such as gasoline blending and network-
flow, Mathematical Programs with Complementarity Con-

straints (MPCCs) and discretized forms of high-index
Differential-Algebraic Equation (DAE) systems.

Several NLP approaches have been designed to work under
weaker assumptions in order to overcome these degenera-
cies. Curtis et al. (2009), present a method that com-
putes normal steps towards feasibility by solving a trust-
region problem, followed by solving a perturbed primal-
dual system to compute the tangential step. In the limit,
even if the linearizations of the constraints are degenerate,
the algorithm still converges to local stationary points.
Byrd et al. (2012) incorporated an SQP strategy with an
exact penalty of the constraint violation and a line-search.
Provided that the reduced Hessian of the Lagrangian is
positive definite, this strategy has inherent regularizing
properties. Nevertheless, the algorithm must allocate con-
siderable effort to finding appropriate values of the penalty
parameter.

In terms of available NLP solvers, Ipopt is one of the
most competitive codes for large-scale optimization. At its
core Ipopt employs a filter line-search with an interior-
point method to converge to the solution. To deal with
loss of regularity, it uses inertia controlling mechanisms,
which detect linear dependencies and attempt to regularize
the linearized subproblem. Nevertheless, these mechanisms
compete with several factors, such as ill-conditioning and
numerical instability, which limit their success. Wang et al.
(2013) and Wan and Biegler (2017) showed that these
degeneracies can be removed directly at the linear algebra
level by analyzing the pivot sequence and perturbing or
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removing null rows of the Jacobian block of the KKT
matrix. However, the effectiveness of this strategy is linked
to the tuning parameters of the sparse-linear algebra
routines.

In this work we present a strategy that combines exact
penalties, filter line-search and barrier algorithms within
Ipopt to solve problems with degenerate and inconsistent
constraint linearizations. The fundamental penalty-barrier
problem will be introduced alongside a strategy to adjust
the value of the penalty parameter. Finally, numerical
results for a test set of degenerate problems and a control
problem with degenerate constraints will be presented.

2. THE INTERIOR-POINT `1−EXACT
PENALTY-BARRIER PHASE

Throughout this work we consider a general, nonconvex
NLP in the following compact form:

minimize
x∈Rn

f (x) subject to c (x) = 0, x ≥ 0; (1)

where f : Rn → R and c : Rn → Rm are assumed to be
C2 bounded Lipschitz continuous functions and derivatives
over Rn. Typically, algorithms that attempt to find a solu-
tion of problem (1) do so by finding a point that satisfies
KKT (Karush-Kuhn-Tucker) conditions. However, such
strategies tacitly assume that the set of constraints are reg-
ular, in other words, they satisfy constraint qualifications
(CQs). To define them we denote ∇c (x) as the constraint
gradients, and assume all vectors to be column vectors
unless specified otherwise.

Definition 1. (Active set). Consider the active set of bounds
for a feasible point x,

A (x) = {i : xi = 0} , (2)

with nA = | A (x)|. We define matrix EA (x) ∈ Rn×nA

such that EA (x)
T
x = 0. Here column j of (EA) is defined

by a column of an identity matrix of appropriate size, i.e.
EA,j (x) = Ii(j) where i (j) is the jth element of A (x).

Definition 2. (LICQ). The linear independence constraint
qualification holds at a feasible point x of the NLP (1) if
the matrix of combined gradients of equality constraints
and active bounds, [∇c (x) EA (x)], is full column rank.

Definition 3. (MFCQ). The Mangasarian Fromovitz Con-
straint Qualification holds at a feasible point x of NLP
(1) if the gradients of the equality constraints at x,
∇ci (x) , i ∈ {1, ...,m} are linearly independent and there
exists a nonzero vector s such that,

∇ci (x)
T
s = 0 ∀i ∈ {1, ...,m} , and

EA,i (x)
T
s > 0 ∀i ∈ A (x) .

(3)

Though there are entire families of CQs, the MFCQ is
commonly used as part of the foundation to guarantee
convergence of most NLP solvers. It should be noted that
LICQ implies MFCQ but not the reverse. Also, if MFCQ
is satisfied, the multipliers associated with a nonlinear
program will be bounded. For degenerate problems, these
CQs can fail in a neighborhood of points within the feasible
region, or in some severe cases, at all points. The latter
is the typical case for redundant constraints, i.e. sets of
constraints that add no information to the feasible region,
or are already implied by the rest of the constraints.

