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Abstract: For an individual affected by a lower limb movement disorder, motorized functional
electrical stimulation (FES) induced cycling provides a means of functional restoration and
therapeutic exercise. However, there exists a potentially destabilizing input delay between the
application (and removal) of the stimulation and the production of muscle force. Exacerbating
the problem, fatigue results in decreased force production and a time-varying input delay.
Moreover, switching between FES and motor control can be destabilizing. This paper implements
a time-varying estimate of the delay and develops a control method and switching conditions
to account for the time-varying input delayed response of muscle. The controller is shown to
yield semi-global uniformly ultimately bounded tracking for the uncertain switched nonlinear
dynamic system with input delays.
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1. INTRODUCTION

Throughout the world, there are many millions of peo-
ple with neurological conditions (NCs) such as stroke,
traumatic brain injury (TBI), Parkinson’s Disease (PD),
and spinal cord injury (SCI), among others Cousin et al.
(2019). To combat the negative health effects of NCs,
and to improve the overall quality of life of those who
are affected, increased efforts have been made in the
area of hybrid exoskeletons, which combine rehabilitation
robots with functional electrical stimulation (FES) Cousin
et al. (2019). One such use of hybrid exoskeletons is FES-
induced cycling for individuals with lower limb movement
disorders Cousin et al. (2019). However, closed-loop FES-
cycling presents several challenges, predominantly fatigue
and the fact that an input delay results from FES-induced
muscle contractions Downey et al. (2017). Fatigue is unde-
sirable primarily because it reduces the number of exercise
repetitions, which lowers the rehabilitative effectiveness
and exacerbates the input delay, possibly resulting in in-
stability Downey et al. (2017). Under a constant stimula-
tion intensity muscle force tends to decay due to fatigue
Ding et al. (2002). Other challenges are that FES-cycling
requires switching the control between multiple muscle
groups and often a motor (to assist with fatigue reduction)
Bellman et al. (2017), there is uncertainty in the param-
eters of the dynamic model and unknown disturbances Li
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et al. (2014), and there exists an unknown yet complex
nonlinear mapping from the FES input to the generated
muscle force Idsø et al. (2004).

When dealing with an FES-induced input delay, results
such as Obuz et al. (2015, 2016); Karafyllis et al. (2015);
Sharma et al. (2011) developed controllers for continuous
exercises (e.g., leg extensions). Continuous exercises focus
on the contraction delay between the application of the
electrical stimulus and muscle contraction. Exercises that
require limb coordination by switching between multiple
muscle groups (e.g., cycling) must also consider residual
forces that result from the delayed muscle response after
the electrical stimulus is removed Allen et al. (2019b,a).
Special consideration is required for these residual forces
because they may be produced by antagonistic muscles, re-
sulting in unfavorable biomechanics as well as an increased
rate of fatigue, which is detrimental to rehabilitative out-
comes. FES controllers have recently been developed to
compensate for the delayed response of muscle. In Obuz
et al. (2015) and Obuz et al. (2016), for a continuous leg ex-
tension exercise, an input delay that is both time-varying
and unknown is examined. In Karafyllis et al. (2015),
exact model knowledge of the lower limb dynamics and a
constant but unknown delay are assumed to yield a global
asymptotic tracking controller. In Sharma et al. (2011),
a uniformly ultimately bounded result was achieved for
a known delay and uncertain dynamics. More recently,
a closed-loop FES controller was developed for switched
system dynamics, first with an unknown constant input
delay Allen et al. (2019b), and later with a time-varying
unknown input delay Allen et al. (2019a).
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In recent years, general input delayed systems have been
studied extensively Krstic (2009); Karafyllis and Krstic
(2017); Chakraborty et al. (2016); Obuz et al. (2017);
Mazenc et al. (2017); Wang et al. (2015); Enciu et al.
(2018). In Chakraborty et al. (2016) the input delay is
assumed to be known. Since the input delay cannot always
be measured, results such as Obuz et al. (2017) have as-
sumed the delay to be unknown. More recently, input delay
compensation has been studied for switched systems Enciu
et al. (2018); Wang et al. (2015); Mazenc et al. (2017).
Non-time-varying input delays are considered for a linear
system in Enciu et al. (2018) and for a class of nonlinear
systems in Wang et al. (2015). Whereas, in Mazenc et al.
(2017) time-varying delays are considered for a family of
linear time-varying systems. The aforementioned results
on general input delayed systems, however, do not compen-
sate for important FES specific factors such as the need
for complex state-dependent switching to yield effective
agonist muscle contractions despite the contraction delay,
while also reducing residual antagonistic forces that result
from the delay after the stimulation has been removed.

