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Abstract:
Indoor climate control is a central topic in modern buildings. Especially office spaces have
to provide a high comfort for the occupants while at the same time the building operation
should require as little energy as possible. Moreover, an upcoming topic in building automation
is a fast reaction to user feedback. The traditional design of a room temperature controller
focuses solely on a good rejection of input disturbances such as variations of occupancy and
solar radiation. Since the transfer functions of the user feedback and the input disturbances to
the room temperature differ, a fast reaction to user feedback requires rethinking the design of a
room temperature controller. Altogether, there is a desire to use modern controllers for room
temperature control.
To ensure indoor comfort, the room temperature has to be kept within a certain interval. In this
paper, the internal model control method is extended such that the controlled variable is kept in
the tube defined by this temperature interval. The main idea is to compute an admissible tube
for the planned trajectory. This results in an interval for the control input, which provides a
degree of freedom. This is used to minimize the energy consumption. For the implementation in
reality, the proposed controller is discretized in time. To ensure a good disturbance attenuation,
the controller is combined with a Kalman Filter.
The closed-loop behavior of the developed controller is validated in a real building and compared
with a state-of-the-art controller.

Keywords: Internal Model Control, Bilinear System, Control of Constrained Systems, Building
Automation, Energy Efficiency, Energy and Distribution Management Systems

1. INTRODUCTION

Indoor climate control is a central topic in modern buildings.
Especially office spaces are supposed to be operated in
a way such that a high comfort of the occupants is
guaranteed. However, HVAC systems account for 20%
of the world energy consumption (Pérez-Lombard et al.,
2008; Sturzenegger et al., 2016). Consequently, there is
an economical and ecological need to reduce the energy
consumption of buildings. These goals are contradictory, as
an improved indoor comfort often comes with an increased
energy consumption. Fortunately, there are degrees of
freedom in the building operation that ensure a good indoor
comfort while reducing the energy consumption. For exam-
ple, ensuring indoor comfort is often modeled as keeping
the room temperature within a certain interval (DIN EN
15251:2012-12, 2012; ASHRAE, Inc., 2013). Within this
interval, the controller can choose the room temperature
with the minimum energy consumption.

Traditionally, a room temperature controller is designed
for a good rejection of changes in the internal loads like
? The authors gratefully acknowledge the financial support of the
“FlexControl” project funded by the German Federal Ministry of
Economics and Energy (project code: 03ET1359E).

changing solar radiation or occupancy. These changes of
the internal load can be modeled as an unknown input
disturbance. Furthermore, an upcoming topic in building
automation is the reaction to user feedback (Li et al., 2017).
Unfortunately, a good attenuation of input disturbances
does not guarantee a good response to user feedback.
Altogether, there is a requirement to use advanced control
design methods for room temperature control.

An overview of controllers for HVAC systems is given
in (Afram and Janabi-Sharifi, 2014). According to Afram
and Janabi-Sharifi (2014) the control of HVAC systems is
challenging due to nonlinear dynamics, time-varying set-
points and disturbances, poor data due to low resolution of
analog to digital converters, sampling rates, and accuracy of
sensors. The state-of-the-art in room temperature control
are PID controllers (Bai et al., 2008). Tuning the PID
controller can be time consuming and expensive (Bai et al.,
2008). Hence, most PID controllers are operated with a
default set of parameters.

An alternative which implicitly adapts the control param-
eters to the building and zone at hand are model-based
control approaches. One approach which is often found in
the literature of building automation is model predictive
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control (Afram and Janabi-Sharifi, 2014; Sturzenegger et al.,
2016; Oldewurtel et al., 2010). This approach requires, in
general, the online numerical solution of an open-loop
optimal control problem, which reduces its acceptance
in the field of building automation. Another method is
internal model control (IMC) which is known for its
applicability to (flat) nonlinear systems, robustness, offset
free tracking, and easy tuning (Garcia and Morari, 1982).
Hence, the IMC can tackle the challenges mentioned in
the last paragraph and is a promising control approach.
The IMC has already been used in building automation
for the tuning of PID controllers (Fardadi et al., 2005)
and lighting control (Kandasamy et al., 2018). However,
like most control methods, the IMC is used for tracking a
reference signal.

