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Abstract: Application of Model Predictive Control (MPC) for nonlinear switched systems
often leads via discretization to Mixed-Integer Non-Linear Programs (MINLPs), which in a
real-time setting can be solved approximately using a dedicated decomposition approach. One
stage within this approach is the solution of a so-called Combinatorial Integral Approximation
(CIA) problem, which is a Mixed-Integer Linear Program (MILP) that can be solved either
approximately or to global optimality. The applicability of these decomposition methods
depends strongly on efficient implementations, while many practical applications also require
the consideration of a variety of additional and complex combinatorial constraints. In this work,
we provide a comprehensive introduction to the open-source software tool pycombina, which
enables users to automatically formulate CIA problems and provides methods for fast and
efficient solution of these problems. In a case study, the usage of the tool is exemplified for input
data from a real-life MPC application.

Keywords: Nonlinear predictive control, Control of switched systems, Numerical methods for
optimal control

1. INTRODUCTION

For nonlinear switched systems, application of Model
Predictive Control (MPC) typically leads to Mixed-Integer
Optimal Control Problems (MIOCPs), cf. Kirches (2011).
After application of direct methods, this gives rise to
Mixed-Integer Non-Linear Programs (MINLPs) that need
to be solved on real-time suitable time scales. An approach
based on partial outer convexification and relaxation that
facilitates an approximate but real-time suitable solution
of such MINLPs is presented by Sager et al. (2012). This
decomposition approach consists of solving a sequence of
subproblems of which each one is easier to solve than the
original MINLP. Successful applications of this method
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have been presented, e.g., in the area of renewable energy
systems (Bürger et al., 2019b, 2020) and traffic light
optimization (Göttlich et al., 2017).

One of these subproblems can be considered as a combi-
natorial approximation problem and is the so-called Com-
binatorial Integral Approximation (CIA) problem. This
problem is a Mixed-Integer Linear Program (MILP) that
can be solved either by standard MILP solvers, a tailored
Branch-and-Bound (BnB) scheme (Sager et al., 2011) or
approximately by Sum Up Rounding (SUR) (Sager et al.,
2012). In many practical applications, additional combina-
torial constraints such as maximum switching and dwell
time constraints or limitations in transitions from one
mode to another need to be considered, which can have
a major impact on the complexity of formulation and
solution of a CIA problem.

In this work, we provide a comprehensive introduction
to the open-source software tool pycombina, which is de-
signed to simplify the formulation and solution of CIA
problems. After a presentation of the available solution
methods and the possibilities for enforcing additional com-
binatorial constraints, utilization of the tool is exemplified
for input data coming from the real-life MPC operation
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of a nonlinear switched thermal energy supply system
(Bürger et al., 2019a). We compare the performance of the
available methods under different problem formulations
and provide application guidelines.

The remainder of this work is organized as follows. Sec-
tion 2 describes the decomposition approach for approxi-
mate solution of MIOCPs. Then, the pycombina software
tool and its functionalities are presented in Section 3,
followed by a case study in Section 4. Section 5 concludes
this work and presents future work suggestions.

2. DECOMPOSITION ALGORITHM FOR
APPROXIMATE SOLUTION OF MIOCPs

2.1 Problem description

We consider an MIOCP on a given time horizon t ∈ [t0, tf ]
for a switched dynamic system with differential states
x(t) ∈ Rnx , continuous controls u(t) ∈ Rnu and binary
controls b(t) ∈ {0, 1}nb with nx, nu, nb ∈ N as in

min
x(·),u(·),b(·)

∫ tf

t0

L
(
x(t), u(t), b(t)

)
dt+M

(
x(tf)

)
(1a)

s. t. for t ∈ [t0, tf ] :

ẋ(t) = f0

(
x(t), u(t)

)
+
∑nb

i=1
bi(t) · fi

(
x(t), u(t)

)
,

(1b)

rlb(t) ≤ r
(
x(t), u(t), b(·)

)
≤ rub(t), (1c)∑nb

i=1
bi(t) = 1, (1d)

x(t0) = x0, x(t) ∈ X , u(t) ∈ U . (1e)

The objective (1a) consists of the sum of a continuous
time Lagrangian cost functional L(·) and a Mayer term
M(·). We assume that the system is described by nonlinear
Ordinary Differential Equations (ODEs) in partial outer
convexified form, i.e., the ODE right hand side is given by
a sum of functions f0 and fi, i = 1, . . . , nb, so that the
binary controls b appear affinely. In function r(·), differ-
ent kind of path constraints such as maximum switching
constraints, dwell time constraints etc. with possibly time-
dependent lower bounds rlb(t) and upper bounds rub(t)
can be specified. We write b(·) to indicate that combi-
natorial constraints can be coupled over time. Constraint
(1d) contains the so-called Special Order Set 1 (SOS1)
condition which ensures that exactly one binary control is
active at any time.