Whenever CQs fail, most solvers will engage strategies
that attempt to counteract the degeneracies. Most notably,
active set methods that are able to detect this situation,
could in principle remove degenerate constraints. However,
as the size of the problem grows, the combinatorial nature
of such a mechanism becomes problematic. On the other
hand, interior-point methods like Ipopt do not deal with
single sets of degenerate constraints at a given time,
but rather attempt to regularize all the constraints at
once, with the hope that the degeneracies are limited
to an isolated neighborhood of points. Otherwise, it is
necessary to further analyze the linearizations of the set
of constraints to determine the source of the redundancy
and eliminate it from the set. To further expand on this
topic, the next section summarizes the barrier strategy in
Ipopt.

2.1 Barrier Problem and Solution of Primal-Dual System

Barrier methods work on the premise of solving a family of
parametric problems that asymptotically approaches the
solution of (1). These are constructed by adding a barrier
term in the objective function that remains bounded as
long as a strictly feasible point is being evaluated; and
as the boundary of the feasible region is approached, the
barrier smoothly increases to infinity. In other words, x
remains in the strict interior of the positive orthant. The
associated barrier problem for (1) is written as,

min
x∈Rn

ϕµj
(x) := f (x)− µj

n∑
i

lnx(i) s.t. c (x) = 0, (4)

where µj ∈ R1
>0 is the barrier parameter, and ϕµj

(x) de-
notes the barrier objective function for a fixed barrier pa-
rameter at iteration j. Under the MFCQ, as limj→∞ µj =
0, the solution of (4) (x (µj)) describes a differentiable
path to the solution of (1), x∗ (Wright and Orban (2002)).
In Ipopt, the algorithm first attempts to solve directly
the set of primal-dual equations, which are related to
the KKT conditions of (4). To illustrate this, consider
the solution triplet consisting of primal-dual variables
(x (µj) , λ (µj) , z (µj)) ∈ Rn × Rm × Rn, where x ≥ 0,
and z ≥ 0; also let g (x) := ∇f (x), A (x) := ∇c (x),
and X := diag (x), Z := diag (z) . Then the primal-dual
equations are given as[

g (x)− z +A (x)λ
c (x)

XZe− µje

]
= 0. (5)

To solve system (5), one can use Newton’s algorithm to
generate k steps towards the solution, i.e. xk := xk+αkd

x
k,

zk := zk +αzkd
z
k, and λk := λk +αλkd

λ
k . This entails solving

a linear system at iteration k for some fixed value of µj to
find the search direction

(
dxk, d

λ
k , d

z
k

)
. The (2n+m) order

linear system associated with the Newton step of (5) is not
symmetric; however it can be decomposed to an (n+m)
symmetric linear system that is solved instead. Let the
Lagrange function be L (xk, λk, zk) := f (xk) − zTk xk +

c (xk)
T
λk, so that the Hessian matrix of the Lagrange

function is Hk := ∇2
xxf (xk) +

∑m
i ∇2

xxci (xk)λ
(i)
k . Then

the diagonal primal-dual terms are Σk := X−1k Zk, and
finally the augmented Hessian matrix is Wk := Hk + Σk.
(To further simplify the notation, whenever the equation
is related to a Newton type iteration k, we use subscripts
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to denote function values of the iterates; e.g. gk := g (xk)).
The resulting symmetric linear system is then[

Wk Ak
ATk 0

] [
dxk
dλk

]
= −

[
gk − µjX−1k e+Akλk

ck

]
, (6)

where the remaining solution vector is given in terms of dxk,

i.e. dzk = µjX
−1
k e−zk−Σkd

x
k. The system in (6) is usually

sparse, so it can be solved using an indefinite sparse linear
solver, like MA57. After successfully computing the search
direction, Ipopt will attempt to compute an appropriate
value of αk ∈ (0, 1], that promotes convergence to the so-
lution of (1). This strategy assumes that the linearizations
of the constraints are regular, i.e. the LICQ holds for (4).
Thus, whenever Ak becomes rank deficient, factorization of
(6) cannot be performed. As a result regularization strate-
gies are fundamental for the convergence of the algorithm.

