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Abstract: In contrast to its great empirical success, theoretical understanding of multi-agent
reinforcement learning (MARL) remains largely underdeveloped. As an initial attempt, we
provide a finite-sample analysis for decentralized cooperative MARL with networked agents. In
particular, we consider a team of cooperative agents connected by a time-varying communication
network, with no central controller coordinating them. The goal for each agent is to maximize
the long-term return associated with the team-average reward, by communicating only with its
neighbors over the network. A batch MARL algorithm is developed for this setting, which can
be implemented in a decentralized fashion. We then quantify the estimation errors of the action-
value functions obtained from our algorithm, establishing their dependence on the function class,
the number of samples in each iteration, and the number of iterations. This work appears to be
the first finite-sample analysis for decentralized cooperative MARL from batch data.

Keywords: Reinforcement Learning; Finite-Sample Analysis; Networked Systems; Multi-Agent
Systems; Decentralized Optimization

1. INTRODUCTION

There is an increasing interest in investigating both the
empirical (Foerster et al., 2016; Lowe et al., 2017; Lanctot
et al., 2017) and theoretical (Perolat et al., 2016; Zhang
et al., 2018e,d; Doan et al., 2019a; Srinivasan et al., 2018;
Zhang et al., 2019b) performance of multi-agent reinforce-
ment learning (MARL). See Busoniu et al. (2008); Zhang
et al. (2019a) for comprehensive surveys on MARL and
its applications in various multi-agent systems, including
distributed control, telecommunications, and economics.

Among various settings, cooperative MARL is one of the
most commonly studied one. Cooperative MARL is usually
modeled as either a multi-agent Markov decision process
(MDP) (Boutilier, 1996), or a team Markov game (Wang

? K. Zhang and T. Başar are supported in part by the US Army
Research Laboratory (ARL) Cooperative Agreement W911NF-17-2-
0196, and in part by the Office of Naval Research (ONR) MURI
Grant N00014-16-1-2710. Z. Yang is supported by Tencent PhD
Fellowship. Due to space limitation, some definitions and proof
details are deferred to the accompanying complete report (Zhang
et al., 2018f).

and Sandholm, 2003), where the agents are assumed to
share a common reward function. A more general while
challenging setting considers heterogeneous reward func-
tions that are private to each individual agent, while the
collective goal is to maximize the average of the long-
term return among all agents (Kar et al., 2013; Zhang
et al., 2018e; Suttle et al., 2019; Doan et al., 2019a). This
setting makes it nontrivial to design decentralized MARL
algorithms, in which agents make globally optimal deci-
sions when no central controller exists to coordinate them.
Instead, agents are connected by a possibly time-varying
communication network to exchange information with
each other. This decentralized protocol with networked
agents finds broad applications in practical multi-agent
systems, including unmanned (aerial) vehicles (Alexander
and Murray, 2004; Zhang et al., 2018a), smart power grid
(Zhang et al., 2018b,c), and robotics (Corke et al., 2005).
There exist several theoretical efforts that study MARL in
this setting (Kar et al., 2013; Zhang et al., 2018e,d; Lee
et al., 2018), which, however, are restricted to the asymp-
totic regime, i.e., the convergence is guaranteed only as the
number of iterations increases to infinity. Concurrent to
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the preparation of the present work, Doan et al. (2019a,b)
carried out a finite-time performance analysis for temporal
difference (TD) learning under this setting, which focused
on the policy evaluation task, and the algorithms with
streaming data.

Complementary to Doan et al. (2019a,b), we focus here
on finite-sample analysis for the more challenging control
task, with batch data sets. In particular, our analysis fol-
lows the significant lines of work on the finite-sample anal-
yses for batch RL algorithms (Munos and Szepesvári, 2008;
Antos et al., 2008a,b; Yang et al., 2018; Fan et al., 2019),
using tools from approximate dynamic programming and
statistical learning theory. This type of analysis is favored
over other existing finite-sample analyses for (single-agent)
RL, e.g., Kakade et al. (2003); Strehl et al. (2009); Jiang
et al. (2016); Bhandari et al. (2018); Srikant and Ying
(2019), which are restricted to either tabular or linear
function approximation settings, or for policy evaluation
tasks only. Batch RL analyses can accommodate general
function classes, which is especially necessary in the multi-
agent setting as the joint action space grows exponentially
with the number of agents. Moreover, batch RL algorithms
enjoy the advantages of off-policy exploration (Antos et al.,
2008a,b). It is thus imperative to study the finite-sample
performance of batch MARL algorithms, which is still
missing in the literature.

In this work, we propose a decentralized fitted Q-iteration
algorithm with value function approximation for decen-
tralized cooperative MARL with networked agents, and
establish a finite-sample performance analysis. Specifically,
using batch data, a team of networked agents aims to
estimate the global action-value (Q-value) function cor-
responding to the team-average reward in a decentralized
fashion, via variants of the fitted Q-iteration algorithm
(Riedmiller, 2005). We then establish the statistical er-
ror of the Q-value function returned by the algorithm,
measured by the `2-distance between the estimated and
the optimal Q-functions. Interestingly, we show that the
statistical error can be decomposed into a sum of three
error terms that reflect the effects of the function class,
number of samples in each fitted Q-iteration, and the
number of iterations. This work appears to be the first
finite-sample analysis for decentralized cooperative MARL
with batch data.

