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Abstract: This paper presents a data-driven modeling approach and control design for
automated driving purposes. The parameters of the control-oriented polytopic model is tuned
using machine-learning algorithm in a Linear Parameter Varying (LPV) structure. The control
of the automated driving is designed based on the LPV control synthesis method, with which the
performances of the system are guaranteed. Through the automated driving system the steering
intervention is performed, while the maximization of the longitudinal velocity in a predicted
safety region is achieved. The operation and the effectiveness of the proposed control system is
demonstrated through a comprehensive simulation example using the high-fidelity simulation
software CarSim.
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1. INTRODUCTION AND MOTIVATION

Nowadays, one of the main challenges of the automotive
industry is the development of the self-driving autonomous
vehicles. It requires new technologies and solutions, which
guarantee the safe, efficient and economical traveling. It
involves the cooperation of the different research fields
such as sensing (both the vehicle and environment), com-
munication (V2V, V2I), decision making and control.

The paper deals with the control task by providing an
adaptable data-based approach, which is more suitable for
autonomous vehicles. A large number of control design
methods have already been developed and implemented.
They are based on their physical models. Even though
some of the used models have high complexity, they are
not able to describe accurately the nonlinear dynamics of
the vehicle and moreover, they make the control design
more difficult, see e.g. Németh et al. [2016], Masouleh and
Limebeer [2016].

Possible approaches can be the deep-learning and machine
learning-based control systems. Neural network-based so-
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lutions were proposed by Hubschneider et al. [2017],
Rausch et al. [2017]. In general, they can handle nonlinear
behaviors of cars and provide acceptable performances.
The main drawback of the data-driven learning solutions
is that there are no theoretical backgrounds for stability
analysis. Thus, their applications might have risk in real-
life scenarios, e.g. in an extreme scenario.

The main purpose of the paper is to present data-driven
modeling and control solutions for autonomous vehicles,
whose stability and performances can be guaranteed. The
structure of the control system is based on the LPV
(Linear Parameter Varying) method, while its scheduling
variables are selected by a machine-learning-based tech-
nique. Through the combination of these approaches, the
nonlinear behavior of the vehicle can be taken into account
and, at the same time, the stability and the performances
of the controller are also guaranteed.

Some furhter approaches with similar purposes are found
in the literature. For example, in Rosolia and Borrelli
[2018] a Model Predictive Control based solution, whose
terminal cost and terminal sets are determined by using
an iterative approach, is proposed. A Model Free Con-
trol methods was proposed Fliess and Join [2013]. The
advantage of this approach is that it does not require
any preliminary knowledge of the system structure and
it is able to handle highly nonlinear systems as well. A
drawback of this method is that performance specifications
are difficult to integrate into the system.

In the paper it is assumed that the structure of the physical
model is considered to be known and its parameters are
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identified by an optimization algorithm in the operating
points. It allows the designer to use the same formulation
of the performances as in any LPV-based configurations.
Furthermore, the scheduling variables of the LPV system
is determined by a machine-learning algorithm (e.g. C4.5
decision tree algorithm), which uses big measured signals
provided by the vehicle.

The main contribution of the paper is a data-driven
method for the parameter tuning of a control-oriented
model in LPV form, which is used in the robust control
design. Although the proposed method is independent
from the control applications in this paper the problem is
formed in the context of automated driving. Another con-
tribution of the paper is a control strategy, which has two
features. First, the lateral steering control guarantees the
performances of the path following functionality against
the wide range variation of the vehicle dynamic scenar-
ios. As a novelty of the paper, the robust control design
is based on a data-driven polytopic LPV model, whose
scheduling variable represents the variation of the con-
ditions in the vehicle dynamics. Second, a maximization
method of the longitudinal velocity is proposed. During
the optimization, the velocity is selected to keep the pre-
dicted vehicle motion in a safety region. The operation of
the proposed method is demonstrated through a complex
scenario in the high-fidelity simulation software CarSim.