In this paper, like in the author’s previous works Allen
et al. (2019b,a), a cadence tracking controller that is
robust to a time-varying input delay is developed that
incorporates a delay-dependent trigger condition, which
appropriately schedules both the activation and deacti-
vation of the FES and the motor. However, compared
to the previous result, this paper incorporates a time-
varying estimate of the delay along with the associated
stability analysis. This paper also improves the switching
conditions to ensure that residual forces are not produced
by antagonist muscles.

2. DYNAMICS

2.1 Cycle-Rider System

In this paper, delayed functions are defined as

hτ ,

{
h (t− τ (t))

0
t− τ (t) ≥ t0
t− τ (t) < t0

,

where t ∈ R≥0 denotes the time and the initial time is
denoted by t0 ∈ R≥0. The time-varying electromechanical
delay, i.e., the delay between the application/removal of
the current and the onset/elimination of muscle force
production is denoted by τ : R≥0 → S, where S ⊂ R
represents a set of all possible delay values Merad et al.
(2016). The combined motorized cycle-rider system can be
modeled as Bellman et al. (2017) 1

τM (q, q̇, τ, t) + τe (q, t) = M (q) q̈ + V (q, q̇) q̇
+G (q) + P (q, q̇) + bcq̇ + d (t) ,

(1)

where q : R≥0 → Q, q̇ : R≥0 → R, and q̈ : R≥0 → R denote
the measurable crank angle and velocity, and unmeasured
acceleration, respectively. The setQ ⊆ R denotes the set of
all possible crank angles. The inertial effects, gravitational
effects, centripetal-Coriolis effects, and passive viscoelastic
tissue forces are denoted by M : Q → R>0, G : Q → R,
V : Q × R → R, and P : Q × R → R, respectively. The
disturbances and viscous damping effects applied about
the crank axis are denoted by d : R≥0 → R and bc ∈ R>0,

1 For notational brevity, all explicit dependence on time, t, within
the terms q(t), q̇(t), q̈(t) is suppressed.

respectively. The torque contributions due to the FES
induced muscle contractions and the motor are denoted
as τM : Q × R × S × R≥0 → R and τe : Q × R≥0 → R,
respectively defined as

τM (q, q̇, τ, t) ,
∑
m∈M

Bm (q, q̇)um (qτ , q̇τ , τ, t) , (2)

τe (q, t) , BeuE (q, t) , (3)
where the unknown control effectiveness of the electri-
cally stimulated muscle groups in (2) are denoted by

Bm : Q × R → R>0, ∀m ∈ M, where m ∈ M ,
{RH, RQ, RG, LH, LQ, LG} indicates the right (R) and
left (L) hamstrings (H), quadriceps femoris (Q), and
gluteal (G) muscle groups. The unknown motor control
effectiveness is denoted by Be ∈ R>0. The delayed FES
input (i.e., pulse width) delivered to the rider’s muscles,
denoted by um : Q × R × S × R≥0 → R, ∀m ∈ M, and
the electric motor control current denoted by uE : Q ×
R≥0 → R, are defined as

um (qτ , q̇τ , τ, t) , kmσm,τ (qτ , q̇τ )uτ , (4)

uE (q, t) , keσe (q)ue (t) , (5)
where km, ke ∈ R>0, ∀m ∈ M are selectable constants.
The subsequently designed non-delayed FES and motor
inputs are denoted by u : R≥0 → R and ue : R≥0 → R,
respectively. The delayed switching signals denoted by
σm,τ (qτ , q̇τ ) , ∀m ∈ M indicate which muscle groups
receive the delayed FES input uτ at the time t − τ (t).
The state-dependent FES switching signal, denoted by
σm (q, q̇) is designed to activate/deactivate the muscles
at the appropriate time. The piecewise left-continuous
switching signal for each muscle group is denoted as σm :
Q× R→ {0, 1} and is designed as

σm (q, q̇) ,

{
1,
0,

qα ∈ Qm
otherwise

, (6)

