
Control Lyapunov Function Based
Finite-Horizon Optimal Control for

Repointing of a Spacecraft ⋆

Yuanzhuo Geng ∗ Chuanjiang Li ∗ Yanning Guo ∗

James Douglas Biggs ∗∗

∗ Department of Control Science and Engineering, Harbin Institute of
Technology, Harbin, 150001, China(e-mail:gengyz@hit.edu.cn)
∗∗ Polytechnic University of Milan, 20156 Milan, Italy (e-mail:

jamesdouglas.biggs@polimi.it)

Abstract: This paper addresses the problem of optimally repointing the optical axis of a
spacecraft to align with the target direction. A new metric defining the repointing error is
proposed where the corresponding kinematic equations provide a simple and convenient form for
control design. The proposed control integrates a Control Lyapunov Function (CLF) approach
with a sliding mode controller which simultaneously guarantees the optimality and robustness
of the closed-loop system. Firstly, a CLF based control scheme is used to ensure that the state
optimally converges to the sliding surface. Then a fixed-time non-singular terminal sliding mode
controller is employed to provide robust convergence to the origin along the sliding surface. The
convergence time is finite for any initial states and is thus useful for applications with critical
time constraints. The region of attraction and convergence time is analyzed. Finally, numerical
investigations are conducted to verify the effectiveness and superiority of the proposed algorithm
with respect to the classical CLF method.

Keywords: Repointing maneuver; Nonlinear optimal control; Control Lyapunov function;
Fixed-time sliding mode control

1. INTRODUCTION

Space-based observation requires precision pointing, where
the spacecraft should point to (stare at) the target for a
prescribed period of time. In some applications, such as
the GF-4 satellite for weather monitoring, Jilin-1 video
satellite for remote sensing, and LAPAN-Tubsat for Earth
observation, control of the optical axis is not required,
and the attitude control problem can be reduced, enabling
more freedom and flexibility for control design and opti-
mization.
The attitude modeling and control for spacecraft operat-
ing in staring-mode has been investigated in (Lian et al.
(2017); Pong and Miller (2015); Hu et al. (2018b)).
In these papers, the target direction is described by an
elevation angle and an azimuth angle. However, the corre-
sponding repointing error kinematics are overly complex
and the representation used is ambiguous. A simple and
practical description for the error of repointing maneuvers
is presented here. This new error metric and error kinemat-
ics provide a convenient form for an optimal control to be
derived that drives the trajectory onto a sliding surface.
In this paper we design the control to minimize an infinite-
time integral cost function of the state error and control
torques. To solve linear optimal control problems, the
⋆ This work is supported by China Scholarship Council, the Na-
tional Natural Science Foundation of China (Grants No. 61876050,
61973100 and 61673135).

Linear Quadratic Riccati (LQR) method, and the State-
Dependent Riccati Equation (SDRE) method (see Geng
et al. (2019)) have been proposed. However, spacecraft
kinematics cannot be approximated accurately using lin-
earized dynamics for large-angle maneuvers or for large
angular rates , thus the LQR and the SDRE method will
not provide optimal performance.
A Control Lyapunov Function(CLF) based control synthe-
sis was proposed by Primbs (Primbs et al. (1999)) as a
tool for nonlinear optimal control design. The CLF links
optimal control with Lyapunov stability theory. Moreover,
the approach here constructs a CLF where the gradient of
the optimal value function(cost-to-go function) ∂V ∗/∂x
is replaced with the gradient of a CLF multiplied by a
state-dependent scalar, namely λ(x)∂V ∗/∂x. This method
yields a stable suboptimal controller that is much simpler
to implement than more traditional nonlinear optimal
control methods. Moreover, this optimal control approach
does not involve the complex task of solving the HJB equa-
tions (see Park (2005); Haddad and L’Aitto (2015)). This
control formulation is intrinsically a gain-scheduling PD
control where the time-varying gains are used to enhance
optimality. However, note that the control approach is
only sub-optimal in that it is optimal only for the case
that ∂V ∗/∂x and ∂V /∂x are in the same direction.
In addition, the CLF method is sensitive to external dis-
turbances. Moreover there is no active mechanism in CLF
control for disturbance suppression, and it only guaran-
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tees robustness passively. Therefore the control perfor-
mance of CLF methods degrades significantly when the
system is affected by disturbances. In contrast, sliding
mode control(SMC) is well known for its good robustness
properties. Recently, finite-time and fixed-time terminal
sliding mode controls have been extensively studied where
the state converges to the origin in finite time (Hu et al.
(2017a,b, 2018a); Corradini and Cristofaro (2018); Zuo
(2014, 2015); Wang et al. (2009)). Ensuring the robustness
of spacecraft pointing is critical for precise imaging and
observation in the presence of external disturbances due
to solar radiation pressure, air drag and magnetic effects.
In this paper, our goal is two-fold: firstly, a simple repre-
sentation for the repointing error and the corresponding
attitude error kinematics is presented. Secondly, a two-
phase sliding mode based CLF scheme(TSCLF) is pro-
posed. This approach guarantees the optimality of the
system while enhancing the robustness of the classical
CLF method. Moreover it links the finite-time control with
optimal control.
The paper is organized as follows. In Section 2, prelim-
inaries for CLF control design are introduced. Then the
repointing attitude kinematics are derived in Section 3.
The main result is established in Section 4 where the two-
phase CLF suboptimal control approach is investigated for
repointing maneuvers. An illustrative numerical example
and simulation comparisons are presented in Section 5.