The main contribution of this paper is the extension of
the IMC method such that the controlled variable is
kept in a tube defined by lower and upper bounds of
the controlled variable, i.e., the room temperature for
the considered application. Furthermore, controlling the
temperature within this tube provides a degree of freedom,
which is used to minimize the energy consumption. Instead
of computing a reference for tracking, the proposed con-
troller directly computes the energy optimal internal state.
For the implementation in reality, the proposed controller
is discretized in time. To ensure a good disturbance atten-
uation, the controller is combined with a Kalman Filter,
which estimates the disturbance. Another contribution is
the validation of the developed controller in a real building
and the comparison with a state-of-the-art PI controller.

In Section 2 the problem setup of temperature control in
buildings is described. The proposed IMC approach for
tube control is developed in Section 3. Afterwards, the
application to the real building including the comparison
with the state-of-the-art PI controller is presented in
Section 4. Finally, the paper is concluded in Section 5.

2. PROBLEM SETUP

In this paper, ensuring a high indoor comfort is translated
into keeping the room temperature within a defined comfort
interval. Besides a good disturbance attenuation, the
controller should achieve a fast reaction to changes of
this comfort interval to allow user feedback. If there are
degrees of freedom, e.g. redundancies in the actuation
variables or by considering a comfort interval instead of
a set-point, the controller should furthermore reduce the
energy consumption.

The considered HVAC configuration consist of one or more
central air handling units (AHUs) and one variable air
volume (VAV) unit for each controlled zone. The AHUs
provide a supply air with a predefined temperature. The
VAV units feature a flap which allows to change the air
mass flow into the zone. For the model-based zone control,
it is assumed that the air is ideally mixed within each zone
with respect to the temperature. Cross-couplings between
the zones are considered as disturbances.

A controller is designed for each zone individually and not
for the complete building. The thermal behavior of the
zone is modeled as a bilinear SISO system; see Section 4.1
for further details on the modeling of the zone. The control

task is to keep the output signal, which corresponds to the
zone temperature, within a desired interval (tube) given
by [ylb, yub]. The tube can be adapted by the user. The
input signal u which corresponds to the air mass flow, is
subject to constraints, i.e. u ∈ [umin, umax]. The constraints
are given by physical limits and/or to have a minimal air
exchange.

The bilinear model Σ of one zone has the form

Σ :
dx

dt
= a xu+ b u+ c d̂ (1a)

y = x (1b)
with the model parameters a 6= 0, b, c ∈ R. The flat
output y ∈ R equals the state x ∈ R and the variable
d̂ ∈ R corresponds to the estimation of a disturbance. The
disturbance is assumed to be known for the control design
in Section 3. This assumption is dropped in Section 4.2.
For ease of presentation, the derivations are restricted to
such systems. It is worth emphasizing that the approach
can be extended to more general system classes.

3. TUBE-BASED IMC

This section introduces a novel tube-based IMC approach,
which addresses the problem of controlling the output to
a desired interval and reducing the energy demand if the
output is already in this interval. Before introducing the
method in Section 3.3, the flatness-based IMC for set-point
tracking is revisited in Section 3.1. In Section 3.2 the focus
is on the discrete-time implementation which is relevant
for the validation on the test bench.

3.1 IMC for set-point tracking

Internal model control is a model-based control approach
which ensures important properties of a feedback controller
such as disturbance attenuation and offset-free tracking.