∀m ∈ M, where the trigger condition qα : Q× R → R
is defined as qα , f (q, q̇), where f is designed such that
the rider’s muscles are stimulated sufficiently prior to the
crank entering the FES region and for stimulation to cease
sufficiently prior to the crank leaving the FES region.
The function f does not require explicit knowledge of the
actual delay, but rather uses the fact that the delay can be
upper bounded as determined from experimental results
such as Merad et al. (2016). This allows qα to act as a
trigger condition that adjusts the activation/deactivation
of the FES input based on the delay upper bound. Due
to negligible motor delay, the motor switching signal is
implemented at time t. Hence, in (5), σe : Q×R→ {0, 1}
denotes a piecewise left-continuous switching signal for the
motor and is defined as

σe (q, q̇) ,


1, q ∈ Qe
1, q ∈ QFES ,

∑
m∈M

σm = 0

0, otherwise

. (7)

Definitions for the subsequent desired FES regions, de-
noted by Qm ⊂ Q, are based on Bellman et al. (2017),
which uses the fact that each muscle group is kinemat-
ically efficient in specific regions of the crank cycle. In
this paper, the trigger conditions are designed to produce
the FES-induced muscle contractions within each muscle’s
respective FES region. Based on Bellman et al. (2017), Qm
is defined for each muscle group as
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Qm , {q ∈ Q | Tm (q) > εm} , (8)

∀m ∈M, where εm ∈ (0, max(Tm)] is the lower threshold
for each torque transfer ratio denoted by Tm : Q → R,
which limits the FES regions such that each muscle group
only contributes to forward pedaling (i.e., positive crank
motion). The union of all the muscle regions defined in (8)
represents the entire FES region, denoted by QFES , and
defined as QFES , ∪

m∈M
{Qm}. The kinematic deadzones

are defined as Qe , Q \ QFES . Substituting (2)-(5) into
(1) yields 2

BτMuτ +BEue = Mq̈ + V q̇ +G+ P + bcq̇ + d, (9)

where BτM ,
∑
m∈MBm (q, q̇) kmσm,τ (qτ , q̇τ ) and

BE (q) , Bekeσe (q, q̇).

The parameters in (9) capture the torques that affect
the dynamics of the combined cycle-rider system, but the
exact value of these parameters are unknown for each rider
and the cycle. However, the subsequently designed FES
and motor controllers only require known bounds on the
aforementioned parameters.

The switched system in (9) has the following properties
Bellman et al. (2017). Property: 1 cm ≤ M ≤ cM ,
where cm, cM ∈ R>0 are known constants. Property:
2 |V | ≤ cV |q̇|, where cV ∈ R>0 is a known constant and
| · | denotes the absolute value. Property: 3 |G| ≤ cG,
where cG ∈ R>0 is a known constant. Property: 4
|P | ≤ cP1 + cP2|q̇|, where cP1, cP2 ∈ R>0 are known
constants. Property: 5 bcq̇ ≤ cc|q̇|, where cc ∈ R>0 is
a known constant. Property: 6 |d| ≤ cd, where cd ∈ R>0

is a known constant. Property: 7 1
2Ṁ = V . Property:

8 The muscle control effectiveness Bm is lower and upper
bounded ∀m ∈ M, and thus, when

∑
m∈M

σm,τ > 0,

cb ≤ BτM ≤ cB , where cb, cB ∈ R>0 are known constants.
Property: 9 The motor control effectiveness is bounded
such that when σe = 1, ce ≤ BE ≤ cE , where ce, cE ∈ R>0

are known constants. Property: 10 The delay is upper
and lower bounded such that τ ≤ τ ≤ τ̄ , where τ , τ̄ ∈ R>0

are known constants.

3. CONTROL DEVELOPMENT

The control objective is for the bicycle crank to track
a desired cadence q̇d : R≥0 → R despite an unknown
time-varying input delay and uncertainties in the dynamic
model. A measurable cadence tracking error, denoted by
ė : R≥0 → R, is defined as

ė , q̇d − q̇, (10)

where, the measurable auxiliary position tracking error,
denoted by e : R≥0 → R, is defined as

e , qd − q. (11)

To facilitate the subsequent analysis, a measurable auxil-
iary tracking error, denoted by r : R≥0 → R, is defined
as

r , ė+ α1e+ α2eu, (12)

where α1, α2 ∈ R≥0 are selectable constants. An auxiliary
error signal is designed to incorporate a delay-free input

2 For notational brevity, all functional dependencies are hereafter
suppressed unless required for clarity of exposition.

