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Abstract: Process monitoring plays an important role in maintaining favorable process operation 

conditions and is gaining increasing attention in both academic community and industrial applications. 

This paper proposes a data-driven model predictive fault detection method to achieve efficient 

monitoring of dynamic processes. First, a measurement sample is projected into a dominant latent 

variable subspace that captures main variance of the process data and a residual subspace. Then the 

dominant latent variable subspace is further decomposed as a dynamic feature subspace and a static 

feature subspace. A fault detection residual is generated in each subspace, and corresponding monitoring 

statistic is established. By using the model predictive monitoring scheme, not only the status of a process 

but also the type of a detected fault, namely a dynamic feature fault or a static feature fault, can be 

identified. Effectiveness of the proposed data-driven model predictive monitoring scheme is tested on a 

lab-scale distillation process. 

Keywords: Model predictive process monitoring, data-driven process monitoring, dynamic processes, 

canonical correlation analysis, fault detection. 



1. INTRODUCTION 

Process monitoring plays an important role in guaranteeing 

process safety and product quality [1-3]. Currently, an 

industrial process is generally characterized by large scale 

and considerable complexity. Establishing a first principle 

model is generally difficult, which limits the applicability of 

a model-based method [4, 5]. On the other hand, because of 

the rapid advancement of sensing techniques, a lot of process 

data are generally available. Data-driven monitoring methods 

that extract meaningful features are of increasing attention, 

among which the multivariate statistical process monitoring 

(MSPM) methods are the most widely used [6, 7]. 

Among MSPM methods, principal component analysis (PCA) 

and canonical correlation analysis (CCA) are the most widely 

used ones. PCA projects process data into a dominant 

subspace that captures main variance and a residual subspace 

that reflects the modelling uncertainty [8, 9]. CCA 

characterizes the correlation relationship between two sets of 

random variables, and projects process data into the most 

correlated subspaces. For process monitoring, both PCA and 

CCA have been widely used [5]. Key advantage of the PCA 

monitoring lays in the capability of dealing with large-scale 

processes with considerable data collinearity, while key 

advantage of the CCA lays in the capability of generating 

optimal fault detection residuals. However, the basic PCA 

and CCA methods do not focus on the process dynamics [10, 

11]. 

To handle process dynamics, the time-lagged-shift methods 

were developed [12]. Dynamic PCA has been proposed 

which projects the time-lagged measurements into a 

dominant subspace and a residual subspace [12, 13]. 

Dynamic CCA has also been proposed which characterizes 

the correlation between time-lagged measurements [10, 14]. 

However, when the high data collinearity exists, the CCA 

methods generally cannot function well. More recently, 

dynamic latent variable (DLV) methods have been proposed 

and intensively studied [15, 16]. However, these DLV 

models generally use the one-step prediction for monitoring, 

which may not be appropriate in complex dynamic conditions. 

Also, the determination of the order of a dynamic model 

remains challenging. 

This papers proposes a data-driven model predictive fault 

detection method for efficient monitoring of dynamic 

processes. First, high-dimension process data are projected 

into a dominant latent variable subspace and a residual 

subspace, through which the data collinearity are removed. 

Second, CCA is performed between the current latent 

variables and the time-lagged latent variables, during which 

the model order is automatically determined by preserving 

the maximum correlation coefficients. Then the process 

dominant latent variable subspace is further decomposed as 

the dynamic feature subspace and the static feature subspace. 

Fault detection residual is generated in each subspace and 

corresponding monitoring statistic is constructed, through 

which both the process status and the type of a detected fault 

can be identified. 
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The remainder of this article is organized as follows. In 

section 2, the CCA basics are briefly reviewed and the 

dynamic process monitoring problem is formulated. In 

section 3, the proposed model predictive process monitoring 

scheme is detailed. Then case studies are provided in Section 

4. Finally, conclusions are presented in Section 5. 

2. PRELIMINARIES AND MOTIVATION 

2.1  Canonical Correlation Analysis 

CCA is a classical multivariate analysis method that explores 

correlation between two sets of random variables. Given 
1pu  and 1qy , where p and q are the numbers of 

variables, CCA tries to find canonical vectors J  and L  such 

that the correlation between T
J u  and 

T
L y  are maximized, 

namely [17, 18] 

 
   

1 1
( , ) 2 2

, arg max

T

uy

T T
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J L
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

 
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where u , 
y  and 

uy  are covariance matrices. Solution to 

the optimization problem in (1) can be obtained through 

singular value decomposition (SVD) on a matrix K as 

1/2 1/2 T
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0 0
 is a correlation 

matrix and  l rank  . Then, we derive [17, 18] 

1/2 1/2, .u y

  J R L V    (3) 

For a sample 
1pu  and 1qy , the residual vector is 

generated as [11, 19] 

T T r J u L y .  (4) 

Then, the 2T  statistic for the residual is established as [11, 19] 

2 1T

rT  r r ,   (5) 

where r  is the covariance matrix of the residual r. Under 

the Gaussian assumption, the 2T  statistic is optimal for 

detecting a fault that affects only u  [11, 19]. Similarly, the 
2T  test for detecting a fault that affects y can be established. 