Notation. For a measurable space with domain S, we
denote the set of measurable functions on S that are
bounded by V in absolute value by F(S, V ). Let P(S) be
the set of all probability measures on S. For any ν ∈ P(S)
and any measurable function f : S → R, we denote by
the `2-norm of f with respect to measure ν. We use a ∨ b
to denote max{a, b} for any a, b ∈ R, and define the set
[K] = {1, 2, · · · ,K}.

2. PROBLEM FORMULATION

Consider a team of N cooperative agents, denoted by
N = [N ], that operate in a common environment. In
the decentralized setting, there exists no central controller
that is able to either collect rewards or make decisions for
the agents. Alternatively, to foster collaboration, agents
are assumed to exchange information via a possibly time-
varying communication network, denoted by a graph Gτ =

(N , Eτ ), where the edge set Eτ denotes the set of com-
munication links at time τ ∈ N. Formally, we define the
following model of networked multi-agent MDP (M-MDP).

Definition 1. (Networked Multi-Agent MDP). A network-
ed multi-agent MDP is characterized by a tuple

(S, {Ai}i∈N , P, {Ri}i∈N , {Gτ}τ≥0, γ),

where S is the global state space shared by all the agents
in N , and Ai is the set of actions that agent i can choose

from. Letting A =
∏N
i=1Ai denote the joint action space

of all agents, P : S × A → P(S) is the probability
distribution of the next state, and Ri : S × A → P(R)
is the distribution of local reward function of agent i, both
of which depending on the joint actions a and the global
state s. γ ∈ (0, 1) is the discount factor. S is a compact
subset of Rd which can be infinite, A has finite cardinality
A = |A|, and the rewards have absolute values uniformly
bounded by Rmax. At time 1 τ , the agents are connected
by the communication network Gτ . The states and the
joint actions are globally observable while the rewards are
observed only locally.

By this definition, agents observe the global state st and
perform joint actions at = (a1

t , . . . , a
N
t ) ∈ A at time t. In

consequence, each agent i receives an instantaneous reward
rit ∼ Ri(· | st, at). Then, the environment evolves to a new
state following st+1 ∼ P (· | st, at). We refer to this model
as a decentralized one because each agent makes individual
decisions based on the local information acquired from the
network. In particular, we assume that given the current
state, each agent i chooses actions independently of others,
following its own policy πi : S → P(Ai). Thus, the joint
policy of all agents, denoted by π : S → P(A), satisfies
π(a | s) =

∏
i∈N π

i(ai | s) for any s ∈ S and a ∈ A.

The goal of the cooperative agents is to maximize the global
average of the cumulative discounted reward obtained by
all agents over the network, which can be written as

max
π

1

N

∑
i∈N

E

( ∞∑
t=0

γt · rit

)
.

Accordingly, under any joint policy π, the action-value
function Qπ : S ×A → R can be defined as

Qπ(s, a) =
1

N

∑
i∈N

Eat∼π(· | st)

[ ∞∑
t=0

γt · rit
∣∣∣∣ s0 = s, a0 = a

]
.

Notice that since rit ∈ [−Rmax, Rmax] for any i ∈ N and
t ≥ 0, |Qπ| ≤ Rmax/(1 − γ) for any policy π. We let
Qmax = Rmax/(1 − γ) for notational convenience. Thus
we have Qπ ∈ F(S × A, Qmax) for any π. We refer to Qπ
as global Q-function hereafter. For notational convenience,
under joint policy π, we define the operator Pπ : F(S ×
A, Qmax) → F(S × A, Qmax) and the Bellman operator
Tπ : F(S × A, Qmax) → F(S × A, Qmax) that correspond
to the globally averaged reward as follows

(PπQ)(s, a) = Es′∼P (· | s,a),a′∼π(· | s′)
[
Q(s′, a′)

]
, (1)

(TπQ)(s, a) = r(s, a) + γ · (PπQ)(s, a),

where r(s, a) =
∑
i∈N r

i(s, a) · N−1 denotes the globally

averaged reward with ri(s, a) =
∫
rRi(dr | s, a). Note that

1 Note that this time index τ can be different from the time index t
for the M-MDP, e.g., it can be the index of the algorithm updates.
See examples in §3.
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the action-value function Qπ is the unique fixed point of
Tπ. Similarly, we also define the optimal Bellman operator
corresponding to the averaged reward r as

(T Q)(s, a) = r(s, a) + γ · Es′∼P (· | s,a)

[
max
a′∈A

Q(s′, a′)
]
.