term into the closed-loop error system. This signal is
denoted by eu : R≥0 → R, and is defined as

eu , −
∫ t

t−τ̂
u (θ) dθ. (13)

where τ̂ : R≥0 ×Q× R→ R is a time-varying estimate of
the delay. Taking the time derivative of (12), multiplying
by M , using (9), (11), and (13), and adding and subtract-
ing BτMuτ̂ + e yields the open-loop error system

Mṙ = −V r − e+ χ+BτM (uτ̂ − uτ )−BEue
+ (Mα2 −BτM )uτ̂ −Mα2u−Mα2

˙̂τuτ̂ ,
(14)

where χ : Q × R × R≥0 → R denotes an auxiliary term
defined as

χ,Mq̈d + V (q̇d + α1e+ α2eu) +G

+P + bcq̇ + d+Mα1ė+ e.

The auxiliary term χ can be bounded by using Properties
1-6 as

|χ| ≤ Φ + ρ (‖z‖) ‖z‖ , (15)

where Φ ∈ R>0 is a known constant, ρ (·) is a positive,
strictly increasing, and radially unbounded function, and
z ∈ R3 is a vector of the error signals defined as

z , [ e r eu ]
T
. (16)

The delay estimate is updated using a predictor of the
form

˙̂τ = proj (g (t, q, q̇, τ̂)) (17)

where g : R≥0 × Q × R × R≥0 → R is a piecewise left-
continuous function that is used to update the estimate of
the delay, and proj (·) is a smooth projection operator (see
Cai et al. (2006)), with bounds based on the known delay
bounds of Property 10.

The FES control input, based on the subsequent stability
analysis, and (14) and (15), is designed as

u = ksr, (18)

where ks ∈ R>0 is a selectable constant. Likewise, the
motor control input is designed as

ue = k1sgn (r) + (k2 + k3) r, (19)

where k1, k2, k3 ∈ R>0 are selectable constants, and
sgn (·) denotes the signum function. The closed-loop error
system is obtained by substituting (18) and (19) into (14)
to yield

Mṙ = −V r −BE (k1sgn (r) + (k2 + k3) r)
+ksB

τ
M (rτ̂ − rτ ) + (Mα2 −BτM ) ksrτ̂

−Mα2ksr −Mα2ks ˙̂τrτ̂ − e+ χ.
(20)

Lyapunov-Krasovskii functionals Q1, Q2 : R≥0 → R>0 are
defined based on the closed-loop error system in (20) and
the subsequent stability analysis as

Q1 ,
1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

∫ t

t−τ̂
r (θ)

2
dθ,

(21)

Q2 ,
ω2ks
τ̄

∫ t

t−τ̄

∫ t

s

r (θ)
2
dθds, (22)

where ε1, ε2, ε3, ε4, ω1, ω2, ω3, ω4 ∈ R>0 are selectable con-
stants. Auxiliary bounding constants β1, β2, δ1, δ2 ∈ R>0
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are defined, to facilitate the subsequent stability analysis,
as

β1 , min

(
α1 −

ε2α
2
2

2
,

1

4
cmα2ks,

ω2

3ksτ̄2
− 1

2ε2
− ksω3

2ε3
(2 + ε4)

)
,

(23)

β2 , min

(
α1 −

ε2α
2
2

2
, cek2 − ks (ε3ω3 + ω2

+
1

2
(ε1ω1 + cMα2ε4) (1 + ω4)

)
,

ω2

3ksτ̄2
− 1

2ε2
− ksω3

2ε3
(2 + ε4)

) (24)

δ1 , min

(
β1

2
,

ω2

3τ̄
(

1
2 (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

) , 1

3τ̄

)
,

(25)

δ2 , min

(
β2

2
,

ω2

3τ̄
(

1
2 (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

) , 1

3τ̄

)
.

(26)

4. STABILITY ANALYSIS

In the following analysis, switching times are denoted by{
tin
}
, i ∈ {m, e} , n ∈ {0, 1, 2, ...} , which represent the

time instances when BτM becomes nonzero (i = m), or
the time instances when BτM becomes zero (i = e). Let
VL : R5 → R>0 denote a continuously differentiable,
positive definite, common Lyapunov function candidate
defined as

VL ,
1

2
e2 +

1

2
Mr2 +

1

2
ω3e

2
u +Q1 +Q2. (27)

By inspection, the common Lyapunov function candidate
VL satisfies the following inequalities:

λ1 ‖y‖2 ≤ VL ≤ λ2 ‖y‖2 , (28)

where y ∈ R5 is defined as

y ,
[
z
√
Q1

√
Q2

]T
, (29)

and λ1, λ2 ∈ R>0 are known constants defined as

λ1 ,
1

2
min (1, cm, ω3) , λ2 , max

(
1,
cM
2
,
ω3

2

)
.