F Σ−1 • Plant

Σ

•

•

yd ỹd ξ, dξdt u ym

d̂ d

y

−

−

Flatness-Based Controller

Fig. 1. Flatness-based IMC structure for a first order system

Figure 1 shows the IMC structure for tracking the desired
set-point yd with the plant, a flatness-based controller and
a plant model Σ. A disturbance d acts on the plant. The
flatness-based controller contains a filter F for determining
a desired trajectory given by ξ and dξ/dt, a flatness-based
inverse Σ−1 of the plant model Σ for determining the
control input u based on the desired trajectory and an
estimate d̂ of the disturbance d. Since only systems of
order one are considered, the trajectory is defined by the
internal state ξ and its first derivative dξ/dt w.r.t. time. It is
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determined using a filter, which is given by the first-order
lag element

F :
dξ

dt
=

1

τ

(
−ξ + ỹd

)
as well as a saturation of the derivative dξ/dt such that the
trajectory is realizable with u ∈ [umin, umax] (Schwarzmann
et al., 2006). The time constant τ > 0 is a design parameter,
which defines how fast the closed-loop tracks the desired
output yd if the input is not saturated. The difference
between the measured plant output ym and the model
output y is used as the feedback signal. From the control
structure with the inverse model and the model follows
that y = ξ. Hence, the filter can also be represented by

F :
dξ

dt
=

1

τ

(
yd − ym

)
. (2)

The mode of operation can be summarized as follows: In
case of a perfect model, knowledge of the initial state, and
perfect disturbance knowledge, i.e. d̂ = d, the feedback is
ym − y = 0 such that the internal model controller acts as
a feedforward controller. In case of disturbances or model
uncertainties the feedback structure changes the original
reference signal yd for the flatness-based controller into a
new reference signal ỹd = yd − (ym − y). For more details
see (Garcia and Morari, 1982; Schwarzmann et al., 2006)
and the references therein.

3.2 Discrete-Time Implementation

For the implementation in real buildings, a discrete-time
formulation of the IMC is required. The discrete-time IMC
is then extended for tube control in the following section.

The plant model (1) and the filter (2) are discretized with
the implicit Euler method (Butcher, 2016) and the sample
time h = tk− tk−1. The continuous-time bilinear model (1)
and linear filter (2) are thus transformed to the explicit
dicrete-time plant model

Σ : xk = f(xk−1, uk, d̂k)

yk = xk

with

f(xk−1, uk, d̂k) =
xk−1 + h(b uk + c d̂k)

1− h auk
(3)

and the dicrete-time filter equation

F : ξdk = ξk−1 +
h

τ
(ydk − ymk ). (4)

In the following it is assumed that h auk 6= 1 for all
uk ∈ [umin, umax] so that f(xk−1, uk, d̂k) is well defined. For
the room temperature control this assumption is satisfied
since h a < 0 and uk ≥ umin > 0 at all times.

The filter state ξdk needs to be limited such that the
trajectory is realizable with u ∈ [umin, umax] (Kotman,
2018). Since the function f(xk−1, uk, d̂k) is monotonous in
uk for all uk ∈ [umin, umax], it suffices to saturate ξdk to the
values obtained at the limits of the input

ξmin
k = min

(
f(ξk−1, u

min, d̂k), f(ξk−1, u
max, d̂k)

)
(5a)

ξmax
k = max

(
f(ξk−1, u

min, d̂k), f(ξk−1, u
max, d̂k)

)
. (5b)

With the saturation function

sat(z, zmin, zmax) =


zmin if z < zmin

zmax if z > zmax

z otherwise
, (6)

the saturated internal state is written as
ξk = sat(ξdk , ξ

min
k , ξmax

k ).

In the following, the inversion Σ−1 of the model Σ is derived
which determines the control input. If ξk = −b/a, then the
equation

ξk = f(ξk−1, uk, d̂k) (7)
cannot be solved for uk. If, furthermore, ξk−1 + h c d̂k =
−b/a, then (7) is fulfilled for all uk ∈ [umin, umax] and one
possible choice is to use the input with the lowest energy
consumption. The case ξk = −b/a and ξk−1+h c d̂k 6= −b/a,
in which (7) is not fulfilled, cannot occur. To see this,
note that f(ξk−1, uk, d̂k) = −b/a if and only if ξk−1 +

h c d̂k = −b/a. Altogether, the input is defined by

uk = f inv(z, ξk−1, d̂k) =

{
z−ξk−1−h c d̂k

h(a z+b) if z 6= − b
a

umin otherwise
. (8)

The discrete-time implementation of the IMC with input
saturation is stated in Algorithm 1.