Given a vector of Q-functions Q ∈ [F(S×A, Qmax)]N with
Q = [Qi]i∈N , we also define the average Bellman operator

T̃ : [F(S ×A, Qmax)]N → F(S ×A, Qmax) as

(T̃Q)(s, a) =
1

N

∑
i∈N

(T iQi)(s, a) with (2)

T iQi = ri(s, a) + γ · Es′∼P (· | s,a)

[
1

N
·
∑
i∈N

max
a′∈A

Qi(s′, a′)

]
.

Note that T̃Q = T Q if Qi = Q for all i ∈ N .

In addition, for any action-value function Q : S × A →
R, one can define the one-step greedy policy πQ to be
the deterministic policy that chooses the action with the
largest Q-value, i.e., for any s ∈ S, it holds that

πQ(a | s) = 1 if a = argmax
a′∈A

Q(s, a′).

For more than one action a′ that maximizes the Q(s, a′),
we break the tie randomly. Furthermore, we can define an
operator G, which generates the average greedy policy of a
vector of Q-functions, i.e., G(Q) = N−1

∑
i∈N πQi , where

πQi denotes the greedy policy with respect to Qi.

3. ALGORITHM

In this section, we introduce the decentralized coopera-
tive MARL algorithm using batch data, which builds on
the single-agent fitted-Q iteration algorithm (Riedmiller,
2005). In particular, all agents have access to a dataset
D = {(st, {ait}i∈N , st+1)}t=1,··· ,T that records the transi-
tion of the multi-agent system along the trajectory under
a fixed joint behavior policy. The local reward function,
however, is decentralized, and only available to each agent
itself, as agents may have privacy concerns and are not
willing to share their preferences.

At iteration k, each agent i maintains an estimate of the

globally averaged Q-function, denoted by Q̃ik. Then, agent
i samples local reward {rit}t=1,··· ,T along the trajectory D,
and calculates the local target data {Y it }t=1,··· ,T following

Y it = rit + γ · maxa∈A Q̃
i
k(st+1, a). With the local data

available, all agents hope to cooperatively find a common
estimate of the global Q-function, by solving the following
least-squares fitting problem

min
f∈H

1

N

∑
i∈N

1

T

T∑
t=1

[
Y it − f(st, at)

]2
, (3)

whereH ⊆ F(S×A, Qmax) denotes the function class used
for Q-function approximation. The exact solution to (3),

denoted by Q̃k+1, can be viewed as an improved estimate
of the global Q-function, which can be used to generate the
targets for the next iteration k + 1. However, in practice,
since agents have to solve (3) in a distributed fashion, with
a finite number of iterations of any distributed optimiza-
tion algorithm, the estimate at each agent may not reach
an exact consensual value. Instead, each agent i may have

an estimate Q̃ik+1 that is different from the exact solution

Q̃k+1, as well as different from each other. This mismatch
will then propagate to the next iteration since agents can

only use the local Q̃ik+1 to generate the target for iteration
k + 1. This is in fact one of the departures of our finite-
sample analysis that exists for MARL from the analyses
for the single-agent setting (Munos and Szepesvári, 2008;
Lazaric et al., 2010). After K iterations, each agent i finds

the local greedy policy with respect to Q̃iK and the local
estimate of the global Q-function. To obtain a consistent
joint greedy policy, all agents output the average of their

local greedy policies, i.e., output πK = G(Q̃K). The pro-
posed decentralized algorithm for cooperative MARL is
summarized in Algorithm 1.

When a parametric function class is considered, we denote
H by HΘ, where HΘ = {f(·, ·; θ) ∈ F(S × A, Qmax) : θ ∈
Rd}. In this case, (3) becomes a vector-valued optimization
problem with a separable objective function among the
agents. For notational convenience, we introduce gi(θ) =

T−1 ·
∑T
t=1

[
Y it − f(st, at; θ)

]2
; then, (3) can be written as

min
θ∈Rd

1

N

∑
i∈N

gi(θ). (4)

Since each agent i has access to only its own gi(θ), it needs
to exchange local information over the network Gτ to solve
(4), which entails a decentralized/distributed optimization
algorithm. Note that problem (4) is nonconvex with re-
spect to θ when HΘ is a nonlinear function class, e.g.,
deep neural networks, which makes computation of the
exact minimum of (4) intractable. Moreover, even if HΘ

is a linear function class, which turns (4) into a convex
problem, with only a finite number of steps in practice,
decentralized optimization algorithms can at best converge
to a neighborhood of the global minimizer. Thus, the

aforementioned mismatch between Q̃ik and Q̃k is inevitable
for our finite iteration analysis.