Let the set of initial conditions be defined as

SD ,

{
y ∈ R5 | ‖y‖ <

√
λ1

λ2
γ

}
, (30)

where γ ∈ R>0 is a known constant defined as 3 γ ,
inf
{
ρ−1 ((

√
κ,∞))

}
, where κ , cmα2ks min

(
1
4β1, 2β2

)
.

Theorem 1. The closed-loop error system in (20) is uni-
formly ultimately bounded in the sense that

‖y (t)‖2 ≤ λ2

λ1
‖y(t0)‖2 exp (−λ3(t− t0))

+
v

λ1λ3
(1− exp (−λ3(t− t0))) , (31)

where v , (τ̄−τ)Υ 2

ks
+ 2Φ2

cmα2ks
, Υ ∈ R>0 is a known constant,

λ3 , λ−1
2 min (δ1, δ2), ∀t ∈ [t0,∞) provided y (t0) ∈ SD,

and the following gain conditions are satisfied

3 For a set A, the inverse image is defined as ρ−1 (A) ,
{a | ρ (a) ∈ A}.

α1 ≥
ε2α

2
2

2
, ω2 ≥ 3ksτ̄

2

(
1

2ε2
+
ksω3

2ε3
(2 + ε4)

)
, (32)

max (|cMα2 − cb| , |cmα2 − cB |) ≤ ε1ω1, (33)

(τ̄ − τ) ≤ 1

k2
sc

2
B

(2cmα2 − 4ε3ω3 − 4ω2

−2 (ε1ω1 + cMα2ε4) (1 + ω4)) ,
(34)

∣∣∣ ˙̂τ ∣∣∣ ≤ ε4 < 1, ω4 =
1

1− ε4
,

√
λ−1

1 λ−1
3 v < γ, (35)

k1 ≥
1

ce
(cbksτ̄Υ + Φ) , k3 ≥

cbks
ce

, (36)

k2 ≥
ks
ce

(
1

2
(ε1ω1 + cMα2ε4) (1 + ω4) + ε3ω3 + ω2

)
.

(37)

Proof. When BτM > 0, the FES effect is present in the
system because the rider’s muscles are generating a force
(i.e., t ∈

[
tmn , t

e
n+1

)
). Additionally, since BE and BτM are

discontinuous, a generalized solution to the time derivative
of (27) exists almost everywhere (a.e.) within t ∈ [t0,∞),

and V̇L (y)
a.e.
∈ ˙̃VL (y), where ˙̃VL is the generalized time

derivative of VL. Let y (t) for t ∈ [t0,∞) be a Filippov
solution to the differential inclusion ẏ ∈ K [h] (y) and let

h : R5 → R5 be defined as h ,
[
ė ṙ ėu

˙√
Q1

˙√
Q2

]T
(see

Fischer et al. (2013)). After utilizing (11)-(13), (20), and
applying Leibniz Rule, the generalized time derivative of
(27) is

˙̃VL ⊆ e (r − α1e− α2eu) +
1

2
Ṁr2 + r (−V r − e+ χ

+ksB
τ
M (rτ̂ − rτ )−BE (k1K [sgn (r)] + (k2 + k3) r)

+ (Mα2 −BτM ) ksrτ̂ −Mα2ksr −Mα2ks ˙̂τrτ̂

)
+

1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3) r2

−1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

(
1− ˙̂τ

)
r2
τ̂

+ω3eu

(
−ksr + ksrτ̂ ·

(
1− ˙̂τ

))
+
ω2ks
τ̄

(
τ̄ r2 −

∫ t

t−τ̄
r (θ)

2
dθ

)
,

(38)
where, K [sgn (·)] = SGN (·) such that SGN (·) = {1} if
(·) > 0, [−1, 1] if (·) = 0, and {−1} if (·) < 0.

When BτM > 0, BE = 0 or BE > 0, according to the
defined switching laws in (6) and (7). The more restrictive
of the two cases is when BE = 0 (i.e., when only the
delayed FES input is controlling the system). Therefore,
the details of the case when BτM > 0 and BE > 0 are
not included in the subsequent proof because (38) with
BE = 0 can upper bound (38) with BE > 0.