2.2  Problem Formulation and Motivation 

The above static CCA is usually used to characterize the 

relationship between process input and output variables. It 

works well once the relationship between u and y can be 

expressed as [10, 11] 

  A u By ,   (6) 

where   denotes the noise. However, a process is generally 

characterized by dynamics, and the correlation in time series 

should be considered for process monitoring. In the current 

work, a data-driven model predictive monitoring method is 

proposed which considers the correlation in both the variable 

direction and the time series. First, to characterize the 

correlation in the variable direction, the measurement 

subspace is decomposed into a dominant latent variable 

subspace and a residual subspace. Second, time series 

correlation is assumed to exist within the dominant latent 

variable subspace, and the dominant subspace is further 

decomposed as the dynamic feature subspace and the static 

feature subspace. Then fault detection residual is generated 

and monitoring statistic is established in each subspace, 

through which both the process status and the type of a 

detected fault can be identified. 

3. MODEL PREDICTIVE PROCESS MONITORING 

Given the process data N mX , where N denotes the 

number of samples and m denotes the number of measured 

variables, the first step is to decompose the data into a 

dominant latent variable subspace that captures main variance 

information of the data and a residual subspace. The 

decomposition can be achieved by SVD on the covariance 

matrix as 

1

TT
pc pc
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res res

N

  
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
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where pcP  projects the data into the dominant subspace that 

removes the data collinearity as 

11/2 pckT

pc pc

 t = P x .  (8) 

The number of retained latent variables pck  is generally 

determined to preserve 80% ~ 95%  of all data variance. 

Correspondingly, the residual can be obtained as 

T

pc pc e x P P x .  (9) 

The current work considers that process dynamics exist in the 

dominant latent variable subspace. Then a process sample at 

time instant k is projected into the latent variable subspace as 

 u kt . Latent variables that contain information from time-

lagged samples are denoted as 

       1 , 2 , ,
T

T T T

y u u uk k k k     
 

t t t t , where   is the 

order of a dynamic model. Then historical process data in the 

latent variable subspace can be obtained as 
uT  and yT . By 

performing CCA between the 
uT  and yT , we can obtain the 

canonical correlation vectors 
TJ  and 

TL , as well as the 

correlation matrix 
T . For monitoring the latent variables at 

the sample k, the following residual can be generated 

   1/2 1/2

T T

u T u T T y

T T T T
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where        1 , 2 , ,
T

T T T
k k k k     

 
y x x x . The CCA 

detects a fault relaying on the correlation between variables, 

and therefore only the correlated samples should be selected 

to establish the model. Then, the order   is determined by 

preserving the maximum correlation and eliminating the 

irrelevant time-lagged variables. The genetic algorithm-based 

regularization method in reference [11] can be employed. 

After some derivation, we can obtain that 

 1/2T

u T u Tuy Ty y

 r J t t  ,  (11) 

where 1/2

û Tuy Ty y

t t   is the least square estimation of ut  

using the yt . Therefore, once the relation in process data can 

be expressed as 

       1 , 2 , ,
T

T T T
k k k k          

A t B t t t ,(12)

 

the generated residual ur  is optimal for detecting a fault that 

affects the sample at time instant k. Considering that the 

process dynamic generally exists in a low-dimension 

subspace but not the entire latent variable space, we further 

divide the canonical correlation vectors as 

, ,,T T dynamic T static
   J J J . Correspondingly, the residual vector 

can be written as 

,,

,,

T
T dynamicT dynamic T

u u T yT
T staticJ static

   
    
    

0

0
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J




. (13) 

Then the dynamic feature residual can be constructed as 
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The static feature residual can be constructed as 
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Figure 1 Schematic of the proposed model predictive monitoring 

Then based on the residuals e , dynamicr  and 
staticr  the following 

three statistics are established to identify the process status: 

 2 1 2~T

dynamic dynamic dynamic dynamic dynamicT k r r , (16) 

 2 1 2~T

static static static static staticT k r r ,  (17) 

   2T T T

k k pc pcQ g h  e e x I P P x , (18) 

where     2 2

11 , , 1
dynamic dynamic

T

dynamic k dynamic dynamic kdiag      I   , 

  2

, 11 , ,1
dynamic

T

in m k in in k dynamicdiag     I   ; Parameters g 

and h are calculated from historical data [20]. The number of 

selected dynamic features dynamick  can be obtained by the 

accumulated correlation method, namely [21] 

  1

1

=

dynamick

ii
dynamic l

ii

Cum k













,  (19) 

where   is generally determined as 80% ~ 95%  to preserve 

the most correlation information. Thresholds of the statistics 

can be determined by assume that process data follow 

Gaussian assumption or using the kernel density estimation. 

