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Abstract: For the analysis, simulation, and controller design of large-scale systems, a surrogate
model with small complexity is mostly required. A standard approach to determine such a model
is given by modelling the system and applying model-order-reduction techniques. Contrary, we
propose a data-driven approach, where the surrogate model of the input-output behaviour of an
LTI system is determined from data without modelling the system beforehand. Moreover, we
provide a guaranteed bound on the maximal error between the system and the surrogate model
in case of noise-free measurements. We analyse the stability and convergence of the presented
schemes and apply them on a benchmark system from the model-order-reduction literature.
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1. INTRODUCTION

Deriving a low-order surrogate model has great impor-
tance in simulation, analysis, and controller design of
large-scale systems, e.g., mechanical models of flexible
multibody systems or weather-forecast models. Model-
order-reduction techniques constitute one approach to cal-
culate such models. In recent decades, different model-
order-reduction techniques have been investigated as
projection-based, norm-based (e.g. L2,L∞,H2,H∞), and
moment matching approaches. See Antoulas (2005) for
more details. In model order reduction, the knowledge of
linear or nonlinear ordinary differential equations, that
describe the system dynamics, is required. These equa-
tions are derived possibly by discretizing partial differen-
tial equations models using, for instance, a finite element
method. Subsequent, the model reduction step yields a
simplified dynamical system that approximates the be-
haviour of the high-order model. Here, a trade-off between
complexity and misfit in the approximation has to be
made.

As stated above, the starting point of model order reduc-
tion is a sufficiently precise model of the system. How-
ever, a model for large-scale systems is often not avail-
able and modelling is time-consuming. For these reasons,
approaches for data-driven surrogate modelling were de-
veloped, e.g., in Ionita and Antoulas (2014) and Scar-
ciotti and Astolfi (2017). Instead of modelling the system
and applying model-order-reduction techniques, a simpli-
fied model is deduced directly from data of the system.
Thereby, one goal of data-driven approaches is to provide
a bound of the approximation error with respect to the real
plant. In contrast, model order reduction can only provide
such a bound regarding the high-order model, while the
error of this high-order model is unknown.
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In this paper, we establish a data-driven approach for
surrogate modelling of LTI SISO systems. We consider a
similar approach as Wahlberg et al. (2010) and Romer
et al. (2018), where optimization problems are solved it-
eratively to determine the `2-gain and conic relations of
LTI systems without the knowledge of the system. Instead,
the schemes require to perform sequentially experiments
on the plant to identify the control-theoretic properties.
In Oomen et al. (2014), such an approach is successfully
applied on a real industrial active vibration isolation sys-
tem in the case of L2-gain estimation. Besides a surrogate
model, we compute the `2-gain of the approximation error
between the system and the surrogate model. Thus, a
measure of the misfit between the surrogate model and the
real plant is provided under the assumption of noise-free
measurements. Moreover, the bound on the maximal error
can be exploited for a robust control design with closed-
loop guarantees. Since the surrogate model can be seen as
a generalisation of conic relations from Zames (1966) with
dynamic center, this robust controller can exhibit a better
performance than a controller by the classical feedback
theorem from Zames (1966). Due to this generalisation,
we retrieve the result from Romer et al. (2018) as a
special case. Note that, set-membership identification from
Milanese et al. (2014) constitutes an approach to derive a
model of a nonlinear system and its maximal approxima-
tion error. However, these results are not applicable here,
since the linear surrogate model constitutes the projection
of the (high-order) linear system on a set of (low-order)
linear models, which follows a different idea as in Milanese
et al. (2014).

The paper is organized as follows. First, we state the
characterizing optimization problem of the ‘optimal’ surro-
gate model. Second, we solve this problem by continuous-
time saddle-point dynamics. Subsequent, the stability and
convergence is analysed, which also provides insight into
the convergence behaviour of the iterative schemes. At the
end, we apply these iterative schemes on a benchmark
system from the model-order-reduction literature.
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2. SURROGATE MODELS FOR LTI SYSTEMS

In this paper, we consider causal discrete-time LTI SISO
systems and assume that u(t) = y(t) = 0 for t ≤ 0.
Hence, the output of the system at each time step t can
be computed by

y(t) =

t∑
k=0

gku(t− k)

and a finite output sequence by
y(1)
y(2)
y(3)
...

y(n)

 =


g0 0 0 · · · 0
g1 g0 0 · · · 0
g2 g1 g0 · · · 0
...