Structure of control system

The structure of the modeling and the control design is
presented as follows. Figure 1 shows the main elements of
the algorithm. They are divided into five subtasks: 1. Pre-
pocess of data, 2. Model identification, 3. Control design,
4. Velocity optimization and 5. Simulation environment.
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Fig. 1. Layers in the design process of the automated
driving strategy

The ’Simulation environment’ includes the high-fidelity
simulation software CarSim. This software has two roles: 1.
it is used to generate the training and test datasets for the
machine-learning algorithm and 2. it is used to evaluate
the proposed control system. The layer ’Prepocess of
data’ divides the generated dataset into training and tests
for the machine-learning algorithm. It also includes the
scaling and the categorization of the data. More detailed

description of this layer is presented in Subsections 2.1 and
2.2. The ’Model identification’ includes the computation of
the scheduling parameters. Basically, it selects the most
significant variables from the dataset, which have high
impact on the dynamics of the vehicle. Moreover, the
parameters of the LPV-based models are computed in this
layer. This layer is presented in Subsections 2.3 and 2.4.
The ’Control design’ contains the control design steps of
the lateral controller, which are described in Section 3.
The goal of the layer ’Velocity optimization’ is to compute
the optimal longitudinal velocity for the vehicle, which
can guarantee the safe and stable motion of the vehicle,
detailed in Section 4. Finally, a comprehensive simulation
is presented to show the operation and effectiveness of the
proposed control system in Section 5.

2. DATA-DRIVEN MODELING OF THE LPV
SYSTEM

In this section the modeling method in the LPV form
is presented. The main steps of the modeling is the
acquisition of the datasets, the labeling of the collected
instances, the selection of the scheduling variables and the
parameter identification of the LPV-based model.

2.1 Acquisition of data from simulations

In the data acquisition the simulations in CarSim software
are performed to collect large number of signals. Several
simulations have been generated with varying parameters
in order to cover a wide range of the operation of the
vehicle. The vehicle has been driven by the in-built driver
at different fixed longitudinal velocities 10 − 20m/s in
the simulations. During these simulations, the following
signals have been measured and saved with the sampling
time TS = 0.01s : 1. longitudinal velocity (vx), 2. angular

velocity of the wheels (ωx,y), 3. yaw-rate (ψ̇), 4. steering
angle (δ), 5. accelerations (ax, ay), 6. side-slip angle
(β). Note that the side-slip angle is only needed for the
modeling process, during the operation of the vehicle is not
required. Its advantage is that the onboard measurement
of β can be avoided, which requires expensive sensors.

2.2 Labeling the collected instances

In the next step the instances are ordered into categories,
which reflect on the nonlinear behavior of the vehicle. The
categorization is carried out by computing the deviation of
each instance from the physical model, which is considered
to be the nominal model of the system. The physical
model, basically, consists of two equations, see Rajamani
[2005]:

Iψ̈ = C1α1l1 − C2α2l2 (1)

mvx(ψ̇ + β̇) = C1α1 + C2α2 (2)

where αi are the side-slip angles of the rear and front
wheels, ψ̇ denotes the yaw-rate, β represents the side-slip
angle of the vehicle, m is the mass of the car, I is the yaw-
inertia, Ci are the cornering stiffness of the front and rear
wheels and li are geometric parameters of the vehicle.

For computing the response of the nominal model, the
equations are formed into a state-space representation.
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The state vector x =
[
ψ̇ β

]T
, the input of the system u = δ

and its matrices are denoted by Ap, Bp. Furthermore, this
continuous representation is discertized using the sampling
time Ts = 0.01s. The states of the discretized model are
computed for each instance. The categorization of the
instances relies on the deviation of the measured and the
computed states. Therefore, the relative errors of these
signals are determined as:

ψ̇e(ti) =
|ψ̇m(ti)− ψ̇n(ti)|

ψ̇n(ti)
(3a)

βe(ti) =
|βm(ti)− βn(ti)|

βn(ti)
(3b)

where ψ̇m and βm denote the measured outputs while
ψ̇n and βn are the outputs of the nominal system. In
the method categories have been predefined for the clas-
sification of the instances, such as n equidistant sections
between 0 and 1. It is defined a function f, which associates
the errors (3) with the categories. A given instance in ti is
labeled based on the following value

cat(ti) = max

(
f
(
ψ̇e(ti)

)
, f
(
βe(ti)

))
, (4)

which means that label cat(ti) is selected based on the
maximum of the errors.

2.3 Selection of the scheduling variables

In the previous subsection, the instances have been ordered
into predefined categories (cat(ti)). The categorization
is based on the difference between the instances from
a nominal model, which are calculated offline based on
the collected data. The result of the categorization is a
decision tree, which might be used during the operation of
the vehicle online. Thus, in the followings a decision tree
algorithm is used to determine the category of the current
instance using solely the available onboard signals. The
decision tree algorithms are able to catch highly nonlinear
behavior by finding the correlation between the available
signals and the output variable (in this case the category).
The consequence of the decision tree is the value of the
scheduling variable, which are contained by the leaves.
Thus, the decision tree determines the category of a given
instance ξ, which is used in the LPV system as a scheduling
parameter.