Then following decision logic can be employed to identify 

the process status: 

2 2 2 2

, ,

2 2

,

2 2 2 2

, ,

;

;

dynamic dynamic cl static static cl cl

dynamic dynamic cl

dynamic dynamic cl static static cl

T T  and T T and Q Q fault free

T T a fault in the dynamic feature subspace

T T and T T  a fault in the sta

       

       

         ;

.cl

tic feature subspace

Q Q a fault affects the variable wise correlation






 
        

 (20) 

Offline modelling Online monitoring 

Mean-variance normalize the training data 

Decompose the data into a dominant latent variable 

subspace ad a residual subspace 

Decompose the dominant subspace as the dynamic 
feature subspace and static feature subspace 

Generate fault detection residual and construct 

monitoring statistics 

Determine the threshold for each statistic and 

establish the decision logic 

End 

Mean-variance scale the query sample 

Project data into the dominant subspace and the 

residual subspace 

Arrange the latent variables and project them to the 

dynamic feature subspace and static feature subspace 

Calculate the residuals and the monitoring statistics 

Determine if there exists a fault in each subspace 

Fault diagnosis 

Yes 

N 
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Procedures of the model predictive dynamic process 

monitoring scheme consists of the offline modeling and 

online monitoring steps, which are summarized as Figure 1. 

4. CASE STUDY 

Glycerin is an important raw industrial material for producing 

high value-added products. To obtain high purity glycerin, 

efficient distillation process that separates glycerin from 

others is necessary. A lab-scale glycerin process that 

distillates glycerin from glycerin-water mixtures is available 

in the process control laboratory of the East China University 

of Science and Technology, which is the 1/8 scale of a real 

industrial process in a chemical production company. An 

illustration of the lab-scale distillation process is presented in 

Figure 2. The process consists of four typical operation units, 

namely the feeding unit, the heating and evaporation unit, the 

condensing and refluxing unit, and the production collecting 

unit. Twenty-one variables are measured and recorded as 

listed in Table 1. 

 

(a) 

 

(b) 

Figure 2 Schematic of the experimental glycerol distillation process: 

(a) physical figure; (b) simplified scheme 

Under normal operation condition, a set of data that contains 

400 samples are collected. Based on the normal operating 

data, the model predictive monitoring model is established. 

The number of retained dominant latent variables is 

determined by preserving the 90% variance, the number of 

dynamic features is determined by preserving the 85% 

correlation, and the false alarm rate of each statistic is 

controlled under 1% by determining the level of significance. 

To test the monitoring performance, the following four sets 

of process data with each consisting of 250 samples are 

generated: Fault 1: A step change of sensitive plate 

temperature sensor at approximately the 130th point; Fault 2: 

A step change of tower plate temperature sensor 5 at 

approximately the 130th point; Fault 3: A step change of 

condenser cooling water flow rate at approximately the 130th 

point; Fault 4: A step change of tower top reflux at 

approximately the 130th point. 

Monitoring results for the four faults using the model 

predictive monitoring scheme are presented in Figures 3-6. 

Figure 3 shows the monitoring results of fault 1. It can be 

seen that the 2

dynamicT  statistic is affected while the 2

staticT  and Q  

statistics remain normal, indicating that the fault 1 is a 

dynamic feature-related fault. Figure 4 shows the monitoring 

results of fault 2. It can be seen that only the 2

staticT  is affected, 

indicating that the fault is a static feature fault. Figure 5 

shows the monitoring results of fault 3. It can be seen that the 

fault affects only the Q statistic, indicating that the fault 

affects the variable collinearity. Figure 6 shows the 

monitoring results of fault 4. It can be seen that all the three 

statistics are affected, indicating that the fault 4 is a serious 

fault and causes considerable influence on the process status. 

The model predictive monitoring scheme can not only detect 

a fault but also identify the type of a detected fault. The 

effectiveness of the model predictive monitoring is shown. 

Table 1 Process variables of the distillation process 

Variable number Variable description 

1 Feed flow rate 

2 Sensitive plate temperature 

3 Tower bottom liquid level 

4 Tower top reflux 

5 Overhead product flow 

6 Feed storage tank level 

7-18 Tower plate temperatures 1–12 

19 Condenser cooling water flow rate 

20 Heave storage tank level 

21 Light storage tank level 

 

Figure 3 Monitoring results for the fault 1 
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Figure 4 Monitoring results for the fault 2 

 

Figure 5 Monitoring results for the fault 3 

 

Figure 6 Monitoring results for the fault 4 

5.  CONCLUSIONS 

In this work, a data-driven model predictive monitoring 

method was developed for efficient dynamic process 

monitoring. Process measurements are first projected into a 

dominant latent variable subspace and a residual subspace. 

Then the dominant latent variable subspace is further 

decomposed into a dynamic feature subspace and a static 

feature subspace, under the consideration that process 

dynamic exists in a low dimensional dynamic feature 

subspace. Fault detection residual is generated and 

monitoring statistic is established for each subspace, through 

which both the process status and the type of a detected fault 

can be identified. Application examples on a lab-scale 

distillation process verified the effectiveness of the proposed 

monitoring scheme. 

It is noted that the current work is the preliminary study on 

the data-driven model predictive monitoring and only the 

fault detection issue is addressed. Future works can be 

devoted to the fault variable isolation and fault pattern 

diagnosis. Also, this work deals with only the linear case, 

while more complex process characteristics such as process 

nonlinearity and multimode should be discussed. 
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