Remark 4. Failure of the LICQ for problem (4) will com-
promise the convergence properties. Moreover, it is re-
quired that the projection of Wk onto the null-space of
ATk to be positive definite, so that computed directions for
x have a descent property. Both can be verified by checking
the inertia of the matrix from system (6). If the inertia is
not correct, the augmented KKT matrix can be modified
by defining regularization scalars, δ, δc ∈ R1

≥0, and then
adding them to the two diagonal blocks respectively. i.e.[

Wk + δI Ak
ATk −δcI

]
. (7)

Therefore if either positive definiteness of the projected
Hk or the LICQ are not satisfied, the corresponding
regularization scalar will be strictly positive. For the case
in which Ak is rank-deficient (i.e. violates the LICQ), then
δc ← δcµ

κc
j and its value is proportional to the current

barrier parameter. On the other hand, for particularly
ill-conditioned problems, this regularization may not be
sufficient to fix the rank deficiencies, and the algorithm will
be sent into restoration phase (see Wächter and Biegler
(2006)).

2.2 `1−Exact Penalty-Barrier Primal-Dual Strategies

In this study we reformulate the interior point strategy
to provide a self-regularizing effect. We create an exact
penalty form of the barrier problem, which yields an
equivalent solution to that of the problem (1) and at the
same time does not require the LICQ assumption for the
equality constraints. To begin, we penalize the `1−norm
of the constraints from (4) and write the nonsmooth
formulation of the `1−penalty-barrier form as:

minimize
x∈Rn

f (x)− µj
n∑
i

lnx(i) + ρ ‖c (x)‖1 , (8)

where ρ ∈ R1
≥0 is the penalty parameter. If this problem

has ρ ≥ ρ∗ := ‖(λ∗, z∗)‖∞, and c (x) = 0; then the
solution of (8) is the same as the solution of (4) (Han
and Mangasarian (1979)). Therefore, it is critical to select
a sufficiently large penalty parameter to reach a KKT
point. Moreover, it is desirable to solve a differentiable
version of problem (8), which requires augmenting the
set of constraints with additional penalty-variables p and
n ∈ Rm. This is denoted as the direct penalty strategy, i.e.

min
x∈Rn; p,n∈Rm

f (x)− µj
n∑
i

lnx(i) + ρ (p+ n)
T
e

subject to c (x)− p+ n = 0, p ≥ 0, n ≥ 0,

(9)

where e = [1, 1, ...1]
T

denotes a vector of all ones of the
appropriate dimension. The resulting problem is feasible
at all points (there exist nonnegative p or n such that
the constraints are satisfied); however this has the trade-
off of higher dimensionality and it needs a mechanism to
determine value of the penalty parameter. Moreover, this
problem satisfies LICQ at infeasible points of (4), thus
enabling computation of steps for degenerate problems.
This is shown in the following remark.

Remark 5. Consider a point x for which c (x) 6= 0 and
p+ n > 0, then the LICQ for problem (9) still holds, even
if A(x̄) is rank deficient.

With these properties, the resulting primal-dual equations
include new barrier terms for p and n inequalities, and
stationarity conditions as well. Using a similar strategy as
the one from the previous section, the solution vector of
this problem is given as

(x (µj) , λ (µj) , z (µj) , p (µj) , n (µj) , zp (µj) , zn (µj))

and we solve corresponding linear systems to determine
the Newton search direction

(
dxk, d

λ
k , d

z
k, d

p
k, d

n
k , d

zp
k , d

zn
k

)
.

Let Zp,k := diag (zp,k) , Zn,k := diag (zn,k) so that Σp,k :=

P−1k Zp,k and Σn,k := N−1k Zn,k. In a similar way as system
(6), this search direction can be found by solving the
following set of equations,[

Wk Ak
ATk −Σ−1p,k − Σ−1n,k

] [
dxk
dλk

]
= −

[
gk − µjX−1k e+Akλk

c̃k

]
(10)

where

c̃k := ck + Z−1p,k [ρPk − µje] + Z−1n,k [−ρNk + µje]−
λk [Σp,k + Σn,k] . (11)

Finally, the remaining search directions are defined in
terms of λ+k := λk + dλk as follows,

dpk = Z−1p,k
[
µje+ Pkλ

+
k − ρpk

]
,

dnk = Z−1n,k
[
µje−Nkλ+k − ρnk

]
,

d
zp
k = µjP

−1
k e− zp,k − Σp,kd

p
k,

dznk = µjN
−1
k e− zn,k − Σn,kd

n
k .