In this paper, the C4.5 decision tree algorithm for catego-
rization purposes is applied Hunt [1962], Quinlan [1993].
The basic idea behind the algorithms is to minimize the
entropy of the training sets by creating new subsets (new
conditions, nodes). It is achieved by putting the instances
into the appropriate category.

2.4 Parameter tuning of the LPV system

In the parameter tuning of the polytopic LPV system the
parameters of each linear systems are used. The linear
systems are related to the resulting categories, from which
the polytopic LPV system can be built up. The structure
of the nominal model is preserved, which means that each
linear systems have two states (xd = [ψ̇ β]). The state-
space representation is formed as:

ẋd = Ad(ξ)xd +Bdud(ξ), (5)

where

Ad(ξ) =

[
a11(ξ) a12(ξ)
a21(ξ) a22(ξ)

]
, Bd(ξ) =

[
b1(ξ)
b2(ξ)

]
,

and a11(ξ), a12(ξ), a21(ξ), a22(ξ) and b1(ξ), b2(ξ) are pa-
rameters, which must be determined. The control input
of the system is the steering angle ud = δ.

The goal of the identification process is to minimize the
errors between the measured states (xm,j(ti)) and the
computed states (xd,j(ti)) for each time step. This leads
to an optimization problem, in which the parameters
a11(ξ), a12(ξ), a21(ξ), a22(ξ) and b1(ξ), b2(ξ) must be iden-
tified:

min
a11(ξ), a12(ξ), a21(ξ),
a22(ξ), b1(ξ), b2(ξ)

N∑
i=1

2∑
j=1

(
xm,j(ti)− xd,j(ti)

)2
, (6)

where j denotes the states of the system (ψ̇ and β) This
quadratic optimization problems can be solved for all
fixed category xi, see Gill et al. [1981], Coleman and Li
[1996]. Using the identified linear systems, the gridded
LPV system can be built up.

3. LATERAL CONTROL DESIGN FOR AUTOMATED
DRIVING

The goal of the control design is to guarantee the trajec-
tory tracking of the vehicle, which requires the modeling of
the lateral motion of the vehicle. Therefore, the presented
control-oriented LPV model is augmented with two addi-
tional states: lateral velocity (vy) and lateral position (y)
using the following equation:

v̇y = vx(ψ̇ + β̇) =

= vxψ̇ + vx(a21(ξ)ψ̇ + a22(ξ)β + b2(ξ)δ). (7)

The identified system is augmented as:

ẋ = A(ρ)x+B(ρ)u (8)

and

A(ρ) =

 a11(ξ) a12(ξ) 0 0
a21(ξ) a22(ξ) 0 0

vx(1 + a21(ξ)) vxa22(ξ) 0 0
0 0 1 0

 , B(ρ) =

 b1(ξ)
b2(ξ)
vxb2(ξ)

0

 ,
where the augmented state vector of the system is x =[
ψ̇ β vy y

]T
, u = ud and ξ, vx are selected as scheduling

variables, whose vector is ρ = [ξ vx].

The performance specifications, which must be guaranteed
by the controller, are defined as follows.

• The main goal of the control design is to guarantee
the trajectory tracking of the vehicle, which means
that the error between the lateral position (y) and
the reference signal (yref ) must be minimized:

z1 = yref − y, |z1| → min, (9)

• Another important requirement is the tracking of the
yaw-rate signal to achieve the smooth tracking of the
road.

z2 = ψ̇ref − ψ̇, |z2| → min, (10)

where the computation of ψ̇ref can be found in
Rajamani [2005].
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• Since the control actuation has physical constraints,
the intervention must be limited as:

z3 = δ, |z3| → min. (11)

The defined performances are written into a vector z =

[z1 z2 z3]
T

, which leads a performance equation:

z = C1x+D11r +D12u, (12)

where C1, D11, D12 are matrices and r contains the signal
yref . The dynamic equation of the vehicle motion (8) is
extended with the performance equation:

ẋ = Ax+Bu, (13a)

z = C1x+D11r +D12u, (13b)

yK = C2x, (13c)

where yK =
[
y ψ̇

]
.

In the control design several scaling and weighting function
are used to guarantee the presented performances. Wref,1

and Wref,1 are the scaling functions of the references
signals. Wz,1, Wz,2 and Wz,3 are the weighting functions
of the performances. While, the weighting functions Ww,1

and Ww,2 are to attenuate the noises of the measured
signals.
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Fig. 2. Augmented plant for LPV control design

The quadratic LPV performance problem is to find the
parameter-varying controller K(ρ) in such a way that the
resulting closed-loop system is quadratically stable and the
induced L2 norm from disturbance and to performances
is less than the value γ. The minimization task is the
following:

inf
K(ρ)

sup
ρ∈Fρ

sup
‖w‖2 6=0,w∈L2

‖z‖2
‖w‖2

, (14)

where Fρ bounds the scheduling variables. The yielded
controller K(ρ) is formed as

ẋK = AK(ρ)xK +BK(ρ)yK , (15a)

u = CK(ρ)xK +DK(ρ)yK , (15b)

whereAK(ρ), BK(ρ), CK(ρ), DK(ρ) are variable-dependent
matrices.

