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Abstract: The paper presents modeling, control and analysis of an urban public transport
network. First, a centralized system description is given, built up from the dynamics of individual
buses and bus stops. Aiming to minimize three conflicting goals (equidistant headways, timetable
adherence, and minimizing passenger waiting times), a reference tracking model predictive
controller is formulated based on the piecewise-affine system model. The closed-loop system is
analyzed with three methods. Numerical simulations on a simple experimental network showed
that the temporal evolution of headways and passenger numbers could maintain their periodicity
with the help of velocity control. With the help of randomized simulation scenarios, sensitivity
of the system is analyzed. Finally, infeasible regions for the bus network control was sought
using by formulating an explicit model predictive controller.
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1. INTRODUCTION

In busy urban areas public transport networks cannot
operate without supervision. The system is inherently un-
stable since transit lines are subject to travel time and
passenger demand variability. This instability leads to
bus bunching phenomena, first described in Newell and
Potts (1964). In metropolitan areas bus lines are often
intertwined, public transport buses can merge and travel
on common routes or split, therefore service disruption on
one line might propagate to the whole network. This prop-
agation has not been analyzed earlier. In addition, corri-
dors served by multiple bus lines mean higher passenger
demand and higher frequency of buses, both stimulating
bus bunching.

Due to bunching the periodicity of arrivals fails and ho-
mogeneous service cannot be maintained (Sorratini et al.,
2008). Bus bunching has a well-established literature and
several authors proposed different methods to overcome
its adverse effect. In Daganzo and Pilachowski (2011)
algorithms are developed to control the headways of con-
secutive buses. Bus bunching was mitigated by bus holding
control in Wu et al. (2017). Ampountolas and Kring (2015)
proposed a cooperative control algorithm for buses to bal-
ance headways. Multi-objective, passenger demand-driven
public transport receives increasing interest recently. In

Xuan et al. (2011), optimal control algorithms were con-
sidered taking into account both headway and timetable
keeping. In Varga et al. (2018a), both bus bunching and
timetable adherence are dealt with model predictive con-
trol (MPC). The above works deal with bus bunching
focusing on single bus lines. Recently, authors turned to-
wards modeling and controlling the public transport bus
network as a whole. A coordinated multiline bus holding
strategy was formulated and network sensitivity analysis
was carried out by Laskaris et al. (2018). The network
layout, link lengths and passenger demand have significant
effect on the network performance. In Schmöcker et al.
(2016) the effect of overtaking on a corridor served by two
lines was studied in comparison to bus holding. The paper
concludes that the holding strategy is an additional source
of delay to the system.

This work focuses on a public transport network in a
centralized way. The first contribution of the paper is
formulating a speed advisory control for every bus in the
public transport network. The model attempts to mini-
mize passenger wait times and ensure headway adherence
while taking dwell times and external traffic into account.
The speed advisory system assumes highly automated or
autonomous vehicles where velocity control can be real-
ized. The controller design is based on an NP-hard mixed
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integer optimization. Although control design for high-
dimensional mixed-integer systems is well-established, sys-
tematic analysis techniques for such systems are limited.
The second contribution of the paper is an attempt to
analyze the feasibility 1 and closed-loop performance with
various methods: a) in-depth analysis through simulation,
b) random sampling (Campi et al., 2009) and c) feasibility
analysis via set theory (Borrelli, 2003).

The remainder of the paper is structured as follows. In
Section 2 the control oriented model is formulated: a
dynamical model is written for the longitudinal dynamics
of public transport buses and the number of passengers
waiting at bus stops are modeled. The two models (bus
dynamics and bus stop dynamics) are recast into one
network model. Then, in Section 3 the model predictive
controller design is presented. In Section 4 the bus fleet
control algorithm is demonstrated via simulation and
analyzed with the help of the random sampling and set
theory. Finally, Section 5 concludes the findings of the
paper.

2. BUS NETWORK MODEL

This section discusses the control oriented discrete-time
representation for urban bus networks. First, the dynam-
ical models of individual buses are formulated. Then, a
nonlinear system model for passenger numbers at bus stops
is given. The two models are then combined into a network
bus network model. The reference trajectory generation for
control purposes is discussed in a separate subsection.