2. MATHEMATICAL PRELIMINARIES

Consider the following affine nonlinear system

ẋ = f(x) + g(x)u (1)
with a performance index J to be minimized which is
defined by

J =

∞∫
0

(l(x) + uTRu)dt (2)

where x ∈ Rn and u ∈ Rm are the state and control
variables respectively, f : Rn → Rn and g : Rn → Rm are
vector and matrix-valued functions with f(0) = 0. The
state-related function l(x) is a positive definite function,
R ∈ Rm×m is positive definite.
Let V (x) be a Lyapunov function for the system of (1)
and its derivative is given by

V̇ = LfV + LgV u (3)
where L represents the Lie derivative operator, LfV =
∂V T

∂x f , LgV = ∂V T

∂x g.
Now, V (x) is a CLF (Sontag (1989)) if ∀x ̸= 0,

LgV = 0 ⇒ LfV < 0 (4)

For nonlinear optimal control, the most intractable issue
is to solve the HJB equation

l(x) + LfV
∗ − 1

4
(LgV

∗)R−1(LgV
∗)

T
= 0 (5)

where V ∗(x) is the state-dependent optimal value function
(cost-to-go) to be solved which is defined as

V ∗(x) = infu

∞∫
t

(l(x) + uTRu)dt (6)

If there exists a continuously differentiable, positive defi-
nite solution of the HJB equation of (5), then the optimal
control is derived based on Pontryagin’s minimum princi-
ple as

u∗ = −1

2
R−1(LgV

∗)T (7)

An alternate approach to optimal control comes from
the Sontag’s formula(Sontag (1989)), in essence, uses
the directional information supplied by a CLF, V , and
scales it properly to solve the HJB equation. Assuming
the relationship between V ∗ and V can be defined as
∂V ∗/∂x = λ(x)∂V /∂x, where λ(x) is a scalar function.
Then the optimal controller of (7) is

u∗ = −1

2
R−1λ(x)(LgV )T (8)

By substituting LgV
∗ = λ(x)LgV and LfV

∗ = λ(x)LfV
into the HJB equation of (5), it can be derived that

l(x) + λLfV − λ2

4
(LgV )R−1(LgV )

T
= 0 (9)

from which λ(x) can be solved with the predefined CLF
V as

λ(x) = 2
LfV +

√
(LfV )2 + l(x)(LgV )R−1(LgV )T

(LgV )R−1(LgV )T
(10)

Substituting the value of λ(x) to (8), the control input u∗

is expressed as

u∗ =

−R−1

[
a+

√
a2 + l(x)bR−1bT

bR−1bT

]
bT, if b ̸= 0

0 else

(11)

where a = LfV , b = LgV .
The performance index defined in (2) contains the control
effort and state errors. Note that the control law in
(11) is just suboptimal instead of truly optimal because
the assumption of ∂V ∗/∂x = λ(x)∂V /∂x limits the
gradient direction of V ∗ with respect to x. Besides, the real
optimal cost-to-go function V ∗ satisfies the HJB equation
completely but λ(x)Vx only satisfies the HJB equation in
the case of LgV ̸= 0.