The implemented structure with the lateral control system
and the decision tree is illustrated in Figure 3.
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Fig. 3. Implementation of the lateral control system

4. VELOCITY OPTIMIZATION PROCESS FOR
AUTOMATED DRIVING

The appropriate selection of the velocity profile has signif-
icant contribution on the performances of the vehicle. For
example, when the vehicle takes a sharp bend at high ve-
locity, the lateral forces can easily reach their peak values,
which may result in significant performance degradation
in terms of path following. Nevertheless, the unnecessarily
slow motion of the vehicle is also unacceptable due to
the increased traveling time. Therefore, it is requested to
maximize the velocity of the vehicle, while the performance
level and the lateral stability of the vehicle are preserved.
It leads to an optimization problem, as it is presented in
this section.

The concept of considering stable regions in the vehicle
control design is also presented in Palmieri et al. [2012].
In the method of that paper the preferred regions are
determined based on the physical model of the vehicle.
The concept of the determination is to find the regions
of the piecewise linear model in the state-space, where the
oversteering and the nonlinear characteristics of the lateral
dynamics can be avoided. The innovation of this paper is
that the acceptable regions can be determined through the
data-driven polytopic LPV model instead of the simplified
nominal vehicle model. Using this method a more accurate
representation of the acceptable regions can be provided.

The selection of the optimal velocity profile requests the
lateral motion prediction of the controlled vehicle. The
closed-loop system is formed using the data-driven LPV
model and the presented controller as:

ẋcl = Acl(ρ)xcl +Bcl(ρ)r, (16)

where ẋcl = [ẋ ẋK ]
T

is the state vector of the closed-loop
system and the matrices are composed as

Acl(ρ1) =

[
Acl,11 Acl,12
Acl,21 Acl,22

]
, (17a)

Bcl(ρ) =

[
B(ρ)DK(ρ)D21

BK(ρ)D21

]
, (17b)

where Acl,11 = A(ρ)+B(ρ)DK(ρ)C2, Acl,12 = B(ρ)CK(ρ),
Acl,21 = BK(ρ)C2, Acl,22 = AK(ρ). For the prediction of
the states of the closed-loop system, (16) is reformulated
to a discrete-time model using the sampling time T (Tóth
[2010]), which results in the model

xcl(k + 1) = Acl(k)xcl(k) +Bcl(k)r(k), (18a)

ycl(k) = Cclxcl(k), (18b)

in which the compact notation Acl(k), Bcl(k) is used in-
stead of Acl(ρ(k)) and Bcl(ρ(k)), respectively. The mea-
surement vector ycl(k) in (18) contains the states of the
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data-driven system, whose states must be predicted. Ccl
is the related matrix for the selection of the states.

The prediction of ycl(k) is performed on the horizon n,
such as

ycl(k, n) =


ycl(k + 1)
ycl(k + 2)

...
ycl(k + n)



=


CclAcl(k)

CclAcl(k)Acl(k + 1)
...

Ccl

k+n∏
i=k

Acl(i)

xcl(k)+

+


CclBcl(k) · · · 0

CclAcl(k)Bcl(k) · · · 0
...

. . .
...

Ccl

k+n−1∏
i=k

Acl(i)Bcl(k) · · · CclBcl(k)


r(k + 1)

...
r(k + n)


=A+ BR (19)

where A contains the current states of the system with
the varying system matrices, B is composed by the state
matrices and R contains the reference signals. Moreover,
it is necessary to consider that ψ̇ref (k) and yref (k) in
r(k) depend on vx(k). Thus, the modification of the
longitudinal velocity can also result in the variation of the
reference signal.

The purpose of the velocity profile design is to maximize
vx on horizon n. During the velocity maximization the
system must be inside of the set, which is provided by
each linear systems of the polytopic LPV representation.
It is expressed through a constraint in the optimization
problem, such as:

ξ|ycl(k,n) ≤ ξmax. ∀k ≤ i ≤ n. (20)

where ξ|ycl(k,n) denotes the categories in the predicted
states and ξmax is the maximum value of ξ.