2.2 CIA decomposition algorithm

Application of direct methods such as direct multiple
shooting (Bock and Plitt, 1984) or direct collocation
(Tsang et al., 1975) for solution of MIOCP (1) results
in an MINLP with a time grid TN = {t0 < t1 < . . . <
tN = tf} that contains N + 1 discrete time points. For
solution of such problems and especially within MPC
applications, the CIA decomposition algorithm by Sager
et al. (2012) can be used whose main steps are given in
Alg. 1. First, a relaxed MINLP with binary constraint
dropped is solved to obtain a relaxed solution qk ∈ [0, 1]nb

for the binary controls bk, k = 0, . . . , N−1 1 . This problem
1 Note that, as customary in optimal control, no control inputs are
associated with the final time point tN .

Input : Discretized MIOCP instance with grid TN ,
initial guesses for x, u, b.

Output: (Local) optimal variables x∗, u∗, b∗, with
objective L∗ = L(x∗, u∗, b∗).

1 Solve relaxed MINLP (NLPrel) → x, u, q, Lrel;
2 Solve CIA problem for q → p;
3 Solve MINLP with b := p fixed (NLPbin)
→ x, u, Lbin;

4 return: (x∗, u∗, b∗,L∗) = (x, u, p,Lbin);

Algorithm 1: CIA decomposition algorithm.

is a Non-Linear Program (NLP) further referred to as
NLPrel. Afterwards, a binary approximation pk ∈ {0, 1}nb

of qk, k = 0, . . . , N − 1 is obtained by solving a so-called
CIA problem. Afterwards, the MINLP is solved again with
binary controls bk := pk fixed, which is again an NLP, for
optimization of continuous controls and states considering
the obtained binary solution.

This approach is justified by a theorem which states that
the optimal MIOCP solution can be arbitrarily well ap-
proximated in the absence of combinatorial constraints
with the CIA decomposition by refining the discretiza-
tion grid (Sager et al., 2012). For further details on the
algorithm and its generalizations we refer to Hahn et al.
(2019).

Within this work, the focus lies on the solution of the CIA
problem in the second step of Alg. 1, which is described in
the following in more detail.

2.3 The CIA problem

After solving NLPrel in Alg. 1, the idea is to find binary
values pk ∈ {0, 1}nb , k = 0, . . . , N − 1 that minimize
the accumulated difference to the relaxed values q in the
‖ · ‖∞-norm for all N discrete time intervals and nb binary
controls. This is expressed by the following MILP referred
to as the CIA problem:

min
p,θ

θ (2a)

s. t. for k = 0, . . . , N − 1 : (2b)

θ ≥ ±
∑k

j=0

(
qj,i − pj,i

)
∆j , i = 1, . . . , nb, (2c)

1 =
∑nb

i=1
pk,i, (2d)

pk ∈ {0, 1}nb , (2e)

(optional combinatorial constraints), (2f)

where θ denotes an introduced auxiliary variable and ∆j

is the length of the jth discretization interval. We specify
optional combinatorial constraints that are added to (2)
in Section 3.3.

3. THE PYCOMBINA SOFTWARE TOOL

An application of the decomposition algorithm requires
the availability of efficient methods and implementations
for solution of the CIA problem, as the problem size can
be huge (e. g., in Partial Differential Equation (PDE)-
constrained optimal control as in Manns and Kirches
(2019)) and the solving process can be time-critical (e. g.,
in an MPC setting). At the same time, consideration
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of combinatorial constraints is often required for realis-
tic modeling within the MIOCPs. In the following, we
describe the available solution methods and constraint
definition facilities included in the open-source software
tool pycombina (Bürger et al., 2019b,c).