...
. . .

...
gn−1 gn−2 · · · g1 g0



u(1)
u(2)
u(3)
...

u(n)

 .
In the sequel, we use the abbreviation y = Gu with y, u ∈
Rn and the lower triangular Toeplitz matrix G ∈ Rn×n.
The surrogate model is restricted to be a linear combina-
tion of finitely many LTI systems. Thus, its convolution
matrix T (b) is a linear combination of lower triangular

Toeplitz matrices T̃i, i = 1, . . . , N

T (b) =

N∑
i=1

biT̃i, (1)

with b = [b1 · · · bN ] ∈ RN . Later, the linearity of b 7→ T (b)
will be crucial to prove stability guarantees and to provide
a fast converging scheme.

To motivate this setup, we consider the following conceiv-
able problem. Suppose the system is an IIR filter of high
order M

y(t) =
β0 + β1q

−1 + · · ·+ βMq
−M

1 + α1q−1 + · · ·+ αMq−M
u(t), αM 6= 0,

with unknown parameters αi, i = 1, . . . ,M and βi, i =
0, . . . ,M . For the design of a low order controller, we want
to find an approximating low-order IIR filter

y(t) =
b0 + b1q

−1 + · · ·+ bNq
−N

1 + a1q−1 + · · ·+ aNq−N
u(t), aN 6= 0,

with N � M . Here, the parameters bi, i = 0, . . . , N
are obtained through optimization, whereas the parameter
ai, i = 1, . . . , N are chosen by initial experiments and
some insight into the system beforehand. Thereby, ai, i =
1, . . . , N can be seen as design parameter of the iterative
scheme.

The goal of this work is to determine the ‘best fitting’
surrogate model, which we define by the optimization
problem

∆2 := min
b∈RN

max
u∈Rn\{0}

||(G− T (b))u||2
||u||2 . (2)

|| · || denotes the Euclidean vector norm and (b∗, u∗)
the solution of (2). Through this optimization problem,
the ‘optimal’ surrogate model T (b∗) minimizes the gain
∆ of the error system G − T (b) with respect to the
Euclidean vector norm. Therefore, the surrogate model
T (b∗) minimizes the distance of surrogate models T (b), b ∈
RN to the system G and T (b∗) can be seen as the
orthogonal projection of G on the set of the surrogate
models given by T (b), b ∈ RN . This is illustrated in Fig. 1.

In the following, we comment on the relation of (2) to other
results from the control theory. First, by the knowledge

{
T (b), b ∈ RN

}
0 T (b∗)

G

∆

Fig. 1. ‘Best fitting’ surrogate model as the orthogonal
projection of system G on the set

{
T (b), b ∈ RN

}
.

T (b∗)

∆

G

+
u y

Fig. 2. Unknown system G as interconnection of the ‘best
fitting’ surrogate model and the bound ∆ on the error.

of b∗ and ∆, the unknown system G can be represented
as interconnection as depicted in Fig. 2. Therefore, a
robust controller design with closed-loop guarantees is
conceivable. Second, the optimization problem (2) includes
the definition of conic relations with static center from
Zames (1966) for T (b) = bI and the definition of the
`2-gain of G for b = 0. Hence, the robust controller
determined from the surrogate model T (b∗) with error
bound ∆ can lead to a better performing controller than
by identifying the minimal cone, that includes G, and
applying the feedback theorem from Zames (1966). Indeed,
the width of the cone containing G for a static center
is larger than for a dynamic center. Thus, a stabilizing
controller, concluded from a static center, is confined in
a smaller cone, and hence is more restricted. Third, we
can relate the optimization problem (2) to nonlinearity
measures, where G is a nonlinear system. In this case,
∆ measures the strength of the nonlinearity of a system.
In Martin and Allgöwer (2019), nonlineaity measures are
investigated for data-driven system analysis.

In the following, we require some more notation related to
(2). We define

uT (G− T (b))T (G− T (b))u

uTu
=:

uTA(b)u

uTu
=: ρ(b, u).

ρ is known as the Rayleigh quotient and is a smooth
function with ρ(b, u) = ρ(b, αu) for all α ∈ R \ {0}. Thus,
the considered inputs in the optimization can be restricted
to the unit sphere Sn−1 ⊂ Rn.