3. ATTITUDE MODEL OF A SPACECRAFT
OPERATING IN STARING-MODE

3.1 Attitude motion of spacecraft

The rotational dynamics of a rigid spacecraft are described
as

ω̇bi = −J−1
s ω×

biJsωbi + J−1
s (u+ d) (12)

where ωbi is the angular velocities vector with respect
to the inertial frame expressed in the body frame, u
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represents the control torque, Js is the inertia matrix, d
denotes disturbance torque. We use a× to denote the skew-
symmetric matrix of a = [a1 a2 a3]

T.

3.2 Novel definitions for repointing errors

Euler angles are always employed to describe the repoint-
ing attitude of staring-mode spacecraft, but they are com-
plicated and the corresponding kinematics may be singular
in the case of large angle maneuvers. In this paper, a new
representation is used that is convenient for the optimal
control law design. In the following description, the super-
script (·)i, (·)b represents that the vector is expressed in
the inertial frame and body fixed frame respectively.
Assume that the optical payload is fixed along the Xb axis
of the spacecraft. Define the error variables as follows:

e = [ex ey ez]
T
= Cbit

i − [1 0 0]
T

ex = cos θx − 1, ey = cos θy, ez = cos θz
(13)

where θx, θy, and θz denotes the angle between the three
body axis and the target direction t whose desired value
are θxd = 0, θyd = π

2 , θzd = π
2 . Cbi is direction-cosine

matrix between the body frame and the inertial frame.

3.3 Pointing error kinematics and dynamics of a staring
mode spacecraft for space target observation

For some space observation missions, such as Moon obser-
vation, and Mars detection, the targets are very far from
the spacecraft. Thus for simplicity of exposition, the orbit
motion of the spacecraft in an Earth orbit can be omitted
when calculating the desired pointing directions.
The pointing error dynamics can be obtained from (12)
and (13) as

ė = Ċbit
i = Fωbi

ω̇bi = −J−1
s ω×

biJsωbi + J−1
s (u+ d)

(14)

Denote F (e)=(tb)×=
[

0 −ez ey
ez 0 −1− ex
−ey 1 + ex 0

]
. Then

F (e)Te = [ 0 ez −ey ]
T
=

[
0 0 0
0 0 1
0 −1 0

]
e = Pe (15)

4. CONTROL STRUCTURE FOR REPOINTING
MANEUVER

The repointing error dynamics in (14) can be expressed as
an affine nonlinear system

ẋ = f(x) + g(x)(u+ d) (16)

where x =

[
e
ωbi

]
, f(x) =

[
Fωbi

J−1
s ω×

biJsωbi

]
, g =

[
03×3

J−1
s

]
.

The control objective for space target observation is to
design a control law u so that the state in (16) can converge
to zero while minimizing the performance index

J =

∞∫
0

(l(x) + uTRu)dt (17)

with l(x) = xTQx.
For the repointing error dynamics (16), to combine the
terminal sliding mode theory with the CLF approach, a
proper Lyapunov function V should be constructed to
make LgV = s where s is a terminal sliding mode surface.
Define V as follows:

V =
[
ξ1

T ωT
e

][ a1

2
I α1

2
Js(2 + ex)

α1

2
Js(2 + ex)

c

4
Js

][
ξ1
ωe

]
+
[
ξ2

T ωT
e

][ a2

2
I

α2

2
Js(2 + ex)

α2

2
Js(2 + ex)

c

4
Js

][
ξ2
ωe

] (18)

which is positive definite if a1c
8 Js >

α2
1

4 J2
s (2 + ex)

2,
a2c
8 Js >

α2
2

4 J2
s (2 + ex)

2 with ξ1 = sig(Pe)p1/r1 , ξ2 =

sig(Pe)m1/n1 , a1 > 0, a2 > 0, α1 > 0, α2 > 0, c > 0. The
symbol of sig(x)a is a compact expression for the vector
sig(x)a = [|x1|asign(x1), |x2|asign(x2), ..., |xn|asign(xn)]