Setting BE = 0, canceling common terms, choos-

ing
∣∣∣ ˙̂τ ∣∣∣ ≤ ε4 < 1, selecting ε1 and ω1 such that

max (|cMα2 − cb| , |cmα2 − cB |) ≤ ε1ω1, and using Prop-
erties 1, 7, and 8 with (38) yields
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V̇L
a.e.
≤ −α1e

2 + α2 |eeu|+ |r| |χ|+ kscB |r (rτ̂ − rτ )|
+ks (ε1ω1 + cMα2ε4) |rrτ̂ | − cmα2ksr

2

+ksω3 |eur|+ ksω3

(
1− ˙̂τ

)
|eurτ̂ |

+
1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3) r2

−1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

(
1− ˙̂τ

)
r2
τ̂

+
ω2ks
τ̄

(
τ̄ r2 −

∫ t

t−τ̄
r (θ)

2
dθ

)
.

(39)
Choosing ω4 = 1

1−ε4 , using Young’s Inequality and substi-

tuting (15) into (39), and completing the squares on |r| |χ|,
yields

V̇L
a.e.
≤ −

(
α1 −

ε2α
2
2

2

)
e2 +

(
1

2ε2
+
ksω3

2ε3
(2 + ε4)

)
e2
u

−ks
(

1

2
cmα2 −

1

2
(ε1ω1 + cMα2ε4) (1 + ω4)

−ε3ω3 − ω2) r2 + kscB |r (rτ̂ − rτ )|

−ω2ks
τ̄

∫ t

t−τ̄
r (θ)

2
dθ − 1

4
cmα2ksr

2

+
2

cmα2ks

(
ρ2 (‖z‖) ‖z‖2 + Φ2

)
.

(40)
Using the Cauchy-Schwarz inequality and (18), an upper
bound for e2

u can be expressed as

e2
u ≤ τ̄ k2

s

∫ t

t−τ̄
r2 (θ) dθ. (41)

Furthermore, Q1 can be upper bounded as

Q1 ≤
1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

∫ t

t−τ̄
r (θ)

2
dθ,

(42)
and an upper bound for Q2 can be obtained as

Q2 ≤ ω2ks

∫ t

t−τ̄
r (θ)

2
dθ. (43)

Using the definition of β1 in (23) and (41)-(43) the subse-
quent upper bound can be developed

V̇L
a.e.
≤ −β1 ‖z‖2 − ks

(
1

2
cmα2 − ε3ω3 − ω2

−1

2
(ε1ω1 + cMα2ε4) (1 + ω4)

)
r2

+kscB |r (rτ̂ − rτ )| − 1

3τ̄
Q2

− ω2

3τ̄
(

1
2 (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

)Q1

+
2

cmα2ks

(
ρ2 (‖z‖) ‖z‖2 + Φ2

)
.

(44)

Provided that ‖y (t)‖ < γ, ∀t ∈ [t0,∞), where γ is
defined in (30) and is a known constant, it can be proven
that ṙ < Υ , which will subsequently allow for the Mean
Value Theorem to be used to further upper bound (44).
Specifically, from (15) and (20), Properties 1-6, 8, and 9,
and the fact that ‖y‖ ≥ ‖z‖, it can be shown that

ṙ < c1 + c2γ + c3γ
2 ≤ Υ,

where c1, c2, c3 ∈ R>0 are known constants. Subsequently,
by completing the squares, the fact that ‖y‖ ≥ ‖z‖,

imposing the aforementioned gain conditions in (32)-(37),
and using the Mean Value Theorem, (44) can be upper
bounded as

V̇L
a.e.
≤ −

(
1

2
β1 −

2

cmα2ks
ρ2 (‖y‖)

)
‖z‖2

−1

2
β1 ‖z‖2 −

1

3τ̄
Q2 +

(τ̄ − τ)Υ 2

ks
+

2Φ2

cmα2ks
− ω2

3τ̄
(

1
2 (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

)Q1.

(45)

Provided y(t) ∈ D ,
{
y ∈ R5 | ‖y‖ < γ

}
,∀t ∈

[
tmn , t

e
n+1

)
and using (25) and the definition of v in (31), (45), can be
upper bounded as

V̇L
a.e.
≤ −δ1 ‖y‖2 + v. (46)

From (28), the bound in (46) can be bounded even further
as

V̇L
a.e.
≤ − δ1

λ2
VL + v, (47)

∀t ∈
[
tmn , t

e
n+1

)
.