2.1 Bus dynamics model

The bus network bunching model is originated from
the longitudinal dynamics of a single bus. The position
xi(k) and velocity vi(k) of one vehicle (with index i =
1, 2, ..., MB) at time step k is formulated as a linear
model by discrete-time difference equations:

xi(k + 1) =xi(k) + vi(k)∆t, (1)

vi(k + 1) =vi(k) +
∆t

τ
((1− β)(vdes,i(k)− vdist,i(k))

− vi(k)), (2)

over the time period of [k∆t, (k + 1)∆t] with ∆t being
the discrete time-step length, and k = 1, 2, 3, ...
the discrete time-step index. The acceleration is modeled
with a linear relaxation term where vdes,i(k) denotes the
desired velocity (i.e. velocity setpoint) of the vehicle. τ is
a model parameter capturing the sensitivity of drivers to
the change of their desired velocity. According to Helbing
and Tilch (1998), τ shall be calibrated between 1.25 s and
2.5 s. Too small or high values would result in unrealistic
acceleration or deceleration towards the desired velocity.

An additive error structure is proposed to include the
traffic disturbance. The surrounding traffic imposes veloc-
ity vdist,i(k) on the controlled vehicle. This disturbance
is included through a relaxation parameter β ∈ [0, 1].
The value of the disturbance is assumed to be known from
traffic flow measurements.

1 Under feasibility we mean the existence of a control input that
satisfies all the constraints of the optimization (Stephen Boyd, 2019).

In addition, two (timetable- and headway) references
tracking objectives are introduced:

Timetable tracking: define an idealized “optimal”
trajectory based on the bus schedule and idealized
dwell times xtt,i(k) for bus i. This reference term
takes into account the varying headways due to merg-
ing and splitting bus lines. The timetable tracking
reference can be written as follows:

ztt,i(k) = xi(k)− xtt,i(k). (3)

Headway tracking: this objective aims to eliminate
the bus bunching effect. The headway reference tra-
jectory is the past trajectory of the leading bus shifted
by one headway time ahead: xhw,i(k) = xi−1(k −
Thw,i(xi)∆t). This relation indirectly couples vehicles
in the bus network. If the bus follows this trajectory,
equidistant headways are guaranteed in an insensitive
way to the actual velocity of the leading bus. If the
actual time headway between two consecutive buses is
larger than the prediction horizon, the reference tra-
jectory xhw,i(k) is known for every time iteration. The
leading bus has already traveled on that trajectory so
this information exists, Thw,i∆t > N). In addition,
the product Thw,i(xi)∆t shall be an integer number
as it is subtracted from the discrete time step index
k.

zhw,i(k) =xi(k)− xi−1(k − Thw,i(xi)∆t)

=xi − xhw,i(k). (4)

2.2 Bus stop dynamics

Bus stops are characterized by the number of passengers
pj(k) waiting at them. In the proposed model passengers
arrive at stop j = 1, 2, ..., MS with known arrival
rate αj based on Poisson distribution. In addition, a
boarding rate (passenger / time-step) is introduced with
λj (Transportation Research Board, 2016).

pj(k + 1) = pj(k) + αj(k)− λjξj(k). (5)

The variable ξj(k) denotes ongoing passenger exchange.
This variable will play a key role in formulating the
network model as a hybrid dynamical system.

For a network level model, let’s define sub-indexes l =
1, 2, ..., ML denoting one public transport bus line,
e.g. bus il belongs to line l on which stop jl is. Next, define
an integer variable ξj(k) ∈ [0, 1, ..., MB ] denoting that
a bus is at stop jl performing passenger exchange. This
is true if two conditions are fulfilled: the bus is at the
stop xstop,jl and there are passengers at the stop. It has
to be checked for every bus and for every stop on every
line if there are passengers waiting at that stop and the
bus is at the correct location. This criterion shall be further
amended: the location of one stop is defined as the distance
from the origin of one bus line. If the stop is shared by
multiple lines, xstop,jl takes different values. The value of
ξj(k) is assumed to be the sum of all buses (regardless of
which line the bus is on) that fulfill the location criterion.
This means passenger boarding rate is multiplied when
multiple buses are present. In mathematical form:

ξj(k) =

ML∑
l=1

MB∑
il=1

∃i : (|xil(k)− xstop,jl |) < ε1

& pjl(k) ≥ ε2 & vil(k) ≤ ε3. (6)
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This will start “dissipating” the number of passengers at
stop j as it is assumed that αj(k) < λj(k). In addition,
boarding can only start if the bus has stopped at the bus
stop (i.e. vil(k) ≤ ε3).