Finally, the optimization problem of the longitudinal ve-
locity profile is formed as

max
vx(k+1)...vx(k+n)

n∑
i=k

vx(i) (21)

subject to

ξ|ycl(k,n) ≤ ξmax. ∀k ≤ i ≤ n. (22)

The result of the optimization is the velocity profile of the
autonomous vehicle on the horizon n, which guarantees
the safe motion of the vehicle.

5. SIMULATION RESULTS

In this section the operation of the proposed control
system is presented through a comprehensive simulation
example.

The number of the categories in the LPV modeling process
is selected to 6. Using these categories several decision
trees have been produced with different sizes, see Table
1. The columns of the table show the signals, which are

used in the generation: the minimal number of instances
per leaf, percentage of the correctly classified instances
and the size (elements) of the tree. The ’minimal number
of instances per leaf’ is a design parameter of the tree, by
which the size of the tree can be influenced. As it can be
seen, there is a strong correlation between the size and
the achieved accuracy of the tree, which means that a
large decision tree is advantageous from the aspect of the
categorization. However, in practice the large trees might
not be applicable due to computational issues. Therefore,
in general, a trade-off must be found between the accuracy
and the size. In this case, even the most accurate tree has
only 51 elements, hence it can be used in the followings.

Table 1. Relationship between the tree size and
its correctness

Signals Min. obj. Corr. Class. Inst. Size

δ, ψ̇, ay , vx 500 96.37% 51

δ, ψ̇, vx 1000 95.82% 33

δ, ψ̇ 2000 94.54% 19

δ, ay 3000 93.21% 17

δ 5000 91.54% 13

Table 2 shows the confusion matrix for the selected tree.
The confusion matrix represents the percentages of the
correctly classified and mislcassified instances for each
categories. As the table illustrates, the percentage of the
misclassification is low and all of the misclassified instances
is only one category away from the correct category. It
indicates that the selected tree is appropriate to be used
in the control system.

Table 2. Confusion matrix for the selected
decision tree

ξ = 0 ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5

57.86 0.7 0 0 0 0 cat = 0
0.6 27.2 0.5 0 0 0 cat = 1
0 0.5 8.3 0.5 0 0 cat = 2
0 0 0.24 3.87 0.24 0 cat = 3
0 0 0 0.2 1.3 0 cat = 4
0 0 0 0 0.24 1.54 cat = 5

In the simulations, the vehicle is driven along a section of
the Melbourne Grand Prix Circuit twice. In the first case,
the passenger car is controlled by the proposed control
system using the velocity optimization process. Whilst,
in the second simulation, the vehicle is driven using the
nominal velocity profile.

The path of the vehicle in both cases are shown in Figures
4. Figure 5(a) presents the calculated velocity profile as
reference velocity and the realized velocity of the vehicle.
As Figures 4 show, the vehicle, which tracks the predefined
speed profile, is not able to follow the track, because it
leaves the road in the first bend. In the other scenario the
vehicle with the optimized speed profile has small lateral
errors. In Figure 5(b) the steering angle is illustrated. As
it shows, the steering angle varies between [−0.06rad . . .
0.04rad], which is a physically reasonable range for this
signal.

The lateral position error is illustrated in Figure 6(a). It
can be seen that the lateral error of the vehicle with opti-
mized velocity profile is significantly smaller, its maximum
is around 0.4m. In contrast, the vehicle with the other
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Fig. 5. Longitudinal velocity and steering intervention

velocity profile leaves the road with high lateral error.
Figure 6(b) shows another performance of the control
system, such as yaw-rate tracking. As it illustrates, the
proposed system is able to guarantee the tracking of the
yaw-rate signal similarly to the lateral position.
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Fig. 6. Tracking errors in the performance signals

Finally, the variation of scheduling parameter xi is illus-
trated in Figure 7. This parameter is calculated through
the proposed decision tree, which uses the variables
δ, ψ̇, ay, vx. It can be seen that the maximum of this pa-
rameter is ξ = 3, which means that the vehicle does not
exceed the upper bound ξmax in the simulation. Therefore,
the lateral stability of the vehicle during the scenario is
guaranteed.
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Fig. 7. Scheduling variable ξ

6. CONCLUSIONS

A novel data-driven control strategy has been proposed for
autonomous vehicles. The main advantage of this approach
is that the performances of the system can be guaranteed
in a wide operation range, which is the consequence of
the innovated polytopic data-driven model. The proposed
velocity optimization method is able to guarantee that the
unstable regions of the vehicle dynamics can be avoided,
which improves the safety of the vehicle motion. Through
the cooperation of the enhanced LPV controller and the
velocity optimization method the formulated performances
of the lateral dynamics can be guaranteed.
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