There exists a rich family of decentralized or consensus
optimization algorithms for networked agents that can
solve the vector-valued optimization problem (4). Since
we consider a more general setting with a time-varying
communication network, several recent work (Zhu and
Mart́ınez, 2013; Nedic et al., 2017; Tatarenko and Touri,
2017; Hong and Chang, 2017) may apply. For the case
when the overall objective function is strongly-convex,
Nedic et al. (2017) has proposed an algorithm, named
DIGing, that is guaranteed to achieve a geometric/linear
convergence rate. Thus, we use DIGing as one possible
algorithm to solve (4). In particular, each agent imaintains
two vectors in DIGing, i.e., the solution estimate θil ∈ Rd,
and the average gradient estimate γil ∈ Rd, at iteration l.
Each agent exchanges these two vectors to the neighbors
over the time-varying 2 network {Gl}l≥0, weighted by
some consensus matrix Cl = [cl(i, j)]N×N that respects
the topology of the graph Gl. Details on choosing the
consensus matrix Cl will be provided in §4. The updates
of the DIGing algorithm are summarized in Algorithm 2.
If HΘ represents a linear function class, then (4) can be

2 Note that here we allow the communication graph to be time-
varying even within each iteration k of Algorithm 1. Thus, we use l
as the time index used in the decentralized optimization algorithm
instead of τ , the general time index in Definition 1.
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Algorithm 1 Decentralized Fitted Q-Iteration Algorithm
for Cooperative MARL

Input: Function class H, trajectory data D ={(
st, {ait}i∈N , st+1

)}
t=1,··· ,T , number of iterations K,

number of samples n, the initial estimator vector Q̃0 =

[Q̃i0]i∈N .
for k = 0, 1, 2, . . . ,K − 1 do

for agent i ∈ N do
Sample rit ∼ Ri(· | st, at) and compute local target

Y it = rit + γ · maxa∈A Q̃
i
k(st+1, a), for all data(

st, {ait}i∈N , st+1

)
∈ D.

end for
Solve (3) for all agents i ∈ N , by decentralized
optimization algorithms, e.g., by Algorithm 2, if H
is a parametric function class HΘ.

Update the estimator Q̃ik+1 for all agents i ∈ N .
end for
Output: The vector of estimator Q̃K = [Q̃iK ]i∈N of Q∗

and joint greedy policy πK = G(Q̃K).

Algorithm 2 DIGing : A Decentralized Optimization Al-
gorithm for Solving (4)

Input: Parametric function class HΘ, stepsize α > 0,
initial consensus matrix C0 = [c0(i, j)]N×N , local target
data {Y it }t=1,··· ,T , initial parameter θi0 ∈ Rd, and initial
vector γi0 = ∇gi

(
θi0
)

for all agent i ∈ N .
for l = 0, 1, 2, . . . , L− 1 do

for agent i ∈ N do
θil+1 =

∑
j∈N cl(i, j) · θ

j
l − α · γil

γil+1 =
∑
j∈N cl(i, j) · γ

j
l +∇gi

(
θil+1

)
−∇gi

(
θil
)

end for
end for
Output: The vector of functions [Q̃i]i∈N with Q̃i =
f
(
·, ·; θiL

)
for all agent i ∈ N .

strongly-convex under mild conditions. In this case, one
can quantitatively characterize the mismatch between the
global minimizer of (4) and the output of Algorithm 2
after a finite number of iterations, thanks to the linear
convergence rate of the algorithm.

For a general nonlinear function class HΘ, the algo-
rithms for nonconvex decentralized optimization (Zhu and
Mart́ınez, 2013; Hong et al., 2016; Tatarenko and Touri,
2017) can be applied. Nonetheless, the mismatch between
the algorithm output and the global minimizer is very dif-
ficult to quantify, which is a fundamental issue in general
nonconvex optimization problems.

4. THEORETICAL RESULTS

We first introduce the finite-sample performance bound
for the proposed algorithms with general function approx-
imation, followed by a more concrete bound when linear
function approximation is used.

4.1 Using General Function Approximation

We start with several standard assumptions. The func-
tion class H used for action-value function approxima-
tion greatly influences the performance of the algorithm.

Here we use the concept of pseudo-dimension (Munos and
Szepesvári, 2008; Antos et al., 2008a,b) to capture the
capacity of function classes.

Assumption 2. (Function Classes Capacity). Let VH+ de-
note the pseudo-dimension of a function class H, i.e., the
VC-dimension of the subgraphs of functions in H. Then
the function class H used in Algorithm 1 has finite pseudo-
dimension, i.e., VH+ <∞.

In our decentralized setting, each agent may not have
access to the simulators for the overall MDP model tran-
sition. Thus, the data D have to be collected from an
actual trajectory of the networked M-MDP, under some
joint behavior policy of all agents. Note that the behavior
policy of other agents are not required to be known in order
to generate such a sample path. Our assumption regarding
the sample path is as follows.

Assumption 3. (Sample Path). The transition data D =
{(st, {ait}i∈N , st+1)}t=1,··· ,T are collected from a sample
path of the networked M-MDP under some stochastic
behavior policy. Moreover, the process {(st, at)} is sta-
tionary, i.e., (st, at) ∼ ν ∈ P(S × A)), and exponentially
β-mixing 3 with a rate defined by (β, g, ζ).

The mixing property of the random process basically
means that the future of the process depends weakly on the
past, which allows us to derive tail inequalities for certain
empirical processes. Note that Assumption 3 is standard in
the literature (Antos et al., 2008b; Lazaric et al., 2010) for
finite-sample analyses of batch RL using a single trajectory
data. Also, the mixing coefficients do not need to be known
when implementing the algorithms.