3.1 Focus and design of the software tool

As powerful frameworks and solvers for formulation and
solution of NLPs exist, e. g., CasADi (Andersson et al.,
2019) and IPOPT (Wächter and Biegler, 2006), the focus
of pycombina lies directly on the formualtion and solution
of the CIA problem (2) arising in the second stage of
the decomposition algorithm. The tool accepts time grids
and the relaxed binary solutions as numerical inputs and
provides the approximated binary trajectories resulting
from solution of (2) in the same form. This facilitates
flexible use of the tool in combination with different
modeling frameworks and solvers used within the first and
third stage of the decomposition algorithm.

While major parts of the tool, including the user interface,
are developed in Python to simplify use and integration
of the methods in existing projects, performance-critical
parts are either implemented in C++ and interfaced using
pybind11 (Jakob et al., 2017) or rely on state-of-the-art
numerical solvers.

3.2 Available options for solving the CIA problem

Sum Up Rounding (SUR): SUR has been established as
a widely-used algorithm to generate approximate binary
solutions of (2) due to its simplicity and its well approx-
imating binary control trajectories. The rounding scheme
reads recursively for k = 0, . . . , N − 2, i = 1, . . . , nb as

pk,i :=

 1, if i = arg max
i=1,...,nb

k+1∑
j=0

qj,i∆j −
k∑
j=0

pj,i∆j .

0, else.

The usage of SUR is recommended for fast generation of
(approximate) solutions of (2) if additional (combinato-
rial) constraints do not need to be considered.

General MILP solver: An exact and globally optimal
solution of (2) can be obtained through application of a
general MILP solver. For this purpose, pycombina provides
the possibility for automated set up of CIA problems for
solution by Gurobi (Gurobi Optimization, LLC, 2019) 2 .
The automated setup of the corresponding MILP, with or
without additional combinatorial constraints, is realized
via the Python interface of Gurobi. This option is espe-
cially useful within rapid prototyping and for addition and
testing of new constraint types for a CIA problem. For real-
time applications, however, it can be favorable to apply
tailored solution algorithms, as presented in the following.

Tailored BnB solver: For solution of (2) a tailored
BnB algorithm can be used, cf. Sager et al. (2011) and
Jung (2013), which branches forward in time and exploits
that an evaluation of the objective function up to the
current grid interval yields a valid lower bound due to the

2 For using this functionality, a separate installation of the Gurobi
solver and an adequate Gurobi license are required.

maximization operator over all intermediate intervals in
the objective function. For further details we refer to Jung
(2013). The BnB scheme has been shown to have run time
advantages for solution of (2) in comparison to general
MILP solvers (Jung, 2013; Bürger et al., 2019b). Within
pycombina, we equip the method with options to limit
the maximum number of iterations and to choose from
different node selection strategies, e.g., depth- or best-first-
search.

3.3 Available optional combinatorial constraints

In the following, we present important types of additional
constraints of the CIA problem for which the tool provides
automatic setup facilities.

Maximum switching constraints: Such constraints allow
us to limit the maximum number of mode switches on the
defined time horizon. This is imposed by∑N−2

k=0

∣∣pk+1,i − pk,i
∣∣ ≤ σi,max, i = 1, . . . , nb, (3)

where σi,max ∈ N+ denotes the maximum number of
allowed switches per mode.

Minimum dwell time constraints: Minimum time spans
ti,min ∈ R+

0 , i = 1, . . . , nb can be set for which a mode i
must remain active (inactive) once it has been switched on
(off). These requirements would read for j = 0, . . . , N −
2, k ∈ {l | tl ∈ TN ∩ [tj , tj + ti,min)} as

pk,i ≥ pj+1,i − pj,i, i = 1, . . . , nb, (4)

1− pk,i ≥ pj,i − pj+1,i, i = 1, . . . , nb, (5)

Note that the jth interval is given by [tj , tj+1). The
constraint class (4) is often referred to as min-up time
constraints and the constraint class (5) as min-down
time constraints. It is possible with pycombina to specify
different time spans ti,min for min-up and min-down times
of each mode.