In the same vein, constraints shall be introduced for
buses waiting at the stops too. When a bus is at a stop
performing passenger exchange, its velocity shall be set to
vdes,i = 0. If a bus is at a stop and there are passengers at
a stop, it shall be stopped for passenger exchange. To this
end, define a boolean variable for every bus as:

ηi(k) : ∃jl : (|xil(k)− xstop,jl |) < ε4 & pjl(k) ≥ ε5. (7)

The two above criteria will activate in pairs. The bus
will be held at the stop until all the passengers at that
stop have boarded, i.e. pjl(k) is reduced to zero. In the
expression above (Eq. (7)) pjl(k) relates to the stop where
the bus il is. ε1..5 denote numerical tolerances. ε1 and ε4
shall be a few meters that the bus cannot go past the stop
in one step, therefore it shall be greater than vmax∆t. The
rest of the tolerances are small positive numbers.

2.3 Network model

Next, combine the bus models with the bus stop dynamics,
devising a public transport network model.

X(k + 1) = AX(k) +Buu(k) +Bhh(k) +Bww(k) (8)

Z(k) = CX(k) +Dr(k) (9)

The system is detailed in Eq. (14) and Eq. (15). The vector
h(k) represents the integer states of the system. If any of
the buses i is at stop j, the corresponding state is one,
enabling λj , modeling passenger boarding.

2.4 Reference trajectory generation

The two reference trajectories, outlined in Section 2.1
drive the buses on the network. These references shall be
carefully planned offline. The timetable reference xtt,i(k)
in Eq. (3) is based on a static timetable of each bus. In
the bus network model, every bus line has an origin, and
the locations of bus stops are measured as the distance
from this origin. In this trajectory, average dwell times
and travel times are assumed. When multiple lines share
a stop, it has multiple locations. If a line is circular, the
reference has to be reset if the bus finishes a trip. If the
bus is late, the trajectory is only reset if it reached the end
of the line, until that the reference position is kept at the
length of the route (e.g. Figure 4, between 1150− 1200 s).
Otherwise, the reference would be much smaller than the
actual position of the bus, eventually stopping it.

Headway reference xhw,i(k) (Eq. (4)) is the key in equaliz-
ing headways in merging and splitting road sections. When
a bus travels on its own line, the target bus is the one trav-
eling on the same line ahead it. The reference trajectory is
created by shifting the trajectory of the target bus by one
headway time, where headway is the ideal temporal dis-
tance between consecutive buses on that line. When buses
use a shared line, the target is defined by a “pattern”, in
what order buses follow each other Varga et al. (2018b).
If a bus enters a common line, it selects a new target to
follow and gets the trajectory of that target, shifted by
the common time headway on that line. In addition, since
lines can have different lengths, reference trajectories are

offset by the difference between the position the two lines
entering the common section (see Figure 5). This reference
trajectory is kept at the route length if the bus is late, in
the same fashion as the timetable reference.

3. MODEL PREDICTIVE CONTROL

The proposed bus network model in Eq. (14) and Eq. (15)
can be extended for a suitably long N prediction horizon.
In order to formulate a model predictive controller, a cost
function is needed. Let

J(k) =
1

2
(X (k)QxX (k) + Z(k)QzZ(k) + U(k)RU(k))

(10)
be the quadratic cost function with Qx, Qz, R being diag-
onal, positive semi-definite matrices as weighting parame-
ters. Each row in the weighting matrices correspond to one
(predicted) state or control input. In J(k) X (k) represents
the evolution of the system states over the prediction
horizon. The system state X(k) is measured at time step
k. Then, for a finite horizon length N the future states
X(k + c|k) are calculated along with the corresponding
control inputs u(k + c − 1|k) and uncontrolled external
input signals. Therefore, X (k) = [X(k + 1|k), X(k +
2|k), ... X(k + c|k), ..., X(k + N |k)]T , c = 1, 2, . . . , N .
In the same vein, the predicted control input sequence is
U(k) = [u(k|k), u(k + 1|k), ..., u(k + c|k), ..., u(k +N −
1|k)]T . Similarly, the system performance outputs Z(k) =
[z(k|k), z(k + 1|k), ..., z(k + c|k), ..., z(k + N − 1|k)]T ,
the logical states L(k) = [l(k|k), l(k + 1|k), ..., l(k +
c|k), ... l(k + N − 1|k)]T and the uncontrolled external
input signals W(k) = [w(k|k), w(k + 1|k), ..., w(k +
c|k), ..., w(k + N − 1|k)]T are extended. The system
matrices are recursively extended too.