Since A(b) is symmetric, it is known that

max
||u||=1

uTA(b)u

uTu
= λmax(b) (3)

and that the maximizing input u∗(b) corresponds to any
linear combination of eigenvectors of the largest eigenvalue
of A(b). Here, λmax(b) = maxi=1,...,n λi(b) denotes the
maximal eigenvalue of A(b) and λi(b), i = 1, . . . , n its i-
th eigenvalue. Hence, the optimization problem (2) can be
written as

∆2 = min
b∈RN

ρ(b, u∗(b)) = min
b∈RN

λmax(b). (4)

By Mengi et al. (2014), we can sort the eigenvalues of A(b)
such that the eigenvalue functions λi(b) : RN → R, i =
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1, . . . , n are analytic in b. This implies the existence of b∗

and the first order necessary conditions for the solution
(b∗, u∗) of (2)

conv{∇bλ1(b∗), . . . ,∇bλm(b∗)} 3 0,

where conv denotes the convex hull and the multiplicity of
λmax(b∗) is m.

Even though the optimization problem (2) can be simpli-
fied to the minimization problem (4), we can not solve it
as G is unknown. Hence, we follow the approach of Romer
et al. (2018) and solve (2) by gradient-based methods.

3. SURROGATE MODELS FROM INPUT-OUTPUT
DATA

In this section, we study gradient-based methods to solve
(2). As already exploited in Wahlberg et al. (2010), the
gradients

∇uρ =
2

||u||2 (PGPGu−PGPTu−TTGu+TTTu)

− 2

||u||4u
T (PGPGu−PGPTu−TTGu+TTTu)u

∇biρ =
2

||u||2u
T T̃T

i (Tu−Gu) (5)

for all (b, u) ∈ RN×Sn−1 can be concluded from three data
samples with inputs u, PGu, and PTu. Here, P denotes
the involutory permutation matrix

P =

0 1

. .
.

1 0

 .
Thus, we can solve (2) by algorithms from gradient-based
optimization without knowledge of G. For the sake of
space limitation, we only refer to robustness properties
with respect to noise of general gradient-based algorithms,
which are discussed in Koch et al. (2019) more thoroughly.
Furthermore, if the output of the system is corrupted by
additive white noise with zero mean, then the expected
value of the noise-corrupted gradients retrieve the true
gradients.

In the following section, we will study continuous-time
saddle-point dynamics and examine their equilibrium
points. Moreover, insight into the problem at hand, stabil-
ity and convergence guarantees are provided. Subsequent,
we will use these results to provide dedicated sampling
schemes to find the ‘best fitting’ surrogate model.

3.1 Continuous-time saddle-point dynamics

The continuous-time saddle-point dynamics for the opti-
mization problem (2) read

d

dτ
bi(τ) = −∇biρ(b(τ), u(τ)), i = 1, . . . , N

d

dτ
u(τ) = ∇uρ(b(τ), u(τ)),

(6)

with the gradients

∇uρ(b, u) =
2

||u||2 (A(b)− ρ(b, u)I)u

∇biρ(b, u) =
2

||u||2u
T T̃T

i (T (b)−G)u, i = 1, . . . , N.

As shown in Romer et al. (2018), the Euclidean norm of
u(τ) is invariant under the saddle-point dynamics, and

hence we consider the saddle-point dynamics on the unit
sphere u ∈ Sn−1. Thus, the equilibria (b̄, ū) of the saddle-
point dynamics (6) satisfy

ξT∇uρ(b̄, ū) = 0, ∀ξ ∈ TūSn−1,

where TūS
n−1 denotes the tangent space on Sn−1 at ū. By

a simple calculation, this is equivalent to

A(b̄)ū = λ(b̄)ū, (7)

which is also referred as the Courant-Fischer-Weyl prin-
ciple. For that reason, the input ū of any equilibrium of
the saddle-point dynamics is an eigenvector of A(b̄). This
implies that any linear combination of eigenvectors of one
eigenvalue is an equilibrium point if ∇bρ(b̄, ū) = 0, which
is equivalent toū

T T̃T
1 T̃1ū · · · ūT T̃T

1 T̃N ū
...

. . .
...