In addition, we also make the following standard assump-
tion on the concentrability coefficient of the networked M-
MDP as in Munos and Szepesvári (2008); Antos et al.
(2008b). The definitions of concentrability coefficients fol-
low from those in Munos and Szepesvári (2008); Perolat
et al. (2015), which can also be found in the complete
report (Zhang et al., 2018f, Definition A.2).

Assumption 4. (Concentrability Coefficient). Let ν be the
stationary distribution of the samples {(st, at)} in D from
the networked M-MDP in Assumption 3. Let µ be a
fixed distribution on S × A. We assume that there exist
constants φMDP

µ,ν <∞ such that

(1− γ)2 ·
∑
m≥1

γm−1 ·m · κMDP(m;µ, ν) ≤ φMDP
µ,ν , (5)

where κMDP is the concentrability coefficient.

The concentrability coefficient measures the similarity
between ν and the distribution of the future states of the
networked M-MDP when starting with some distribution
µ. The boundedness of the concentrability coefficient can
be interpreted as the controllability of the underlying
system, and holds in a large class of regular MDPs.
See more interpretations on concentrability coefficients in
Munos and Szepesvári (2008); Perolat et al. (2015).

As mentioned in §3, in practice, at iteration k of Algorithm
1, with a finite number of iterations of the decentralized

optimization algorithm, the output Q̃ik would be different

3 See Definition A.1 in the appendix of (Zhang et al., 2018f) on
β-mixing and exponentially β-mixing of a stochastic process.
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from the exact minimizer of (3). Thus, we make the
following assumption on this one-step computation error.

Assumption 5. (Decentralized Computation Error). At it-
eration k of Algorithm 1, the computation error from
solving (3) is uniformly bounded, i.e., there exists εik > 0,

such that for any (s, a) ∈ S ×A, it holds that |Q̃ik(s, a)−
Q̃k(s, a)| ≤ εik, where Q̃k is the exact minimizer of (3)

and Q̃ik is the output of the decentralized optimization
algorithm at agent i ∈ N .

The computation error generally comes from two sources:
1) the error caused by finiteness of the number of itera-
tions of the decentralized optimization algorithm; 2) the
error caused by the nonconvexity of (4) with nonlinear
parametric function class HΘ. Note that the error is al-
ways bounded for function class H ⊂ F(S × A, Qmax)
with bounded absolute values. Moreover, the error can be
further quantified when HΘ is a linear function class, as
to be detailed in §4.2.

Now we are ready to lay out the finite-sample error bounds
for decentralized cooperative batch MARL.

Theorem 6. (Finite-sample Error Bounds). Let {Q̃k}0≤k≤K
be the estimator vectors generated from Algorithm 1, and

πK = G(Q̃K) be the joint average greedy policy with

respect to the estimator vector Q̃K . Let QπK be the
Q-function corresponding to πK , Q∗ be the optimal Q-

function, and R̃max = (1+γ)Qmax+Rmax. Also, recall that
A = |A|, N = |N |, and T = |D|. Then, under Assumptions
2-5, for any fixed initial distribution µ ∈ P(S × A) and
δ ∈ (0, 1], there exist constants K1 and K2 with

K1 = K1

(
VH+ log(T ), log(1/δ), log(R̃max), VH+ log(β)

)
,

K2 = K2

(
VH+ log(T ), VH+ log(β), VH+ log[R̃max(1 + γ)],

VH+ log(Qmax), VH+ log(A)
)
,

and ΛT (δ) = K1 + K2 · N , such that with probability at
least 1− δ

‖Q∗ −QπK‖µ ≤ CMDP
µ,ν ·

{
ΛT (δ/K)[ΛT (δ/K)/b ∨ 1]1/ζ

T/(2048 · R̃4
max)

} 1
4

︸ ︷︷ ︸
Estimation error

+ CMDP
µ,ν · E(H)︸ ︷︷ ︸

Approximation error

+
√

2γ · CMDP
µ,ν · ε+

2
√

2γ

1− γ
· εK︸ ︷︷ ︸

Decentralized computation error

+
4
√

2 ·Qmax

(1− γ)2
· γK/2,

where εK = [N−1 ·
∑
i∈N (εiK)2]1/2, and

CMDP
µ,ν =

4γ ·
(
φMDP
µ,ν

)1/2
√

2(1− γ)2
, E(H) = sup

Q∈HN
inf
f∈H
‖f − T̃Q‖ν ,

ε = max
0≤k≤K−1

[
1

N

∑
i∈N

(εik)2

]1/2

.

Moreover, φMDP
µ,ν , given in (5), is a constant that only

depends on the distributions µ and ν.

Proof First, we quantify the propagation of one-step
errors as Algorithm 1 proceeds in the following theorem.