When BτM = 0, the FES effect is absent from the system
because the rider’s muscles are not generating a force (i.e.,
t ∈

[
ten, t

m
n+1

)
). Therefore, to maintain control authority

the switching laws in (6) and (7) were designed such that
BE > 0 whenever BτM = 0 (i.e., the system is controlled
by the motor only). Setting BτM = 0 in (38), choosing ε1

and ω1 such that cMα2−cb ≤ ε1ω1, choosing
∣∣∣ ˙̂τ ∣∣∣ ≤ ε4 < 1,

canceling common terms, and using Properties 1 and 7-9
yields an upper bound for (38) as

V̇L
a.e.
≤ −α1e

2 + α2 |eeu|+ |r| |χ| − cek1 |r|+ cbks |rrτ̂ |
−ce (k2 + k3) r2 + ks (ε1ω1 + cMα2ε4) |rrτ̂ |
−cmα2ksr

2 + ksω3 |eur|+ ksω3

(
1− ˙̂τ

)
|eurτ̂ |

+
1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3) r2

−1

2
ks (ω4 (ε1ω1 + cMα2ε4) + ε3ω3)

(
1− ˙̂τ

)
r2
τ̂

+
ω2ks
τ̄

(
τ̄ r2 −

∫ t

t−τ̄
r (θ)

2
dθ

)
.

(48)
After using the Mean Value Theorem, completing the
squares on |r| |χ|, using Young’s Inequality, substituting
(15) into (48), and selecting the gain conditions according
to (32)-(37), yields the following upper bound for (48)

V̇L
a.e.
≤ −

(
α1 −

ε2α
2
2

2

)
e2 +

1

4cmα2ks
ρ2 (‖z‖) ‖z‖2

−
(
cek2 − ks

(
1

2
(ε1ω1 + cMα2ε4) (1 + ω4)

+ε3ω3 + ω2)) r2 − ω2ks
τ̄

∫ t

t−τ̄
r (θ)

2
dθ

+

(
1

2ε2
+
ksω3

2ε3
(2 + ε4)

)
e2
u.

(49)

After following a similar development to the case when
BτM > 0, (49) can be upper bounded as

V̇L
a.e.
≤ − δ2

λ2
VL, (50)

∀t ∈
[
ten, t

m
n+1

)
. An upper bound for both (47) and (50) can

be obtained by adding the constant v and substituting the
decay rate λ3 , λ−1

2 min (δ1, δ2) into (50) to yield
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V̇L
a.e.
≤ −λ3VL + v. (51)

The decay rate in (51) represents the most conservative
decay rate across all regions (i.e., ∀t ∈ [t0,∞)). Further-
more, it can be verified that (27) is a common Lyapunov
function across all regions of the crank cycle. The differ-
ential inequality in (51) can be solved to yield the bound

VL (t)≤ VL(t0) exp (−λ3(t− t0))

+λ−1
3 v (1− exp (−λ3(t− t0))) , (52)

provided that ‖y (t)‖ < γ, ∀t ∈ [t0,∞). It could be shown
that a sufficient condition for ‖y (t)‖ < γ, ∀t ∈ [t0,∞)
is that y (t0) ∈ SD, provided the gain conditions in (32)
to (37) are satisfied. Therefore, provided that y (t0) ∈ SD
and the aforementioned gain conditions are met, (27) can
be used with (52) to yield the exponential bound in (31).
From (27) and (51), e, r, eu ∈ L∞. By (18) and (19), u,
ue ∈ L∞ and the remaining signals are bounded.

5. CONCLUSION

In this paper, robust cadence tracking controllers and
delay-dependent switching conditions are developed for
a switched uncertain nonlinear dynamic system in the
presence of time-varying input delays and bounded un-
known additive disturbances. A Lyapunov based stability
analysis is provided. To better estimate the delay a time-
varying estimate is developed. The switching conditions
are designed to appropriately schedule both the activation
and deactivation of the FES and the motor, allowing the
residual muscle forces to be managed. Ongoing efforts
seek to better understand the FES delay to allow for an
improved estimation of the delay. Additional work will
include validation of the controllers effectiveness on par-
ticipants with NCs and to perform an in-depth analysis.
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