T.
To avoid the singularity when calculating the equivalent
control law, a modification for s, called ‘switching sliding
mode surface technique’ is adopted where the modified
sliding surface s comprises two parts(see Lu and Xia
(2013); Jiang et al. (2016)):

s = cωe + se

se =

 (2 + ex)(α1sig(Pe)p1/r1 + α2sig(Pe)m1/n1),
if min(|ey| , |ez|) > ε
l1(2 + ex)Pe+ l2(2 + ex)sig(Pe)

α3 , else

(19)

where 1 < α3 < 2, p1 < r1 < 2p1, m1 > n1. Note
that in the existed literatures (Zuo and Tie (2014)),
α3 is always selected to be 2. However, there is no need
to make α3 = 2 since 1 < α3 is enough to ensure the
nonsingularity. l1 and l2 should be calculated as follows
to guarantee the continuity of the se and ṡe, namely
make se(ε

+) = se(ε
−), ṡe(ε

+) = ṡe(ε
−). Based on the

segmented nonsingular terminal sliding mode surface, the
two-phase TSCLF control scheme for repointing maneuver
is designed as

u =

{
u1

∗, if ∥LgV ∥ ≥ δ
u2

∗, else
,

u1
∗ = −R−1

[
a+

√
a2 + l(x)bR−1bT

bR−1bT

]
bT

u2
∗ = ω×

biJsωbi −
1

c
Jsṡe −

k1
c
Jssig(s)p2/r2

−k2
c
Jssig(s)m2/n2

(20)

Theorem 1. For the attitude repointing system (16) with
limited disturbance d(∥d∥ ≤ d̄), if the states enter the area
of Ω1 at time Ts under the suboptimal CLF control law
u∗
1, the following conclusions are derived.

1) The sliding mode variable s defined in (19) would stay
in Ω1 and converge to the region Ωs ⊂ Ω1in finite time
T < Ts+T1 regardless of the initial states under the control
law u∗

2. Ω1, Ωs and T1 are expressed as follows:
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Ω1 = {s |∥s∥ < δ } (21)

Ωs =
{
s
∣∣∣k1θp1∥s∥ + k2 · 3

n2−m2
2n2 θg1∥s∥m2/n2 < d̄

}
(22)

T1 ≤ r2
k1(1− θp1)(r2 − p2)

+
n2

k2 · 3
n2−m2

2n2 (1− θg1)
(23)

2) The repointing error e can converge to the neighbor-
hood Ωe1 of equilibrium in finite time T < Ts +T1 +T2 or
to Ωe2 in finite time T < Tε + T

′

2 where Tε is the time for
min(|ey| , |ez|) = ε. The expressions for Ωe1, Ωe2, T2 and
T

′

2 is shown as follows.

Ωe1 =

{
∥Pe∥

∣∣∣α1

c
δx(1 + δx)θp2∥Pe∥p1/r1

+2
n1−m1

2n1
α2

c
δx(1 + δx)θg2∥Pe∥m1/n1 <

∆s

c

}(24)

T2 ≤ 1

α1

c 2
p1+r1
2r1 δx(1 + δx)(1− θp2)(

r1−p1

2r1
)

+
1

2α2

c δx(1 + δx)(1− θg2)(
m1−n1

2n1
)

(25)

Ωe2 =

{
e

∣∣∣∣∣∥Pe∥ ≤ ∆s

l1δx(1 + δx)θp3

= ∆e2

}
(26)

T
′

2 ≤ ln (Ve(t = Tε))− ln(∆Ve
)

2
c l1δx(1 + δx)(1− θp3)

(27)

Proof.
Step 1. Assume that the state enters into the region of
Ω1 at time Ts under the suboptimal CLF control law u∗

1,
then to show the convergence of the sliding mode variable s
defined in (19), construct the following Lyapunov function

Vs = sTs (28)

The derivative of Vs with the terminal sliding mode control
law u∗

2 in (20) is

V̇s = 2sT
[
cJs

−1(−ω×
biJsωbi + u∗

2 + d) + ṡe
]

= −2k1s
Tsig(s)

p2
r2 − 2k2s

Tsig(s)
m2
n2 + 2sTd

≤ −2k1Vs

p2+r2
2r2 − 2k2 · 3

n2−m2
2n2 Vs

n2+m2
2n2 + 2d̄Vs

1/2

(29)