A=


A
A2

...
AN

 , Bu =


Bu 0 · · · 0
ABu Bu 0

...
...

. . .
...

AN−1Bu AN−2Bu · · · Bu

,

Bw =


Bw 0 · · · 0
ABw Bw 0

...
...

. . .
...

AN−1Bw AN−2Bw · · · Bw

,

Bh =


Bh 0 · · · 0
ABh Bh 0

...
...

. . .
...

AN−1Bh AN−2Bh · · · Bh

,

C=


C 0 · · · 0
0 C 0
...

...
. . .

...
0 0 · · · C

, D=


D 0 · · · 0
0 D 0
...

...
. . .

...
0 0 · · · D

 . (11)

By inserting the equations of the extended network model
into the cost function (Eq. (10)) through X (k) and Z(k),
and performing some mathematical reformulations the
cost function can be organized into a quadratic function of
the control input U(k). In Eq. (12a) the matrices Φ and ΩT

contain the stacked state-space matrices the initial system
states, reference and disturbance inputs. The MPC control
is defined by solving at each time step the following mixed
integer quadratic program:
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min
U(k)

J(k) =
1

2
UT (k)ΦU(k) + ΩTU(k), (12a)

subject to:

ξj(k) ∈ Z∗ ∀j, (12b)

pj(k) > 0 ∀j, (12c)

vmin ≤ vdes,i(k) ≤ vmax ∀i, (12d)

vdes,i(k) = 0 if ηi = 1. ∀i, (12e)

λi = min{λi,max, pi(k)}. (12f)

In other words, a desired velocity profile shall be predicted
for every bus in the network considering the reference
trajectories xtt,i(k..k+N), xhw,i+1(k..k+N) obeying the
following constraints. ξj(k) denotes passenger exchange at
stop j. Its value equals the number of buses at the stop. A
bus is performing passenger exchange if it is at the stop,
its velocity is zero and there are passengers at the stop
(ηi(k) = 1). The number of passengers at a stop cannot
be smaller than zero. To this end, the passenger boarding
rate is constrained. The desired velocity of the buses is
bounded too. The system is loosely coupled through the
integer states: since the control input is computed in a
centralized way, the passenger numbers are calculated in
relation of the buses of the network. If one bus takes
passengers from a stop, the trajectory of the following bus
is planned accordingly (e.g. less dwell time required).

The proposed optimization problem is a standard mixed
integer quadratic problem (MIQP) which can efficiently be
solved by existing solvers (e.g. Gurobi (2014)). The com-
plexity of the problem, however, grows exponentially with
additional system states or by increasing the prediction
horizon, see Figure 1. The number of integer states in
the search space (for N = 1 prediction horizon) can be
computed as the sum of the following geometric sequence:

K =

MB∑
c=0

(
MB

c

)
M c

S . (13)

In other words, there can be 0..MB stops occupied by
any combination of MS buses. For example, in a 6 bus,
6 bus stop system, assuming every bus MB = 6 can
be at every stop MS = 6, Eq. (13) gives K = 117649
combinations. Exploiting the network layout (not every
bus serves every stop), the number of combinations can be
reduced significantly.

Fig. 1. Computational time of the centralized bus control
problem at different network sizes and prediction
horizons.

Note that, the proposed MPC does not have a terminal set,
therefore, close-loop behavior shall be checked separately.
The next section deals with this analysis.

4. ANALYSIS

In this section the centralized control algorithm is analyzed
by three different techniques. First, simple case studies are
constructed to test the controller in practical situations.
Second, a several numerical simulations are performed
from random initial conditions and the boundedness of the
passenger number is analyzed in a probabilistic framework.
Finally, set theoretical method is applied to characterize
the feasibility region of the MPC algorithm.