Theorem 7. (Error Propagation). Under Assumptions 4
and 5, for any fixed distribution µ ∈ P(S ×A), we have

‖Q∗ −QπK‖µ ≤
4
√

2 ·Qmax

(1− γ)2
· γK/2

+ CMDP
µ,ν · ‖%‖ν︸ ︷︷ ︸

Statistical error

+
√

2γ · CMDP
µ,ν · ε+

2
√

2γ

1− γ
· εK︸ ︷︷ ︸

Decentralized computation error

where we define

‖%‖ν = max
k∈[K]

‖T̃ Q̃k−1 − Q̃k‖ν ,

and εK , C
MDP
µ,ν , and ε are as defined in Theorem 6.

Due to space limitation, the proof of Theorem 7 is deferred
to (Zhang et al., 2018f, §5.1), which mainly consists
of three steps. First, the recursion between the errors
of the exact minimizer of (3) at consecutive iterations
with respect to the optimal Q-function, i.e., the recursion

between Q∗ − Q̃k+1 and Q∗ − Q̃k, is established. This
further gives a multi-step error propagation formula, as a
function of the one-step approximation error of the fitting
problem (3), and of the computation error due to finite-
iteration of decentralized optimization algorithms. Second,
the error between Q∗ and Qπk , the output Q-function
estimate after k iterations, is established, by connecting it

toQ∗−Q̃k and the decentralized computation error. Third,
the weighted norm of ‖Q∗−QπK‖µ under some probability
distribution µ ∈ P(S × A) is upper-bounded, leading to
the desired result. Note that by the theorem, both the one-
step statistical error and the decentralized computation
error will propagate, which constitute the fundamental
error that will not vanish even when the iteration K →∞.

Now it suffices to characterize the one-step statistical error
‖%‖ν . The following theorem establishes a high probability
bound for this statistical error.

Theorem 8. (One-step Statistical Error). Let Q = [Qi]i∈N
∈ HN be a vector of real-valued random functions (may
be dependent on the sample path); let (st, {ait}i∈N , st+1)
be the samples from the trajectory data D, and {rit}i∈N
be the rewards sampled from (st, {ait}i∈N , st+1). Define
Y it = rit + γ ·maxa∈AQ

i(st+1, a), and f ′ by

f ′ ∈ argmin
f∈H

1

N

∑
i∈N

1

T

T∑
t=1

[
Y it − f(st, at)

]2
. (6)

Then, under Assumptions 2 and 3, for δ ∈ (0, 1], T ≥ 1,
there exists some ΛT (δ) as defined in Theorem 6, such that
with probability at least 1− δ,

‖f ′ − T̃Q‖2ν ≤ inf
f∈H

‖f − T̃Q‖2ν +

√
ΛT (δ)[ΛT (δ)/b ∨ 1]

1
ζ

T/(2048 · R̃4
max)

. (7)

The proof of Theorem 8 can be found in (Zhang et al.,
2018f, §5.2), which integrates the proof ideas of one-
step statistical error in Munos and Szepesvári (2008)
and Antos et al. (2008b). Essentially, it establishes how
the probability of the fitting error relies on the pseudo-
dimension of the function class VH+ , and the number of
samples T by the concentration inequality for β-mixing
sequences. Similar to the existing results in the single-
agent setting (e.g., Lemma 10 in Antos et al. (2008b)),
the one-step statistical error consists of two parts, the
approximation error depending on the richness of the
function class H, and the estimation error that vanishes
with the number of samples T .
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By replacing Q by Q̃k−1 and f ′ by Q̃k, the results in
Theorem 8 can characterize the one-step statistical error

‖T̃ Q̃k−1 − Q̃k‖ν . Together with Theorem 7, we arrive at
the main results in Theorem 6.

Theorem 6 establishes a high probability bound on the
error of the output value function QπK obtained from
Algorithm 1 after K iterations. The finite-sample error is
controlled by three fundamental terms: 1) the approxima-
tion error that depends on the richness of the function class
H, i.e., how well H preserves the average Bellman operator

T̃ ; 2) the estimation error incurred by the fitting step (1),
which vanishes with increasing number of samples T ; 3)
the computation error in solving the fitting problem (3)
in a decentralized way with a finite number of updates.
After suppressing constants and logarithmic terms, the
estimation error has the form{

[VH+(N + 1) log(T ) + VH+N log(A) + log(K/δ)]1+1/ζ

T

} 1
4

.

(8)

Compared with the existing results in the single-agent
setting, e.g., (Antos et al., 2008b, Theorem 4), our results
have an additional dependence on O(N log(A)), where
N = |N | is the number of agents in the team and A = |A|
is cardinality of the joint action set. This dependence on N
is due to the fact that the target data used in the fitting
step are collections of local target data from N agents;
while the dependence on log(A) characterizes the difficulty
of estimating Q-functions, each of which has A choices to
find the maximum given any state s. Similar terms of order
log(A) also show up in the single-agent setting (Antos
et al., 2008a,b), which is induced by the capacity of the
action space. In addition, a close examination of the proof
shows that the effective dimension (Antos et al., 2008b)
is (N + 1)VH+ , which is because we allow N agents to
have their own estimates of Q-functions, each of which lies
in the function class H with pseudo-dimension VH+ . We
note that it is possible to sharpen the dependence of the
rate and the effective dimension on N via different proof
techniques from here, which is left as our future work.