From (29) we can get that s could converge to the area of
Ωs from Ω1 in finite time T1 where Ωs and T1 is obtained
based on the fixed-time control theory as shown in (22)
and (23).
Denote the switch time as Ts at which the control switch
from u∗

1 to u∗
2. When t > Ts + T1, according to the

convergence region of s given in (22), the norm of s is
limited within

∥s∥ < ∆s = min


[

d̄

k1(1− θp1)

] r2
p2

,

[
d̄

k2 · 3
n2−m2

2n2 θg1

] n2
m2


where θp1 and θg1 are positive constants satisfying
θp1, θg1 ∈ (0, 1).

Step 2. Suppose that the sliding variable s converges to
the value of s = s∆1, ∥s∆1∥ < ∆s when t > Ts + T1.
Next the convergence of the repointing error e will be an-
alyzed. Since the sliding mode surface in (19) contains two
segments to avoid singularity, the convergence property
of the system should be dicussed seperately by using the
segmented sliding mode control law in (20).
Case 1: min(|ey| , |ez|) > ε for t > Ts + T1.
Considering the residual of s, the sliding mode surface in
(19) can be written as
cωe = −(2 + ex)[α1sig(Pe)

p1
r1 + α2sig(Pe)

m1
n1 ] + s∆1

Construct a novel Lyapunov function composed of the
repointing errors

Ve =
1

2
(e2y + e2z) =

1

2
(Pe)

T
(Pe) (30)

Then differentiating Ve with respect to time along the
system function (16) yields that

V̇e ≤ −(1 + ex)(2 + ex)

[
α1

c
2

p1+r1
2r1 Ve

p1+r1
2r1 +

2α2

c
Ve

m1+n1
2n1

]
+

√
2

c
|1 + ex| ∥Ve∥∆s

(31)

Assume that 1 + ex = cos θx > δx ≥ 0 when t > Ts + T1,
where δx is a constant. This assumption implies that the
angle between the target direction and the optical axis Xb

is smaller than π/2 when t > Ts + T1 which is rational in
practice. Then, the (31) is modified as

V̇e ≤ −α1

c
2

p1+r1
2r1 δx(1 + δx)Ve

p1+r1
2r1

−2α2

c
δx(1 + δx)Ve

m1+n1
2n1 +

√
2

c
Ve

0.5∆s

(32)

Thus Ve can converge to the region of Ωe1 in (24) after
t > Ts + T1 + T2

where T2 is given in (25). θp2, θg2 ∈ (0, 1) are positive
constants. In light of (24), it can be derived that when
t > Ts + T1 + T2,

∥Pe∥ < ∆e1 =

min


(

∆s

α1δx(1 + δx)θp2

) r1
p1

,

(
∆s2

m1−n1
2n1

α2δx(1 + δx)θg2

) n1
m1

 (33)

Case 2: min(|ey| , |ez|) ≤ ε for t > Tε > Ts + T1, where
Tε is the time when min(|ey| , |ez|) = ε.
In this case, the sliding mode surface in (19) is changed to
the second segment as

cωe = −l1(2 + ex)Pe− l2(2 + ex)sig(Pe)
α3 + s∆1(34)

Likewise, the Lyapunov function and its derivative can be
formulated as

Ve =
1

2
(e2y + e2z) =

1

2
(Pe)

T
(Pe) (35)

V̇e = (1 + ex)(Pe)Tωe ≤ −
2l1

c
δx(1 + δx)Ve +

√
2

c
Ve

0.5∆s

= −
2l1

c
(1− θp3 )δx(1 + δx)Ve

−
2l1

c
θp3δx(1 + δx)Ve +

√
2

c
Ve

0.5∆s

(36)
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which implies that the repointing error e can reach and
stay in the region of Ωe2 after t = Tε + T

′

2.

θp3
∈ (0, 1) is a positive constant. T ′

2 is the convergence
time of which the state converge from et=Tε

to Ωe2. When
the state is out of the set of Ωe2,

V̇e ≤ −2l1
c
(1− θp3

)δx(1 + δx)Ve (37)

Integrating both sides of (37) yields the convergence time
T

′

2 in (27).