ūT T̃T
N T̃1ū · · · ūT T̃T

N T̃N ū

 b̄ =

ū
T T̃T

1 Gū
...

ūT T̃T
NGū

 (8)

by (5). Furthermore, (7) implies that the solution (b∗, u∗)
of the optimization problem (2) is an equilibrium point
of the saddle-point dynamics, as u∗ lies in the eigenspace
of λmax(A(b∗)). Moreover, we can show that (b∗, u∗) is a
saddle-point

ρ(b∗, u) ≤ ρ(b∗, u∗) ≤ ρ(b, u∗),

as the second order gradients of ρ(b, u) at (b∗, u∗) read

∇uuρ(b∗, u∗) = 2(A(b∗)− ρ(b∗, u∗)I)

∇bbρ(b∗, u∗) = 2

u
∗T T̃T

1 T̃1u
∗ . . . u∗T T̃T

1 T̃Nu
∗

...
. . .

...

u∗T T̃T
N T̃1u

∗ . . . u∗T T̃T
N T̃Nu

∗

 .
Since ρ(b∗, u∗) is equal to the maximal eigenvalue of A(b∗),
∇uuρ(b∗, u∗) is negative semi-definite. Furthermore, the
matrix ∇bbρ(b∗, u∗) is a Gramian matrix, and therefore
positive semi-definite. Together with the knowledge that
the first order gradients of ρ(b, u) at (b∗, u∗) are zero,
(b∗, u∗) is a saddle-point.

We have shown that the solution of (2) is an equilib-
rium point of the saddle-point dynamics. As in Romer
et al. (2018), we will prove asymptotic stability of (b∗, u∗)
under the saddle-point dynamics. Therefore, the saddle-
point dynamics converge to the equilibrium (b∗, u∗) if the
initialization lies in its neighbourhood.

In the literature, for example, Cherukuriy et al. (2015),
stability results for saddle-points under saddle-point dy-
namics are mostly given for convex-concave saddle-points
where b 7→ ρ(b, u) has to be convex and u 7→ ρ(b, u) has
to be concave in the neighbourhood of the saddle-point.
However, since the analysis of the concavity of u 7→ ρ(b, u)
is not obvious, we will analyse the stability of (b∗, u∗)
locally.

For this purpose, we introduce the Jacobian matrix J of
the saddle-point dynamics

J(b, u) =

[
−∇bbρ(b, u) −∇buρ(b, u)T

∇buρ(b, u) ∇uuρ(b, u)

]
.

Moreover, we define the i-th eigenvector wi of−∇bbρ(b∗, u∗)
with ||wi|| = 1 and its corresponding eigenvalue λwi ≤ 0.
Furthermore, the i-th eigenvector of A(b∗) is denoted by vi
with ||vi|| = 1 and v1 = u∗. Since ∇bbρ(b∗, u∗) and A(b∗)
are symmetric, wi ∈ RN , i = 1, . . . , N and vi ∈ Rn, i =
1, . . . , n span each an orthonormal basis.
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Assumption 1. Let the Gramian matrix ∇bbρ(b∗, u∗) be
positive definite.

Assumption 2. Let the vectorsw
T
1 ∇buρ(b∗, u∗)T v2

...
wT

N∇buρ(b∗, u∗)T v2

 , . . . ,
w

T
1 ∇buρ(b∗, u∗)T vm

...
wT

N∇buρ(b∗, u∗)T vm


be linearly independent.

Theorem 3. Suppose Assumption 1 and 2 hold. Moreover,
let the eigenvalues of A(b∗) be given by λmax(b∗) =
λ1(b∗) = · · · = λm(b∗) > λm+1(b∗) ≥ · · · ≥ λn(b∗).
Then the solution of the optimization problem (2) is
exponentially stable under the saddle-point dynamics.

Proof. We show the claim by proving that the linearized
saddle-point dynamics are asymptotically stable. Similar
to Romer et al. (2018), we project the linearized dynamics
on the tangent space of RN × Sn−1 at (b∗, u∗) by[

b
u

]
=

[
W 0
0 V

]
x,

with W = [w1 · · · wN ], V = [v2 · · · vn], and x ∈
RN+n−1. Thus, the transformed linearized system reads

ẋ =



λw1
0 ∗ . . . ∗

. . .
...

...
0 λwN

∗ . . . ∗
∗ . . . ∗ 2(λ2 − λ1) 0
...

...
. . .

∗ . . . ∗ 0 2(λn − λ1)


x (9)

=:

[
J̃11 −J̃T

12

J̃12 J̃22

]
x =: J̃x.