4.2 Using Linear Function Approximation

With linear function approximation, the finite-sample
bound can be made more concrete. Specifically, we quan-
tify the one-step computation error bound in Assumption
5, after L iterations of the decentralized optimization
algorithm that solves (3). We first make the following
assumption on the features of the linear function class.

Assumption 9. The function class HΘ used in Algorithm
1 is a parametric linear function class, i.e., HΘ ⊂ F(S ×
A, Qmax) and HΘ = {f(s, a; θ) = θ>ϕ(s, a) : θ ∈ Rd},
where for any (s, a) ∈ S×A, ϕ(s, a) ∈ Rd is the feature vec-

tor. Moreover, let MMDP = T−1 ·
∑T
t=1 ϕ(st, at)ϕ

>(st, at)
with {(st, at)}t∈[T ] being samples from the data set D, and

assume that the matrix MMDP is full rank.

The assumption on the rank of the matrix MMDP en-
sures that the least-squares problem (3) is strongly-
convex, which allows the DIGing algorithm to achieve

the geometric convergence rate, even over time-varying
communication networks. We note that this assump-
tion can be readily satisfied in practice. Let ϕ(s, a) =
[ϕ1(s, a), · · · , ϕd(s, a)]>. Then, if one follows the con-
ventional RL literature (Tsitsiklis and Van Roy, 1997;
Geramifard et al., 2013) to assume that the functions
{ϕ1(s, a), · · · , ϕd(s, a)} are linearly independent, then
with a rich enough D, one can easily find T � d samples
from D, such that the matrix [ϕ(s1, a1), · · · , ϕ(sd, ad)]

> is
full-rank, i.e., has rank d. Then, with some algebra (see
Lemma B.1 in Zhang et al. (2018f)), one can show that
MMDP is also full-rank.

Moreover, we make the following assumption on the time-
varying consensus matrix Cl used in the DIGing algorithm
(see also Assumption 1 in Nedic et al. (2017)).

Assumption 10. (Consensus Matrix {Cl}l≥0). For any l =
0, 1, · · · , the consensus matrix Cl = [cl(i, j)]N×N satisfies
the following relations:

1) (Decentralized property) If i 6= j, and edge (j, i) /∈ El,
then cl(i, j) = 0;

2) (Double stochasticity) Cl1 = 1 and 1>Cl = 1>;

3) (Joint spectrum property) There exists a positive inte-
ger B such that χ < 1, where

χ = sup
l≥B−1

σmax

{
ClCl−1 · · ·Cl−B+1 −

1

N
11>

}
for all l = 0, 1, · · · , and σmax(·) denotes the largest singular
value of a matrix.

Assumption 10 is standard and is satisfied by many ma-
trix sequences in decentralized optimization. Specifically,
condition 1) imposes the physical connection constraint
of the network; condition 2) ensures that the convergent
vector is consensual for all agents; condition 3) regards the
connectivity of the time-varying graph {Gl}l≥0. For more
discussions on these, see (Nedic et al., 2017, Section 3).

Now we are ready to present the following corollary on the
finite-sample error bound of Algorithm 1, when Algorithm
2 and linear function approximation are used.

Corollary 11. (Finite-sample Error Bounds With Linear
Function Approximation) Suppose Assumptions 2-5, and
9-10 hold, and Algorithm 2 is used in the fitting step (3)
for decentralized optimization. Then, for any δ ∈ (0, 1],
ε > 0, and fixed initial distribution µ ∈ P(S × A), there
exist integers K,T , and L, where K is linear in log(1/ε),
log[1/(1 − γ)], and log(Qmax); T is polynomial in 1/ε,

γ/(1 − γ), 1/R̃max, log(1/δ), log(β), and N log(A); and
L is linear in log(1/ε), log[γ/(1− γ)], such that

‖Q∗ −QπK‖µ ≤ CMDP
µ,ν · E(H) + ε

holds with probability at least 1− δ.

Proof The proof proceeds by controlling the three error
terms in the bound in Theorem 6 (except the inherent
approximation error) by ε/3 for any ε > 0. In particular,
to show the first argument for the cooperative setting, let

4
√

2 ·Qmax

(1− γ)2
· γK/2 ≤ 4

√
2 ·Qmax

(1− γ)2
· (1− γ)2ε

12
√

2 ·Qmax

=
ε

3
;

we then immediately obtain that K is linear in log(1/ε),
log[1/(1−γ)], and log(Qmax). Letting the estimation error
be controlled by ε/3, we have
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CMDP
µ,ν ·

{
ΛT (δ/K)[ΛT (δ/K)/b ∨ 1]1/ζ

T/(2048 · R̃4
max)

}1/4

=
4γ ·
(
φMDP
µ,ν

)1/2
√

2(1− γ)2
·
{

ΛT (δ/K)[ΛT (δ/K)/b ∨ 1]1/ζ

T/(2048 · R̃4
max)

}1/4

≤
ε

3
.