To sum up, the final convergence region of the repointing
error e hinges upon the value of ∆e1 and ε: If ∆e1 ≤

√
2ε,

then limt→Tε+T
′
2
e → Ωe2, else the convergence region

can not be definitely decided. The convergence time for
different cases are summarized in Table 1.

Table 1. Convergence time and region for dif-
ferent cases
∆e1 ≤

√
2ε ∆e1 >

√
2ε

Convergence time Ts + T1 + T2 Ts + T1 + T2 Tε + T
′
2

Convergence region Ωe1 Ωe1 Ωe2

5. NUMERICAL SIMULATIONS

The moment of inertia of the spacecraft is chosen to
be Js = diag[86.24, 85.07, 113.59], the unit space target
direction tb = [2 1 1]

T
/
√
6, the controller parameters in

(20) are selected to be a1 = 1.53, a2 = 1.9, α1 = 0.05,
α2 = 0.05, c = 1.2, k1 = 1, k2 = 1, p1 = 9, r1 = 11,
m1 = 7, n1 = 5, p2 = 7, r2 = 9, m2 = 9, n2 = 7,
α3 = 1.5, δ = 5.3× 10−3. External disturbances are d(t)=
0.1× [sin(0.1t), − cos(0.1t), sin(0.1t)]

T
(N ·m).

The simulation results are illustrated in Fig. 1-Fig. 4. To
show the superiority of the TSCLF over the classical CLF
method(CCLF), the comparison is conducted. As can be
seen from Fig.1 which shows the angles between the target
direction and three body-fixed axis, θx ≈ 0.02◦ in the end
for TSCLF approach. While, for the classical CLF method,
the control precision is so bad that the repointing error is
2◦.
For TSCLF, the control law switches from CLF control
to sliding mode control at t = 6s when the state is near
the sliding mode surface s. The phase plot of the states
trajectories and the sliding mode surface is shown in Fig.
3, where s3 is one of the components of s designed in (19).
To verify the optimality of the TSCLF control scheme
with respect to the performance index given in (17), the
trajectories of the cost-to-go function both for TSCLF,
CCLF and the real optimal control are given in Fig. 4.
The accumulated cost of TSCLF, namely the integral of
(17) is 31.35 which is a little more than the real optimal
results (29.4) obtained by using the optimization software.
While CCLF accumulates a cost of 30.4.
Although the TSCLF consumes more energy than CCLF,
the difference is too little to be of concern. The control
precision and performance index by using CCLF and
TSCLF for different target observations are listed in Table
2. In general, TSCLF performs better than CCLF in terms
of control precision and stability.

(a)TSCLF

(b)CCLF

Fig. 1. Angles between the target orientation and three
body axes for space target observation

(a)TSCLF

(b)CCLF

Fig. 2. Control torque histories for space target observation
by using different controllers

Fig. 3. Sliding mode surface of s3 for space target obser-
vation

6. CONCLUSION

A new way to define the repointing error kinematics is
presented, which is convenient for optimal controller de-
sign and analysis. An improved CLF control scheme called
the two-phase CLF (TSCLF) is presented combining fixed-
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Fig. 4. Cost to go functions of different control schemes for
space target observation
Table 2. Performance comparisons between
TSCLF and CCLF for different space target

directions

Target direction Pointing error(◦) Performance index
TSCLF CCLF TSCLF CCLF

[2, 1, 1] 0.022 2.364 32.9 32.5
[2, 3, 1] 0.023 2.345 86.4 86.65
[2, 7, 1] 0.023 2.327 137.7 222.5
[1,−2, 1] 0.023 2.327 105.93 105.3
[−1, 3, 4] 0.022 2.33 238.7 240.9
[−1, 1, 1] 0.028 2.31 499.4 1254.2
[1, 4, 2] 0.023 2.337 145.4 144.9

time sliding mode control theory with a CLF. This control
is able to optimally drive the state to the sliding surface
and then converge to a neighborhood of the origin along
this surface in a fixed-time. This control enables this fixed-
time to be prescribed independently of initial conditions.
Compared with the classical CLF approach, the TSCLF
method not only guarantees the optimality of the system
but also improves the robustness to disturbances.
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