Algorithm 1 Discrete-time implementation of the IMC
at the time instant t = tk
Step 1: Initialization

ξk−1, ydk , y
m
k , d̂k

Step 2: Trajectory planning with filter F
ξdk = ξk−1 + h

τ (ydk − ymk )

ξmin
k = min

(
f(ξk−1, u

min, d̂k), f(ξk−1, u
max, d̂k)

)
ξmax
k = max

(
f(ξk−1, u

min, d̂k), f(ξk−1, u
max, d̂k)

)
ξk = sat(ξdk , ξ

min
k , ξmax

k )
Step 3: Control input determination based on Σ−1

uk = f inv(ξk, ξk−1, d̂k)

3.3 Discrete-Time Tube-Based IMC

In the following, the concept of internal model control is
extended to tube control. In short, the idea is to compute
two target trajectories ξlbk and ξubk for tracking the lower
bound ylbk and upper bound yubk of the tube, respectively.
Then, the two target trajectories can be used to compute
a lower bound ulbk and upper bound uubk for the input
such that the output converges to a value within the
boundaries ylbk , y

ub
k . Finally, the input is selected such that

the minimum energy consumption is achieved.

The two target trajectories are determined similar to the
discretized filter (4) by

ξlbk = ξk−1 +
h

τ
(ylbk − ymk ), ξubk = ξk−1 +

h

τ
(yubk − ymk ).

The input constraints can be taken into account using
the limits (5) and saturation function (6). Based on the
saturated target trajectories, an interval for the control
input [ulbk , u

ub
k ] is determined using (8). If the interval of

the input is proper, there exists a degree of freedom, which
is used to reduce the energy consumption. Depending on
the chosen input uk ∈ [ulbk , u

ub
k ] the realized trajectory of

the filter is computed by (7).
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Algorithm 2 summarizes the procedure for tube control
using IMC. In contrast to Algorithm 1, lower and upper
bounds for the target trajectory are computed instead of
the desired target trajectory. With the input saturation,
this results in an interval for the target trajectory. The
realized target trajectory is implicitly defined in Step 3 by
choosing the input such that the energy effort is minimized.

Algorithm 2 Discrete-time implementation of Tube Con-
trol using IMC at the time step t = tk
Step 1: Initialization

ξk−1, ylbk , y
ub
k , ymk , d̂k

Step 2: Trajectory planning with filter F
a: Trajectory interval w.r.t. desired tube
ξlbk = ξk−1 + h

τ (ylbk − ymk )

ξubk = ξk−1 + h
τ (yubk − ymk )

b: Mapping constraints of input to internal state
ξmin
k = min

(
f(ξk−1, u

min, d̂k), f(ξk−1, u
max, d̂k)

)
ξmax
k = max

(
f(ξk−1, u

min, d̂k), f(ξk−1, u
max, d̂k)

)
c: Saturation of trajectory interval w.r.t. constraints
ξb1k = sat(ξlbk , ξ

min
k , ξmax

k )
ξb2k = sat(ξubk , ξmin

k , ξmax
k )

Step 3: Control input determination based on Σ−1

ulbk = min
(
f inv(ξb1k , ξk−1, d̂k), f inv(ξb2k , ξk−1, d̂k)

)
uubk = max

(
f inv(ξb1k , ξk−1, d̂k), f inv(ξb2k , ξk−1, d̂k)

)
Select uk ∈ [ulbk , u

ub
k ] that results in the minimum

energy consumption.
Step 4: Storage of internal state

ξk = f(ξk−1, uk, d̂k)

Figure 2 visualizes the concept and emphasizes the different
steps of Algorithm 2 for an exemplified trajectory. The
example is based on the application considered in Section 4,
where for the usual operation conditions df/du < 0 holds.
Hence, Step 2b-3 simplify to

ξmin
k = f(ξk−1, u

max, d̂k)

ξmax
k = f(ξk−1, u

min, d̂k)

ulbk = f inv
(
sat(ξubk , ξmin

k , ξmax
k ), ξk−1, d̂k

)
uubk = f inv

(
sat(ξlbk , ξ

min
k , ξmax

k ), ξk−1, d̂k
)
.