Total maximum uptime constraints: We limit the total
activation time ti,max ∈ R+

0 , i = 1, . . . , nb of a mode i over
the defined time horizon as in

ti,max ≥
∑N−1

k=0
pk,i∆k, i = 1, . . . , nb. (6)

Allowed mode transition constraints: We define which
mode can be followed and/or preceded by another mode,
e. g., for modeling the sequence of a gear shift, cf. Robuschi
et al. (2019). Let Pi ⊂ {1, . . . , nb} denote the allowed
modes that can be activated directly after mode i has
been active. Then, this constraint can be expressed for
k = 1, . . . , N − 1 as

1 ≥ pk−1,i +
∑

m/∈Pi

pk,m, i = 1, . . . , nb. (7)

Restrict allowed modes for defined time periods: This
permits us to prohibit activation of certain modes during
defined time periods. Mode i may be trivially excluded
from activation on a specified interval [τ1, τ2] ⊂ [t0, tf ] via

pk,i = 0, k ∈ {l = 0, . . . , N−1 | [tl, tl+1]∩[τ1, τ2] 6= ∅}. (8)

3.4 Usage of the Python interface

The basic usage of the Python interface of pycombina is
exemplified in Fig. 1. A CIA problem in pycombina is
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1 import pycombina
2

3 T = [0.0, 1.0, 2.5, 4.0, 6.0, 8.0]
4 q = [[0.1 , 0.9, 0.9, 0.4, 0.2],
5 [0.9, 0.1, 0.1, 0.6, 0.8]]
6

7 ba = pycombina.BinApprox(T, q)
8 ba.set_min_up_times ([3, 4])
9

10 bnb = pycombina.CombinaBnB(ba)
11 opts = {"max_cpu_time": 30.0}
12 bnb.solve (** opts)

Fig. 1. Sample use of the pycombina Python interface. The
set up of a BinApprox object requires a time grid, here
T , and a matrix of the relaxed control values q, here
with N = 5 and nb = 2. We require min-up times of
3, respectively 4, time units for the available modes
by using the function set min up times so that we
alter the CIA problem by modifying the BinApprox
object. Finally, we solve the problem by applying the
BnB solver with a time limit of 30 seconds.

defined using the BinApprox class, which is instantiated
by passing at least numerical data for the time grid TN
and relaxed binary solution q. Afterwards, optional combi-
natorial constraints of the problem and other settings can
be specified. The problem can then be passed to one of the
solver classes CombinaSUR, CombinaBnB, or CombinaMILP,
which can then be used to solve the specified problem so
that the desired binary control values p are constructed.

4. CASE STUDY

In this section, we demonstrate and evaluate selected
methods and features of pycombina for relaxed binary
solutions coming from the real-life MPC operation of
a Solar Thermal Climate System (STCS) for building

Fig. 2. Depiction of the STCS: (1) ACM, (2) low tempera-
ture storage, (3) high temperature storage, (4) pumps,
(5) solar collector arrays, (6) recooling tower.

climate control located at Karlsruhe University of Applied
Sciences. Core element of this system shown in Fig. 2 is
an Adsorption Cooling Machine (ACM) that can operate
in two different modes: in Adsorption Cooling (AC) mode
(bac = 1), it utilizes hot water from a high temperature
storage to cool down a low temperature storage; in Free
Cooling (FC) mode (bfc = 1), it utilizes the recooling tower
on the roof of the building to directly cool down the low
temperature storage at the ambient. For all intervals, at
most one of these modes can be active, i. e.,

bk,ac + bk,fc ≤ 1, k = 0, . . . , N − 1. (9)

Frequent switching of the modes should be avoided due
to hardware restrictions and unmodeled ramping phases.
A detailed description of the STCS, the employed system
model and MPC strategy (which is a parallelized variant
of Alg. 1), and the utilized methods and software is given
in Bürger et al. (2019a) and Bürger et al. (2019b).

In the following, we compare the performance of the
implemented solution methods for several variants of the
basic CIA problem for different relaxed binary solutions.
Also, we evaluate the applicability of the obtained binary
trajectories within an MPC setting and provide usage
advice for the pycombina software tool.

All computations are conducted on a Fujitsu P920 Desktop
PC with an Intel Core i5-4570 3.20 GHz CPU and 16 GB
RAM running Debian 9, using Python 3.6, gcc 6.3, Gurobi
8.1.1, and pycombina 0.3.1.

4.1 Solution of the basic CIA problem

The data set shown in Fig. 3 is a relaxed binary solution
q for the STCS that originated from the solution of a
relaxed problem NLPrel on a morning in September 2019.
The data is given on a non-equidistant time grid with a
total of N = 91 discrete time intervals on a horizon of
24 h. The relaxed solution indicates that activation of the
AC mode is mainly requested between 08:00 and 18:00 and
activation of the FC mode mainly between 20:00 and 08:00
of the next day.