4.1 Experimental results

In this section two simulation examples are given. First,
the simulation results are analyzed from the relationship of
one bus and a bus stop, i.e. how the system states behave
when a bus enters a stop. Then, an experimental network
consisting of two circular bus lines, six buses and six stops
is analyzed. In the first simulation, in Figure 2, a bus
travels towards a stop, located at 500 m and stops. When
its speed is reduced to zero, passenger boarding can start
(ξ is set to 1). When there are no passengers at the stop,
the bus can continue its route. The prediction horizon is
fixed: N = 15.
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Fig. 2. System states upon a bus approaching a bus stop

Next, the system performance is analyzed through an
arbitrary public transport network (Figure 3) consisting
of two circular bus lines (2000 m and 2500 m) long,
respectively. Three buses serve each line with four stops
each. Two stops are shared. The time headway on both
lines is 200 s, therefore, the headway on the common
corridor is 200 s·200 s

200 s+200 s = 100 s. The prediction horizon is
N = 15.

Figure 4 depicts a single bus performing three laps on
Line 1. In the first lap the tracking errors are bigger due
to initialization. As time progresses, tracking performance
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becomes better. At 1200 m the headway reference changes,
since the bus enters the common route section and starts
following a bus from Line 2. Next, every bus in the
network is analyzed in time-space diagram (Figure 5).
The trajectories of bus Line 1 are shifted by 500 m, so
stops III and IV are situated in the same places. After
initialization, buses start to equalize their headways, they
arrive to the common section precisely, only minor speed
adjustment is required after merging. Finally, Figure 6
shows the evolution of passenger numbers over time at one
bus stop. The time when passenger numbers are decreasing
are the exact same times, when there is a bus from Line 1
at Stop II in Figure 5.

Line 1 Line 2

Stop I

Stop II

Stop III

Stop IV Stop V

Stop VI

Fig. 3. Experimental network

Table 1. Bus stops on the experimental net-
work

Location
Line 1

(m)

Location
Line 2

(m)

Arrival rate
(pass/s)

Stop I 500 0.05
Stop II 1000 0.05
Stop III 1200 800 0.1
Stop IV 1800 1400 0.1
Stop V 1700 0.02
Stop VI 2300 0.02

4.2 Random simulations

In this analysis step, several numerical simulations are
launched from random initial conditions with the same
model settings. The goal is to get quantitative information
on the maximal passenger number, which is a practically
relevant performance metric of the controlled bus network.
Probabilistic measure is computed to quantify the validity
of the result. More refined simulation based analysis can
be performed by using the recent results of the scenario
approach (Campi et al., 2009).

Here, the same example network is used as in Section 4.1.
In such a high dimensional system varying every initial
condition is especially exhausting. As a simplification, one
scenario is defined with identical bus initial conditions
(positions, velocities) and constant disturbances. The pas-
senger number initial conditions are generated randomly
(between 5 − 20 passengers) at each stop. The length of
one simulation run is 500 s. The method involved S = 500
simulations with randomized (uniformly distributed) ini-
tial passenger numbers. Figure 7 depicts the sum of pas-
senger numbers waiting at bus stops in the whole network.
The red dotted line shows the last order statistics of the
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Fig. 4. Trajectory of one bus in the experimental network
with its reference trajectories. The bus makes three
laps. The shaded area denotes the common line sec-
tion.
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Fig. 5. Trajectory of every bus in the network. Different
line styles are used to distinguish individual buses.
Trajectories of Line 1 are shifted so positions match
in the common line section.
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Fig. 6. Passenger numbers at Stop II

scenarios (David and Nagaraja, 2004). The probability of
more passengers waiting than the simulated maximum is
1

S+1 = 0.2%.

Simulation results suggest that after the buses reach
their subsequent stop the passengers generated as the
initial condition are taken and the periodicity is recovered.
Remark: as there are no constraints on the passenger

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15212



numbers, feasible (but high cost) solution will always be
found regardless of the initial conditions.

Fig. 7. Sum of accumulated passengers at every stop for
every scenario

4.3 Set theory

In this section we aim to characterize the feasibility region
of the MPC algorithm and analyze how its shape and size
are changing when explicit constraints are prescribed for
the maximal allowed passenger number. The approach we
use is based on computing the explicit solution of the MPC
problem in Eq. (12). The existence of an explicit MPC
controller can guarantee feasibility of the system. Since the
computation of the EMPC (especially for hybrid systems)
is NP hard (Borrelli, 2003) and therefore the available
methods (Herceg et al., 2013) works only for systems of
moderate size. Therefore, we perform this analysis step on
a simplified (3 buses, 2 stops) network model.