By definition of ΛT in Theorem 6, we obtain that T is

polynomial in 1/ε, γ/(1−γ), 1/R̃max, log(1/δ), log(β), and
N log(A). For the decentralized computation error, let

√
2γ · CMDP

µ,ν · ε+
2
√

2γ

1− γ
· εK

=
√

2γ ·
4γ ·

(
φMDP
µ,ν

)1/2
√

2(1− γ)2
· ε+

2
√

2γ

1− γ
· εK ≤

ε

3
. (9)

Note that under Assumptions 9 and 10, we can apply
(Nedic et al., 2017, Theorem 10), which shows that there
exist constants λ ∈ [0, 1) and C0 > 0, such that at each
iteration k of Algorithm 1,√∑

i∈N
‖θik,l − θ∗k‖2 ≤ C0 · λl, (10)

where θ∗k corresponds to the exact solution to (3) at this

iteration k, i.e., Q̃k = (θ∗k)>ϕ, and θik,l represents the
estimate of θ∗k of agent i at iteration l of Algorithm 2.
Thus, if Algorithm 2 terminates after L iterations, we

have Q̃ik = (θik,L)>ϕ, where we recall that Q̃ik denotes the
output of the decentralized optimization step in Algorithm
1. Since the features ϕ are uniformly bounded, we obtain
from (10) that there exists a constant C1 > 0, such that
for any (s, a) ∈ S ×A,√

1

N

∑
i∈N
|Q̃ik(s, a)− Q̃k(s, a)|2

≤ C1

√
1

N

∑
i∈N
‖θik,L − θ∗k‖2 ≤

C1C0√
N
· λL.

Thus, we can choose C1C0/
√
N · λL to bound the de-

centralized optimization εk. These arguments apply to all
iterations k ∈ [K], which means that we can bound both
ε = max0≤k≤K−1 and εK in (9) by C2 · λL for some
constant C2. Therefore, we conclude from (9) that the
number of iterations L is linear in log(1/ε), log[γ/(1− γ)].
This completes the proof.

Corollary 11 shows that Algorithm 1 is efficient with the
aid of Algorithm 2 under some mild assumptions, in the
sense that finite number of samples and iterations, which
scale at most polynomially with the problem parameters,
are needed to achieve arbitrarily small Q-value errors,
provided the inherent approximation error is small.

We note that if the full-rank condition in Assumption 9
does not hold, the fitting problem (3) is simply convex.
Then, over time-varying communication network, it is also
possible to establish convergence rate of O(1/l) using the
proximal-gradient consensus algorithm (Hong and Chang,
2017). We will forgo a detailed discussion on various
decentralized optimization algorithms since it is beyond
the scope of this paper.

5. CONCLUSIONS

In this paper, we have provided a finite-sample analysis for
decentralized cooperative multi-agent RL from batch data.
Specifically, we have developed a decentralized fitted-Q
iteration algorithm for cooperative MARL with networked
agents, and quantified how the performance bound of the
output action-value depends on the function class, the
number of samples in each iteration, and the number of
iterations. We believe that these theoretical results provide
useful insights into the fundamental performance of MARL
algorithms implemented with finite samples and finite
computation iterations in practice. One interesting future
research direction is to extend the finite-sample analysis
to more general MARL settings, e.g., general-sum Markov
games. It would also be promising to sharpen the bounds
we obtained, to better understand and improve both the
sample and computation efficiency of MARL algorithms.
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Munos, R. and Szepesvári, C. (2008). Finite-time bounds
for fitted value iteration. Journal of Machine Learning
Research, 9(May), 815–857.

Nedic, A., Olshevsky, A., and Shi, W. (2017). Achieving
geometric convergence for distributed optimization over
time-varying graphs. SIAM Journal on Optimization,
27(4), 2597–2633.

Perolat, J., Scherrer, B., Piot, B., and Pietquin, O.
(2015). Approximate dynamic programming for two-
player zero-sum Markov games. In International Con-
ference on Machine Learning, 807–814.

Perolat, J., Strub, F., Piot, B., and Pietquin, O. (2016).
Learning Nash equilibrium for general-sum Markov
games from batch data. In International Conference
on Artificial Intelligence and Statistics, 232–241.

Riedmiller, M. (2005). Neural fitted Q iteration–first
experiences with a data efficient neural reinforcement
learning method. In European Conference on Machine
Learning, 317–328.

Srikant, R. and Ying, L. (2019). Finite-time error bounds
for linear stochastic approximation and TD learning. In
Conference on Learning Theory, 2803–2830.

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J.,
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(2018e). Fully decentralized multi-agent reinforcement
learning with networked agents. In International Con-
ference on Machine Learning, 5867–5876.

Zhang, K., Yang, Z., Liu, H., Zhang, T., and Başar,
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