Since pycombina expects that
∑nb

i=1 qk,i = 1, k =
0, . . . , N − 1, an additional binary control boff must be
introduced with foff(·) = 0 whose relaxed solution takes
the values

qk,off = 1− (qk,ac + qk,fc), k = 0, . . . , N − 1. (10)

In the remainder of this section, however, the values of this
trivial control are not explicitly shown.

First, the performance of the available solution methods is
compared for the solution of a CIA problem for the data

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00
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1
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Fig. 3. Depiction of the relaxed solution.
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Fig. 4. Depiction of the CIA solution using SUR.

Table 1. Runtimes and objective values with-
out additional constraints.

Runtime (s) Objective of (2)

SUR 1.04 · 10−3 693.54

BnB 8.96 · 101 693.54

MILP 8.45 · 10−1 693.54

shown in Fig. 3 in the absence of additional combinato-
rial constraints. Table 1 shows that the objective values
obtained by the methods are identical, which is the global
optimal objective of the problem as the solutions obtained
via the BnB and MILP solver are globally optimal. This
shows that in this particular case, SUR was able to gener-
ate the global optimal solution as well, however, it should
be noted that SUR only constructs a guaranteed optimal
solution in the absence of additional constraints and for
nb = 2 (Sager et al., 2011).

Fig. 4 shows the solution p of the CIA problem obtained
using SUR, Fig. 5 and Fig. 6 show the binary solution
constructed by the BnB solver and MILP solver, respec-
tively. It can be observed that the trajectories obtained by
the different methods differ, which is due to the fact that
the global optimal solution of a CIA problem might not be
unique, cf. Jung (2013). A comparison of the solution times
given in Table 1 shows that especially the BnB method
does not perform well in this setting. Since SUR is able
to generate a global optimal solution without the need
to solve an actual optimization problem, SUR can be a
good choice for this basic setting. It may appear, however,
that the relaxed solution exhibits a special structure that
results in underperforming of the SUR binary solutions,
cf. Jung (2013).

All obtained solutions show frequent switching for both
modes, which should be avoided for the considered applica-
tion. As soon as more complex settings such as maximum
switching or dwell time constraints need to be included,
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Fig. 5. Depiction of the CIA solution using BnB solver.
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Fig. 6. Depiction of the CIA solution using MILP solver.

Table 2. Runtimes and objective values consid-
ering maximum switching constraints.

Runtime (s) Objective of (2)

BnB 5.71 · 10−2 1495.61

MILP 7.98 · 10−1 1495.61

however, SUR becomes inapplicable as the method cannot
consider such constraints. In such cases, the BnB or MILP
solver must be utilized, as shown in the upcoming section.

4.2 Consideration of maximum switching constraints

One possibility to avoid frequent switching of the ACM
is to utilize the maximum switching constraint (3) intro-
duced in Section 3.3. Fig. 7 shows the binary solution of
CIA with σac,max = 2 and σfc,max = 4 using the BnB
solver, Table 2 shows the achieved runtimes and objective
values using BnB and the MILP solver.

While the optimal objective values increase due to the
reduced degrees of freedom for the solvers, frequent switch-
ing is successfully avoided. At the same time, the solution
time for the BnB solver decreases. This is due to the
fact that this solver can actively consider such constraints
during the solution process and take according ”shortcuts”
once the maximum amount of switches for construction of
a solution candidate has been spent, cf. Jung (2013).

4.3 Consideration of minimum dwell time constraints

Another way to reduce frequent switching is to ban acti-
vation times that are too short to meet the requirements
of a controlled component or machinery. For this, min-up
time constraints for bac and bfc as in (4) can be introduced,
so that once activated, a mode must remain active at least
for a defined duration. Fig. 8 shows the binary solution
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Fig. 7. Depiction of the CIA solution using BnB solver and
considering maximum switching constraints.
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Fig. 8. Depiction of the CIA solution using BnB solver and
considering dwell time constraints.

Table 3. Runtimes and objective values consid-
ering dwell time constraints.

Runtime (s) Objective of (2)

BnB 1.0 · 10−1 1051.8

MILP 8.6 · 10−1 1051.8

of CIA with tac,min-up = 1 h and tfc,min-up = 0.5 h using
the BnB solver, Table 3 shows the achieved runtimes and
objective values using BnB and the MILP solver.

Compared to the results given in Table 2, the objective
values have decreased. While short activation times of
machinery are successfully avoided, it can be seen in
Fig. 8 that the introduced constraints led to more frequent
switching with short down times. If desired, such effects
could now be counteracted by introduction of additional
min-down time constraints as in (5) and/or by a com-
bination of the introduced min-up time constraints with
maximum switching constraints.