(12)

Remark 6. Even though the `1−penalty-barrier problem
of (9) avoids degeneracies in the linear system (10), the
values of the multipliers are proportional to the value of
the penalty parameter. At some point their contribution
to the ill-conditioning of the linear system might become
significant and the sparse linear solver will encounter
difficulties. Therefore, an inverse penalty strategy is also
proposed. This is given as

minimize
x∈Rn; p,n∈Rm

1

ρ

[
f (x)− µj

n∑
i

lnx(i)

]
+ (p+ n)

T
e

subject to c (x)− p+ n = 0, p, n ≥ 0.
(13)

From the optimality conditions of (13), it can be deduced
that this formulation limits the values of the multipliers,
and as ρ→∞, the corresponding primal-dual system will
converge to a (possibly infeasible) stationary point of (1).
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2.3 About the Penalty Parameter Update

The value of the penalty parameter is critical for the
convergence of the algorithm; therefore, an appropriate
update rule needs to be implemented.

A possible strategy is to use linearized models of the
infeasibility and the barrier objective function, so that
predictions on the minimum value of ρ can be made. First,
consider a linear model of the `1−norm infeasibility,

mk (dx) :=
∥∥ATk dx + ck

∥∥
1
. (14)

We note that for large values of the penalty parameter,
the penalty-barrier objective function creates a bias to-
wards feasibility. As with trust region algorithms, it is
desirable to select a penalty parameter value, such that the
predicted reduction of the quadratic model of the penalty-
barrier objective for a search direction dx is commensurate
to the current norm of the infeasibility. For this let the
quadratic model of the penalty-barrier objective function
be given by,

qρ,k (dx) := ϕµj ,k +∇ϕTµj ,kd
x + dxTWkd

x + ρ mk (dx) ,

(15)
and the predicted barrier function change through this
quadratic model be given by qρ,k (0) − qρ,k (d). As men-
tioned earlier an adequate penalty parameter will generate
search directions that balance stationarity and feasibility.
Thus, an acceptable penalty parameter enables the pre-
dicted reduction to be greater than the penalized infeasi-
bility, i.e.,

qρ,k (0)− qρ,k (d) ≥ ρκρ ‖ck‖1 . (16)

This rule is sufficient to derive a lower bound on the
penalty parameter. One can use information from the
Newton step of the primal-dual system of (9), and then
derive this lower bound as the following result,

ρ ≥ ρtrial :=
∇ϕ (xk)

T
dxk +

γρ
2
dxTk Wkd

x
k

(1− κρ) ‖ck‖1 −
(
p+k + n+k

)T
e
, (17)

with the vectors p+k = pk + dpk, n+k = nk + dnk , and
the parameter γρ ∈ {0, 1} is added so that whenever
dxTk Wkd

x
k < 0, γρ = 0; otherwise γρ = 1. Using (17), an

update of the penalty parameter can be done by checking
that ρ ≥ ρtrial and updating ρ := ρtrial+ερ otherwise. This
rule defines the update of the penalty parameter based on
current local information. However, on some problems the
rate at which the penalty is updated is not large enough.
Therefore, an additional heuristic is imposed to improve
the rate of growth of the penalty parameter; we double the
value of ρ if there is insufficient progress towards feasibility,
as measured using the denominator of (17), i.e.,

ρ =

{
2 ρ if (1− κρ) ‖ck‖ −

(
p+k + n+k

)T
e < 0

unchanged otherwise
. (18)

3. NUMERICAL RESULTS

In order to perform numerical tests, the Ipopt libraries
were compiled with GCC and GFortran 7.4.0. For the
BLAS and LAPACK routines, the sequential version of the
Intel MKL library v2018.1-163 was used alongside HSL’s
MA57 as the linear solver. All the relevant options for
Ipopt are set to their default values and all of the problems
were compiled using AMPL in a Linux machine with a
Intel(R) Xeon(R) E5-2440 CPU.