To show asymptotic stability of ẋ = J̃x, we choose the
Lyapunov function V (x) = xTx. Since

V̇ (x) = xT (J̃ + J̃T )x = 2xT
[
J̃11 0
0 J̃22

]
x ≤ 0

for all x ∈ Rn+N−1, we apply LaSalle’s invariance principle
to imply asymptotic stability. Under the assumption on
the eigenvalues of A(b∗) and Assumption 1, the set of

states with V̇ (x) = 0 is given by

E := {x =
[
0TN α2 · · · αm 0Tn−m

]T
, αi ∈ R},

where 0N denotes the zero vector of length N . Hence, the
system dynamics in E yield

J̃


0N
α2
...
αm

0n−m

 = −

J̃
T
12


α2
...
αm

0n−m


0n−1

 . (10)

Since the first m− 1 columns of J̃T
12 are linearly indepen-

dent by Assumption 2, the first N entries of ẋ are unequal
to zero for [α2 . . . αm] 6= 0. Thereby, the system (9)
stays in E only for α2 = · · · = αm = 0, and hence the
largest invariant subset of E is x = 0. By the LaSalle’s
invariance principle, ẋ = J̃x is asymptotically stable,
and therefore the saddle-point dynamics are exponentially
stable at (b∗, u∗). 2

In the sequel, we comment on the three assumptions
required in Theorem 3 and show that these assumptions

hold for almost all systems G and choices of T̃i. First, since
the case m > 2 is fairly rare, Assumption 2 reduces tow

T
1 ∇buρ(b∗, u∗)T v2

...
wT

N∇buρ(b∗, u∗)T v2

 6= 0.

In equation (10), Assumption 2 is exploited to apply
LaSalle’s invariance principle, and hence to imply attrac-
tivity of the saddle-point. Thus, Assumption 2 guarantees
that (b∗, u∗) is an isolated equilibrium. Note that, another
geometric interpretation of Assumption 2 is discussed in
Koch et al. (2019) for the case N = 1.

Second, Assumption 1 is satisfied if and only if T̃iu
∗, i =

1, . . . , N are linearly independent. With n � N , this
constitutes a quite mild assumption. However, even if
∇bbρ(b∗, u∗) is just positive semi-definite, then exponential
stability of (b∗, u∗) can be proven under an additional rank

condition on J̃12. For the sake of place limitation, we skip
this proof as he follows the proof of Theorem 3.

Note that, Theorem 3 implies that the saddle-point dy-
namics converge to (b∗, u∗) only if the initialization lies
in its neighbourhood. However, even though the optimal
surrogate model may not be found by the saddle-point
dynamics, the bound ∆ of the maximal error is guaranteed
for the suboptimal model T (b) for any b 6= b∗, if the saddle-
point dynamics converge to an equilibrium point in the
eigenspace of the largest eigenvalue of A(b).

3.2 Iterative methods to find the ‘optimal’ surrogate model

In the previous subsection, we examined the continuous-
time saddle-point dynamics to find the solution (b∗, u∗) of
the optimization problem (2). However, the gradients can
only be evaluated by experiments. Thus, it is necessary to
solve the optimization problem iteratively by discrete-time
optimization. In the following, two iterative schemes from
Arrow et al. (1958) and Polyak (1970) are applied to find
the saddle-point (b∗, u∗) of ρ(b, u).

First, the Arrow-Hurwicz iteration was introduced in Ar-
row et al. (1958), which corresponds to a time discretiza-
tion of the saddle-point dynamics (6) with step size α

b(k + 1) = b(k)− α∇bρ(b(k), u(k))

u(k + 1) = u(k) + α∇uρ(b(k), u(k)).
(11)

Whereas Romer et al. (2018) presents a modified Arrow-
Hurwicz iteration

b(k + 1) = b(k)− α∇bρ(b′(k), u′(k))

u(k + 1) =
u(k) + α∇uρ(b′(k), u′(k))

||u(k) + α∇uρ(b′(k), u′(k))||
b′(k + 1) = b(k + 1)− α∇bρ(b′(k), u′(k))

u′(k + 1) =
u(k + 1) + α∇uρ(b′(k), u′(k))

||u(k + 1) + α∇uρ(b′(k), u′(k))|| ,

(12)

which ensures that the sequence u(k) stays on Sn−1 for all
k ∈ N. In Koch et al. (2019), a modified Uzawa iteration
was shown

b(k + 1) = argmin
b∈RN

ρ(b, u(k))

u′(k + 1) = u(k) + α∇uρ(b(k), u(k))

u(k + 1) =
u′(k + 1)

||u′(k + 1)|| ,
(13)
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where ||u(k)|| = 1 for all k ∈ N is ensured. In the Uzawa
iteration, the gradient descent step of the Arrow-Hurwicz
iteration is replaced by minimizing ρ(b, u(k)) with respect
to b in order to potentially increase its convergence rate.
By the first order necessary condition (8), the solution of
this minimization is given by C(u(k))b(k + 1) = d(u(k)),
with