As the first step, the mixed integer problem is be rewrit-
ten into a Piecewise-affine (PWA) system by separating
Eq. (14) into different subsystems, depending on which
binary state ξi(k) is 1. Not only the state equations shall
be separated but constraints too: when a bus is performing
passenger exchange, it shall be stationary at the stop,
therefore when a given affine system is active, the respec-
tive constraint shall be chosen too.

Then, the EMPC is designed for the bus network, consider-
ing the same constraints as in Section 3. When formulating
the EMPC controller the reference signals for the buses are
set to the end of the network. This way, when testing the
system in closed-loop the control input is other than zero.
The goal of the set based analysis is to check which regions
of the state space yield feasible solution. If the EMPC
cannot cover a partition of the state space, that means
the solution is infeasible. To this end, a hypercube X is
defined bounding the valid system states (i.e. velocities
from 0 to 13.5 m/s, bus positions from 0 to 2500 m
and passenger number from 0 to 50 passengers per stop).
Then, the intersection of the hypercube and the EMPC
controller is calculated. If the intersection is equal to the
initial polytope, the original MPC controller can cover the
whole relevant state space. The steps of this analysis is
summarized below.

Algorithm 1: Feasibility analysis with EMPC

Define: X as a polytope of relevant states.
Compute an EMPC for Eq. (14).
Define: E as the feasibility domain of the EMPC .
I = X ∩ E .

if E \ I = ∅ then
there are no infeasible states.

else
There are infeasible states.

Results show that there are no infeasible solutions. As
a next step, two extra constraints are introduced to the
system that may cause infeasibility: the maximum allowed
number of passengers is constrained. If the number of
allowed passengers at the stop is small, there may be
bus states where buses cannot reach the stop before
the stop overflows with passengers. Figure 8 depicts the
projection of the EMPC controller’s polyhedron to the to
the state plane of the first bus ([v1, x1]). According to
the figure, there exist feasible solution from every system
state combination. On the other hand, when constraining
the maximum allowed passengers strictly to 2 passengers
per stop (Figure 9), the resulting EMPC controller yields
feasible solution on a smaller set.
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Fig. 8. EMPC projection to the state plane of the 1st bus
with 12 passengers limit at stops
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Fig. 9. EMPC projection to the state plane of the 1st bus
with 2 passengers limit at stops
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5. CONCLUSIONS AND FUTURE WORK

The paper presented a centralized control solution for ur-
ban public transport networks. The dynamics of individual
buses and the accumulation of passengers at bus stops are
combined into a single network model. The model captures
the motion of vehicles in the vicinity of stops via integer
states. The aim of the predictive model velocity control
is selecting an optimal speed for buses in order to min-
imize three conflicting objectives: equidistant headways,
timetable adherence and passenger wait. The system is
capable of merging and splitting bus lines through the
adjustment of the headway reference. Although the MPC
can easily be developed for the network model, its analysis
(because of its high dimension) proved challenging. The
feasibility and performance of the system were analyzed
employing three different methods.

5.1 Feasibility

With the help of the set theory based analysis feasible con-
trol regions were sought. This proved to be a numerically
challenging task in such a high dimension system, so the
analysis was only carried out for a smaller partition of the
network. Since there are no conflicting constraints in the
optimization, feasible solution could be found for the entire
state-space. When additional constraints are introduced
to ensure some system performance (e.g. low passenger
waiting times) infeasible control regions appear.

5.2 Performance

Numerical simulations in a simple experimental network
showed the temporal evolution of headways, and passenger
numbers could maintain their periodicity with the help of
velocity control. Randomized simulations aimed at finding
a combination of an initial passenger count, where it takes
the longest for the system to regain its steady state.
Results of the randomized simulations indicate that the
system is insensitive to the variation of passenger numbers.
In addition, with a given probability, an upper bound for
the passenger number can be given.

5.3 Future work

Although the centralized control shows good performance
characteristics, it scales poorly with both system size and
prediction horizon size. As a following step, the network-
model should be decentralized and further analyzed.
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