4.4 Solver performances under multiple constraints

Especially in the presence of multiple additional con-
straints, their active consideration within the tailored BnB
algorithm can facilitate reduced solution times for the
corresponding CIA problem. To illustrate this, we compare
the runtimes of the BnB solver rBnB and the MILP solver
rMILP for the solution of a set of CIA problems SCIA

that consists of 500 CIA problems under simultaneous
consideration of maximum switching constraints σac,max =
σfc,max = 4 , min-up time constraints tac,min-up = 1 h
and tfc,min-up = 0.25 h, and min-down time constraints
tac,min-down = 0.5 h and tfc,min-down = 0.25 h based on 500
arbitrary relaxed binary solutions which occured during
MPC operation of the STCS in September 2019, including
the set shown in Fig. 3. Each problem from SCIA is solved
individually and solvers are not warm-started.

Fig. 9 shows two box plots that illustrate the runtimes for
solution of SCIA achieved by the BnB and MILP solver.
Each problem was solved to global optimality with a
maximum runtime of approx. 18 s for the BnB and approx.
32.5 s for the MILP solver. We observe from the plot that
the runtime of the BnB solver is typically lower than the
runtime of the MILP method.

This aspect is further investigated in Fig. 10, which illus-
trates the accumulated occurrences of the differences ∆r

between the runtime of the BnB solver rBnB and the MILP
solver rMILP as in

10−3 10−2 10−1 100 101

Runtime (s)

rBnB

rMILP

Fig. 9. BnB and MILP solver runtimes for solution of SCIA.
The boxes range from the 25 % to the 75 % quartile,
the whiskers mark the 5 % and 95 % percentile.

∆r ≤ rBnB − rMILP (11)

for each instance of SCIA. We represent these occurrences
as fraction of all instances. The plot shows that, while the
BnB solver was able to solve one CIA instance more than
30 s faster than the MILP solver, it was at most less than
8 s slower for another problem instance. Overall, the BnB
solver runtime was lower than the MILP solver runtime
for more than 96 % of the problem instances.

This comparison illustrates how the presence of combina-
tions of additional contraints can lead to improved solution
speed of the BnB solver, which can render the solver
favorable for this case especially within time-critical appli-
cations, such as MPC. We notice, however, that we used
the default settings of Gurobi for the benchmark compu-
tations, whereas a customization of the solver parameters
could possibly lead to a considerable runtime improvement
for specific instances.

4.5 Restriction of allowed modes for defined time periods

In case min-up time constraints become relevant in an
MPC setting, it must be ensured that such restrictions
are considered also in between subsequent MPC iterations,
i. e., that a machine or mode activated in a previous step
must remain active for a minimum amount of time, pos-
sibly even independent from the obtained relaxed binary
solution.

For this, constraints according to (8) can be introduced to
restrict the allowed modes during the corresponding time
span accordingly. Fig. 11 shows the binary solution of CIA
with σac,max = 4 and σfc,max = 4 and with
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Fig. 10. Accumulated occurrences (in %) of the runtime
differences ∆r between BnB to MILP solver according
to (11) for each problem instance of SCIA.
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Fig. 11. Depiction of the CIA solution using BnB solver,
maximum switching constraints and restricted mode
activation.

pac,k = 1, for k ∈ {l | tl ∈ [0, 0.5 h]}, (12)

constructed by the BnB solver. It can be observed that
the AC mode of the machine is now forced to stay active
for the first 0.5 h of the time horizon. Accordingly, the
machine is deactivated after that period and re-activated
on a later time point compared with the previous setting.

5. CONCLUSIONS AND FUTURE WORK

In this work, we provided a comprehensive introduction to
the open-source software tool pycombina for formulation
and solution of CIA problems. We exemplified the perfor-
mance of the implemented methods on data sets from the
real-life operation of a thermal energy supply system and
gave best practice recommendations.

Future work should focus on the implementation of possi-
bilities to include information from NLPrel in the CIA step,
such as information on the influence of binary control de-
cisions on state constraint compliance. Further, migration
of sophisticated rounding schemes for combinatorial con-
straints as in Sager and Zeile (2019) should be considered.
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Wächter, A. and Biegler, L.T. (2006). On the imple-
mentation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Math-
ematical Programming, 106(1), 25–57. doi:10.1007/
s10107-004-0559-y.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6586