C(u) =

u
T T̃T

1 T̃1u . . . u
T T̃T

1 T̃Nu
...

. . .
...

uT T̃T
N T̃1u . . . u

T T̃T
N T̃Nu


d(u) =

u
T T̃T

1 Gu
...

uT T̃T
NGu

 .
Hence, b(k+ 1) is computable under the knowledge of the
input-output tuple (u(k), Gu(k)). Note that, the Hankel-
matrix C(u) might be positive semi-definite, and thus
b(k + 1) is not unique. To avoid large oscillation of the
sequence b(·), we choose b(k + 1) in the set of solutions
which is closest to b(k). Note that, all b(k+1) in the set of
solutions are global minima, as the optimization problem

b(k + 1) = argmin
b∈RN

ρ(b, u(k))

is convex.

We finish this section by providing some convergence
results from Polyak (1970) for the Arrow-Hurwicz iteration
and Uzawa iteration.

Proposition 4. Let the eigenvalues of A(b∗) be given by
λmax(b∗) = λ1(b∗) = · · · = λm(b∗) > λm+1(b∗) ≥ · · · ≥
λn(b∗). Under the Assumption 1 and Assumption 2, there
exists an ᾱ such that the Arrow-Hurwicz iteration (11) is
locally convergent to (b∗, u∗) for 0 < α < ᾱ.

Proof. The proof is based on the linearization of the
Arrow-Hurwicz iteration and exploiting that the projected
Jacobian matrix J̃ on the tangent space of RN × Sn−1 at
(b∗, u∗) is Hurwicz. With the results from Theorem 3, the
proof in Romer et al. (2018) can be adjusted accordingly.

A similar result is discussed for the modified Arrow-
Hurwicz iteration (12) in Romer et al. (2018).

Proposition 5. Let the eigenvalues of A(b∗) be given by
λmax(b∗) = λ1(b∗) = · · · = λm(b∗) > λm+1(b∗) ≥ · · · ≥
λn(b∗). Under the Assumption 1 and Assumption 2, there
exists an α̃ such that the Uzawa iteration (13) is locally
convergent to (b∗, u∗) for 0 < α < α̃.

Proof. We refer to the proof in Polyak (1970), that can
be adapted with the results from Theorem 3.

4. NUMERICAL EXAMPLE

In this section, we will apply the modified Arrow-Hurwicz
iteration (12) and the Uzawa iteration (13) to find the
‘best fitting’ surrogate model for a LTI SISO benchmark
system for model order reduction methods from Chahlaoui
and Dooren (2005). The system beam models a clamped
beam, where the input represents a force applied at the
free end and the output is the resulting displacement.
The system contains 348 states, which result from the
discretization of a partial differential equation. We use
an exact time discretization with zero-order hold and
time step 10. Each experiment has a length of n = 100
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Fig. 3. Simulation results for the Uzawa iteration.

time steps. The initial input is chosen as a normalized

step signal u(0) = 10−1 [1 · · · 1]
T

and the initial model

parameter as b(0) = [1 · · · 1]
T

.

For this example, we expect an oscillating input-output
behaviour. Hence, the surrogate model is chosen as a sum
of stable LTI systems of order two

y(t) =

N∑
i=1

biq
−1

1− a1iq−1 − a2iq−2
u(t). (14)

While the parameter bi are optimized by our schemes,
the parameter a1i ∈ {1, 1.7, 0.3,−0.06, . . . } and a2i =
−0.92 are chosen such that the poles of (14) are complex
conjugated and stable. Note that, we considered the step
response of the clamped beam to find a suitable choice
of a1i and a2i. The step sizes for the modified Arrow-
Hurwicz iteration and the Uzawa iteration are chosen to
αAH = 6 · 10−7 and αUz = 10−7, respectively. The results
of the simulations are shown in the following table.