Furthermore, the energy effort is minimized by choosing
the minimum control input.

In Step 2 at the time instant k the interval of the target
trajectory given by ξlbk and ξubk is determined, whereas ξubk
is saturated to ξmax

k due to the input constraints. Therefore,
the control input ulbk corresponding to the saturated ξubk
is equal to the minimum control input, i.e. ulbk = umin.
In order to reduce the energy effort uk = ulbk = umin is
selected as control input in Step 3. In Step 4, the internal
state ξk is updated based on the selected control input uk.
Due to an increasing output ymk+1, which may be caused
by a disturbance for instance, both target trajectories ξlbk+1

and ξubk+1 are below the maximal internal state realizable
with the input constraints. Hence, the internal state is
saturated to ξmin

k+1. Therefore, the control input is equal
to uk+1 = umax. Due to a decreasing output, the control
input can be reduced to uk+2 < umax at the time instant
k + 2.

Fig. 2. Visualization of Tube Control using IMC

4. APPLICATION TO TEMPERATURE CONTROL IN
BUILDINGS

The introduced tube-based IMC is implemented for the
temperature control on an SPS. In an office building, the
temperature of all zones of one floor is controlled using
variable air volumes (VAVs) units. The zones are meeting
rooms or sections of an open plan office. The transmission
of the measurement and actuator signals is realized via
BACnet. Before showing the implementation results in
Section 4.3, the application of the control algorithm on the
temperature control problem is discussed in Sections 4.1
and 4.2.

4.1 Problem setup

The dynamic model describing the thermal behavior of a
zone is given by

dϑzone
dt

= C−1
zone

(
ṁvent cair(ϑair,supply−ϑzone) + Q̇dist

)
(9)

where the zone air temperature ϑzone is the output signal
and the fresh air mass flow ṁvent is the input signal.
The supply air temperature ϑair,supply is assumed to be
measurable, and the heat capacity of the zone Czone and
the specific heat of air cair are model parameters. The
unknown disturbance signal Q̇dist summarizes disturbances
such as internal loads by occupants or technical devices,
solar radiation or heat exchange between zones. Further
details on building modeling can, e.g., be found in (Massa
Gray, 2017).

Based on the dynamic model (9), Algorithm 2 can be
applied with
a = −C−1

zone cair, b = C−1
zone cair ϑair,supply, c = C−1

zone

where ylbk = ϑlbzone and yubk = ϑubzone define the comfort
interval of the temperature which can optionally be adapted
by user feedback. The maximum control input umax =
ṁmax

vent is given by the limits of the HVAC system. The
minimum control input umin = ṁmin

vent is usually chosen

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17339



larger than zero in order to always guarantee a minimum
air exchange. At Step 3 of Algorithm 2, the minimum
energy consumption is achieved by selecting the minimum
air mass flow.

For testing the developed controller, only the cooling case is
considered, i.e. the supply air temperature ϑair,supply from
the air handling unit (AHU) is smaller than the zone air
temperature.

4.2 Combination of Tube-based IMC with Disturbance
Estimation

So far it is assumed that an estimation of the disturbance
d̂ is available. This estimation can, .e.g., be determined
using a Kalman Filter (Gelb, 1974). The Kalman Filter
can additionally be applied to filter the measured zone
temperature, which is quantized in the considered building.

If there is no knowledge about the disturbance model, a
common approach is to assume a constant disturbance
signal. Extending the zone model yields the augmented
state space model

dϑzone
dt

= C−1
zone

(
ṁvent cair(ϑair,supply − ϑzone) + Q̇dist

)
dQ̇dist

dt
= 0.

Due to the bilinearity of the model, an extended Kalman
Filter is applied, which estimates the zone temperature
ϑzone and disturbance Q̇dist. Those estimates are used as
ymk and d̂ for the initialization in Step 1 of Algorithm 2.