3.1 CUTEr Test Set

To evaluate the performance and compare our proposed
NLP solver, we run a variant of the CUTEr test set and
construct performance plots based on the results. How-
ever, to the best of our knowledge most of the equality
constrained problems in CUTEr do not pose enough CQ
failure situations that lead IPOPT to terminate without
convergence. Therefore, in addition to selecting 275 prob-
lems from the standard CUTEr test set, a modified version
was generated in which all 275 problems include a globally-
dependent constraint. Since none of these modified prob-
lems satisfies LICQ, this provides a more informative cer-
tificate of robustness of the solver. For each of the 275
CUTEr problems, we choose a particular constraint, called
c1 (x), and add the corresponding redundant constraint,

c1 (x) = 0, and c1 (x)− c21 (x) = 0. (19)

This is the same modification of the test used by Curtis
et al. (2009). For all the test problems, the `1−penalty
phase was set up to use 6 different updates of the penalty
parameter, based on (17). These were compared against
direct and inverse problems with penalty parameters fixed
at 1000, as well as the normal version of Ipopt, which is
designated here as vanilla. We tested and compared the
following `1−penalty options:

• direct-quadratic update of (ρ)
• direct-quadratic-no-Σk
• direct-linear update of (ρL, γρ = 0 in (17))
• direct-fixed (ρ0)
• inverse-quadratic (1/ρ)
• inverse-quadratic-no-Σk
• inverse-linear (1/ρL, γρ = 0 in (17))
• inverse-fixed (1/ρ0).

Since vanilla Ipopt is already competitive with the stan-
dard CUTEr set, we show that replacing the current fea-
sibility restoration in IPOPT with the `1−penalty phase
problem (9) leads to a positive improvement on robustness.
For the modified CUTEr problems that have globlal rank-
deficiencies, we apply `1−penalty strategies throughout
the optimization, and start from the `1−phase directly. It
should be noted that, in contrast to the current feasibility
restoration phase within Ipopt, our `1−penalty strategies
do not revert back to the standard algorithm (based on
(4)), but remain engaged until the problem terminates.

The Dolan-Morè plots for the standard CUTEr set are
shown in Figure 1 and for the modified (degenerate)
CUTEr set in Figure 2. For both tests, the fixed penalty
options (ρ0, 1/ρ0) perform worse than vanilla Ipopt in
terms of robustness, because it is likely that ρ0 remains
too small when an ill-conditioned stationary point is
approached. Nevertheless, from Figure 1 we see that there
is a significant benefit from the updates; most notably
the quadratic rule (ρ) outperforms all of the rest of the
updates.

For the modified CUTEr set, we note that the inverse
penalty strategies are at least as robust as the vanilla
counterpart. On the other hand, the direct penalty options
(ρ, linear and no Σ) are the top in terms of robustness,
among which the linear update option is the most robust.
In spite of this, a few failure cases are still encountered
with the `1−penalty phase. These are due to reaching
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Fig. 1. Dolan-Morè performance plots for the standard
CUTEr test set. (p is the fraction of problems solved
by a given solver within a factor τ of the minimum
time to solve.)

Fig. 2. Dolan-Morè performance plots for modified CUTEr
test set with a degenerate constraint

infeasible stationary points, and attaining feasible points
(p, n→ 0) at a faster rate than progress towards stationar-
ity. It should be noted that both cases are linked to several
factors that include the initial guesses for primal variables,
and most notably the initial penalty parameter. In partic-
ular, initializaton for the penalty parameter influences the
convergence path significantly and the above failures can
be avoided with better initial values of ρ.

In contrast to the vanilla version, the direct `1−penalty
phase in Ipopt is successful in solving several problems,
such as hs047, ssnlbeam, eigenc2 and the brainpc-x prob-
lems. At the same time, problems like qpnboei1, steenbrf
and gridnetc converge to feasible points at which the
penalty parameter grows indefinitely. These failures are
avoided with the inverse approaches, which solve these
problems to an acceptable level (i.e. relaxed tolerances).
On the other hand, the inverse approaches encounter other
failures, which drop their robustness to the same level as
vanilla. These occur because feasibility is attained faster
than optimality in several cases. When continuing towards
stationarity, the line-search selects the minimum possible
step size; as the penalty-variables are already at the bound,
this triggers immediate failure. This is experienced in

problems blockqp5 and ncvxqp9. Nevertheless, the overall
results show a significant increase of robustness for Ipopt,
along with some caveats including the possibility of finding
stationarity points that are not optimal solutions.