Table 1. Bound ∆ of the maximal error and pa-
rameters b for increasing size of the surrogate

model.

N=1 N=2 N=4
∆∗ 1004 948 785

∆AH 1004 948 786
∆Uz 1004 948 786

b∗ 305.5
[
307.1 46.1

] [
302.2 37.5 −83.7 −82.7

]
bAH 305.7

[
307.1 46.2

] [
302.1 37.5 −83.9 −82.4

]
bUz 305.6

[
307.1 46.2

] [
302.0 37.4 −83.9 −82.9

]
Note that, the optimal parameters b∗ are calculated under
the knowledge of G by considering the maximal eigen-
value function λmax(b) and solving the minimization prob-
lem (4). However, this is only possible for N ≤ 4 as the
computation time increases exponentially. Table 1 shows,
that the Arrow-Hurwicz iteration and the Uzawa itera-
tion converge to the solution of the optimization prob-
lem (b∗, u∗). However, as shown in Fig. 3 and Fig. 4,
the number of iterations for convergence of the Arrow-
Hurwicz iteration is significantly higher than of the Uzawa
iteration. Hence, the Uzawa iteration (13) exhibits a faster
convergence than the Arrow-Hurwicz iteration in this nu-
merical example.

As expected, the bound ∆ of the maximal error decreases
by increasing the number of basis systems N . For N = 8,
∆ can be decreased to 582, while the number of iterations
for convergence increases to 150. In this case, even though
we cannot guarantee that the optimal parameter vector
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Fig. 4. Simulation results for the Arrow-Hurwicz iteration.
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Fig. 5. Output of the optimized surrogate model and the
system for the ‘worst-case input’.

is found, the bound on the error actually holds, as the
sequence u(·) converges to the eigenspace of the largest
eigenvalue of A(b(k)) for k ≥ 200. However, for this
example, the output of the optimized surrogate model
almost coincides with the output of the system already for
N = 4 for the ‘worst-case input’ as shown in Fig. 5. This
example also shows that we can improve the controller
design using the obtained surrogate model compared to
a controller design via the small-gain theorem or concic
relations, respectively, in the sense mentioned in Section 2.
Indeed, the norm ||G||∞ with 3864 and the radius of the
smallest cone with 3701 are significantly higher than ∆∗.

5. CONCLUSION

In this paper, we proposed a data-driven approach to
iteratively compute a low-order surrogate model for large-
scale LTI SISO systems and its guaranteed smallest upper
bound of the approximation error. To solve the corre-
sponding optimization problem, gradient-based methods
from optimization were applied and their convergence be-
haviour were analysed.

In the proposed schemes, we were restricted to surrogate
models which are linear combination of LTI systems.
This was important, among other reasons, to apply the
Uzawa iteration without knowledge of the system’s input-
ouput behaviour. Thus, the linearity of the surrogate
model in the parameter was the key to keep the number
of iterations small. However, since finding suitable basis
systems can be difficult, it might be interesting to develop
schemes, where the surrogate model is nonlinear in the
parameters. Moreover, extending the idea to nonlinear
systems might be interesting to compute the nonlinearity

measure of a system, which are investigated in Martin
and Allgöwer (2019) for data-driven system analysis and
controller design.

REFERENCES

Antoulas, A.C. (2005). Approximation of Large-Scale
Dynamical Systems. Advances in Design and Control,
SIAM.

Arrow, K.J., Hurwicz, L. and Uzawa H. (1958). Studies in
linear and non-linear programming. Stanford University
Press.

Chahlaoui, Y. and van Dooren, P. (2005). Benchmark
Examples for Model Reduction of Linear Time-Invariant
Dynamical Systems. In Dimension Reduction of Large-
Scale Systems, 45, 379-392, Springer.

Cherukuri, A., Gharesifard, B. and Cortés, J. (2015).
Saddle-Point Dynamics: Conditions for Asymptotic Sta-
bility of Saddle Points. SIAM J. Control and Optimiza-
tion, 55(1), 486-511.

Feijer, D. and Paganini F. (2010). Stability of primal–dual
gradient dynamics and applications to network opti-
mization. Automatica, 46(12), 1974–1981.

Ionita, A.C. and Antoulas, A.C. (2014). Data-Driven
Parametrized Model Reduction in the Loewner Frame-
work. SIAM J. Sci. Comput., 36(3), A984-A1007.
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