4.3 Control Performance

The introduced tube-based internal model control combined
with the disturbance estimation is implemented in all zones
of one floor of an office building in Renningen, Germany.
Detailed analyses for the temperature control are made in
a meeting room, which is selected such that the unknown
disturbances are minimized: the room has no windows, is
located in the middle of the floor to reduce the effect of the
ambient air temperature, and the door was closed all the
time. A heat source allows generating definable thermal
loads such that comparable conditions for several days
can be realized. In this setup, the proposed model-based
controller is compared with a state-of-the-art PI controller.

The state-of-the-art controller consists of two PI controllers,
one for cooling if the zone temperature is above the upper
bound and one for heating if the zone temperature is below
the lower bound. Depending on the supply air temperature
and the output of both PI controllers, the PI controller for
the upper or lower bound is activated. The structure of the
PI controller is depicted in Figure 3.

The comparison of the IMC with the PI controller is made
with respect to disturbance attenuation and the reaction
on user feedback. In this context, user feedback means the
adaptation of the comfort interval by the user.

Figure 4 compares the reaction to user feedback. Before
7 a.m., the zone temperature is within the comfort interval,
such that there is no comfort violation. At 7 a.m. there is
a user feedback such that the upper bound of the comfort
interval is reduced. The new upper bound is selected

PI control for
upper bound−1

PI control for
lower bound

Priorization

yub

ylb

ϑzone

uub

ulb

u

ϑair,supply

−

−

Fig. 3. Structure of the PI controller
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Fig. 4. Comparison with respect to user feedback

0.5 K below the measured temperature at 7 a.m.. For both
controllers, the air flow with a supply air temperature of
about 17 ◦C is at the minimum air flow ṁmin

vent before 7 a.m..
At 7 a.m. the deviation to the upper bound of the comfort
interval increases to 0.5 K, such that there is a comfort
violation. Figure 4 clearly shows that the two controllers
react differently to the user feedback. Applying the IMC,
the zone temperature converges to the new limit of the
comfort interval within half an hour, whereas when using
the PI controller, more than one hour is required. This can
be explained by the faster increase of the air mass flow.
The convergence rate of the IMC can also be easily adapted
using the time constant τ . Achieving a performance with
the PI controller similar to the IMC could possibly be
achieved by a reparametrization of the PI controller. But
a parametrization of the PI controller to the building at
hand is in general not done due to the large effort.

For the disturbance attenuation shown in Figure 5, a
heat generation device is turned on at 8 a.m., creating
a load of about 250 W. The IMC shows a slightly better
disturbance attenuation than the PI controller when the
temperature reaches the upper limit of the comfort interval
ϑubzone = 24 ◦C. The PI controller causes an overshooting of
the zone air temperature, which can be avoided using the
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Fig. 5. Comparison with respect to disturbance attenuation
IMC. This can be explained based on the structure of the
control approaches. The PI controller only increases the air
mass flow when the upper limit of the comfort interval is
exceeded, whereas the IMC already increases the air mass
flow when the upper limit is approached. Additionally, the
IMC shows a faster increase of the air mass flow, leading
to a better disturbance attenuation.

5. CONCLUSION

The paper presents tube-based IMC, which extends IMC
to track a desired interval – and not a set-point – of the
controlled variable. Keeping the controlled variable within
an interval provides a degree of freedom, which can be used
to minimize, for example, the energy consumption. For the
considered bilinear SISO systems with input constraints, a
computationally efficient analytic algorithm achieves the
minimization of the energy of the input variable.

Furthermore, the proposed controller is applied to tempera-
ture control in buildings. For the implementation in reality,
the proposed controlled is discretized in time. To ensure a
good disturbance attenuation, the controller is combined
with a Kalman Filter. Essential insights have been gained by
the comparison of the IMC with a state-of-the-art PI zone
temperature controller in a real building. Using an artificial,
and hence reproducible, disturbance in a closed meeting
room allowed a meaningful comparison of the closed-loop
performance of both controllers. The main advantage of the
IMC is the significantly faster reaction to set-point changes,
which makes it well suited for applications in which a fast
reaction to user feedback is desired.

Future work investigates the extension to a combined
temperature and CO2 control or multiple inputs, i.e., HVAC
systems with radiators or variable air volume fan-powered
terminal units as well as the online adaptation of model
and design parameters.
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