3.2 Optimal Control of a Nonsmooth DAE

We also consider a discretized dynamic optimization prob-
lem, which is an instance of a Mathematical Program with
Complementarity Constraints (MPCC). The optimization
problem is given as,

min α ‖x (T )− xtgt‖2 + T

s.t. ẋ = v,

v̇ = a (t) t (θ) + Fn (θ) ,

θ̇ = s (t)
(
t (θ)

T
v
)
,

F ∈ −µNSgn
(
n (θ)

T
v
)
,

ycl (x) =


sin (x) x ≤ π
π − x π ≤ x ≤ 2π

−π − sin (x) 2π ≤ x
,

|a (t)| ≤ amax, |s (t)| ≤ smax ∀t,
x (0) = 0, y (0) = 0, θ (0) = 0,

x ∈ C = {(x, y) | |y − ycl (x)| ≤ w/2} .

(20)

The problem models a racing car undergoing frictional
forces, with the goal to finish the track in the least amount
of time. The model has as state variables a 2-dimensional
position vector x = [x, y]

T
, the velocity vector v and a

scalar angle θ which indicates the direction of the car.
The controls are the throttle level a (t) of the car, that
dictates whether the car accelerates or decelerates, and
the steering control s (t) which sets the direction of the
car. There is also the unit vector that points into the

direction of θ, t (θ) = [cos (θ) , sin (θ)]
T

, and its normal

vector n (θ) = [− sin (θ) , cos (θ)]
T

. The model is a DAE
system with equations for velocity, momentum balance,
a differential inclusion, where the frictional force depends
on the sign of the normal velocity, and constraints on the
position of the car, which is limited by the walls of an s-
shaped track. The objective minimizes T , the time to finish
the track plus the difference between the final position and
a target xtgt.

Typically, optimization problems with smooth DAEs can
be solved by fully discretizing the time domain, so that
the discrete solution approximates the infinite-dimension
solution. However, the differential inclusions (and piece-
wise function) introduce an additional layer of complexity.
Rather than using smoothing functions, this problem can
be solved by transforming such constraints into comple-
mentarity constraints (Baumrucker and Biegler (2009))
thus turning the problem into a MPCC. Although MPCCs
are an equivalent smooth representation of the nonsmooth
parts of the model, they are particularly difficult to handle
because MPCCs violate constraint qualifications. There-
fore in order to apply off-the-shelf NLP solvers for these
kinds of problems, it is necessary to apply reformulations,
for example a max operator followed by a smoothing
function or solving sequences of relaxed problems. Such
reformulations are not required here, since the `1−penalty
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Fig. 3. State profiles for the racing car MPCC problem

modes presented in this work are already designed to
handle the lack of regularity of the MPCC directly.

The MPCC derived from (20) was discretized with Radau
collocation with 100 finite elements and 3 collocation
points in GAMS 28.2.0 (using the AMPL writer). Ad-
ditionally the `1−exact penalty phase was used to solve
this problem with MA57 as the linear solver. With this
discretization the problem has 8896 variables and 8296
constraints; also for the complementarity constraints, the
equality constraint formulation was used. This problem
was solved in 9.5258 CPUs and 315 iterations to acceptable
level in a single optimization problem. For reference, the
vanilla version of Ipopt always fails to solve this problem.

The profiles for the optimal time trajectory are displayed
in Figure 3. For this particular run, a final time of
4.947 seconds was obtained. It also shows that as the car
approaches both bends, it throttles all the way up and
turns sharply at the same time.

We note that it is possible to get even better local so-
lutions, as suggested by Baumrucker and Biegler (2009),
if careful pre- and post-processing is done. (In fact, with
further mesh refinement, the best reported time is 4.0169
seconds.) Nevertheless, the robustness of our `1−penalty
algorithms show that ill-posed MPCCs can be solved di-
rectly, even when standard NLP solvers fail.

4. CONCLUSION

Ill-posed problems lack regularity of local constraint lin-
earizations. This situation curtails the performance and
robustness of state-of-the-art solvers like Ipopt. Our pro-
posed `1−exact penalty-barrier approach has the advan-
tage of satisfying the LICQ as feasible stationary points are
reached. Moreover, combined with penalty update rules, it
is possible to enhance the robustness properties of Ipopt.

Numerical testing reveals that there is considerable in-
crease in robust performance, although pathological prob-
lems may still lead to failures. On the other hand, switch-
ing to inverse strategies of penalty shows favorable re-
sults on these problems. Finally, a challenging MPCC was
solved directly as an NLP without introducing additional
strategies to handle complementarity constraints. These

results demonstrate that our `1−penalty algorithm can be
useful for a broad class of degenerate problems.

5. DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.
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