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Abstract: The problem of output robust adaptive stabilization for a class of Lipschitz nonlinear
systems is studied under assumption that the measurements are available with a constant bias.
The state reconstruction is avoided by using delayed values of the output in the feedback and
adaptation laws. The control and adaptation gains can be selected as a solution of the proposed
linear matrix inequalities (LMIs). The efficiency of the presented approach is demonstrated on
a nonlinear pendulum through simulations.

1. INTRODUCTION

Design of identification algorithms, estimators and regula-
tors for dynamical systems are fundamental and complex
problems studied in the control theory. In many cases, due
to information transmission in the input-output channels,
delays appear in the dynamics of the controlled plant.
Influence of a delay on the system stability is vital in
many cases (Gu et al., 2003; Fridman, 2014), and it usually
leads to degradation of the performances of regulation
or estimation (Fridman, 2014). However, in some cases
introduction of a delay may result in an improvement of
the system transients (see (Fridman and Shaikhet, 2016,
2017; Efimov et al., 2018) and the references therein). The
idea of these papers is that unmeasured components of
the state can be calculated using delayed values of the
measured variables, which allows a design of observer to
be passed by.

The goal of this note is to extend the results obtained
in (Fridman and Shaikhet, 2016, 2017) for linear systems
to adaptive stabilization of a class of nonlinear systems,
which contain a globally Lipschitz nonlinearity, and have
a part of the measurements available with a constant bias,
which is induced by a sensor error. Since for embedded con-
trol and estimation solutions, the amount of computations
needed for realization is a critical resource (less important
than the used memory in some scenarios), in this note we
avoid to design an (reduced order) observer for the state,
but introduce delayed measurements in the feedback and
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adaptation algorithm. The closed-loop system becomes
time-delayed, then stability analysis of the regulation error
is based on the Lyapunov-Krasovskii functional proposed
in (Fridman and Shaikhet, 2016, 2017).

It is important to note that there exist papers devoted
to adaptive control of time-delay systems as, for example,
(Mirkin and Gutman, 2010; Pepe, 2004) (the uncertain
parameters appear in the state equation only), or papers
dealt with adaptive control for systems with (multiplica-
tive) uncertain parameters in the output equation (Zhang
and Lin, 2019a,b) (without presence of time delays), but
to the best of our knowledge there is no theory on the
intersection of these approaches. This work and the con-
sidered problem statement is motivated by a pendulum
control application, which is finally used for illustration.

The outline of this work is as follows. The preliminaries
are given in Section 2. The problem statement and the
adaptive control design are presented in sections 3 and 4,
respectively. A nonlinear pendulum application is consid-
ered in Section 5.

2. PRELIMINARIES

Denote by R the set of real numbers and R+ = {s ∈ R :
s ≥ 0}.
For a Lebesgue measurable function of time d : [a, b] →
Rm, where −∞ ≤ a < b ≤ +∞, define the norm
‖d‖[a,b) = ess supt∈[a,b)|d(t)|, where | · | is the standard

Euclidean norm in Rm, then ||d||∞ = ‖d‖[0,+∞) and the
space of d with ‖d‖[a,b) < +∞ (||d||∞ < +∞) we further
denote as Lm[a,b] (Lm∞).
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Denote by Cn[a,b], a, b ∈ R the Banach space of contin-

uous functions φ : [a, b] → Rn with the uniform norm

‖φ‖[a,b] = supa≤s≤b |φ(s)|; and by W1,∞
[a,b] the Sobolev

space of absolutely continuous functions φ : [a, b] → Rn
with the norm ‖φ‖W = ‖φ‖[a,b) + ||φ̇||[a,b) < +∞, where

φ̇(s) = ∂φ(s)
∂s is a Lebesgue measurable essentially bounded

function, i.e. φ̇ ∈ Ln[a,b].

A continuous function σ : R+ → R+ belongs to class K if
it is strictly increasing and σ(0) = 0; it belongs to class
K∞ if it is also radially unbounded. A continuous function
β : R+ × R+ → R+ belongs to class KL if β(·, r) ∈ K and
β(r, ·) is decreasing to zero for any fixed r > 0.

The symbol 1,m is used to denote a sequence of integers
1, ...,m. For a symmetric matrix P ∈ Rn×n, the minimum
and the maximum eigenvalues are denoted as λmin(P ) and
λmax(P ), respectively. For a matrix A ∈ Rn×m, |A| =√
λmax(A>A) is the induced norm. The identity matrix of

dimension n× n is denoted by In.

2.1 Neutral time-delay systems

Consider an autonomous functional differential equation of
neutral type with inputs (Kolmanovsky and Nosov, 1986):

ẋ(t) = f(xt, ẋt, d(t)) (1)

for almost all t ≥ 0, where x(t) ∈ Rn and xt ∈ W1,∞
[−τ,0]

is the state function, xt(s) = x(t + s), −τ ≤ s ≤ 0, with
ẋt ∈ Ln[−τ,0]; d(t) ∈ Rm is the external input, d ∈ Lm∞;

f : W1,∞
[−τ,0] ×L

n
[−τ,0] ×Rm → Rn is a continuous function,

that is globally Lipschitz in the second variable with
a constant smaller than 1, ensuring forward uniqueness
and existence of the system solutions (Kolmanovsky and
Nosov, 1986). We assume f(0, 0, 0) = 0. For the initial

function x0 ∈ W1,∞
[−τ,0] and disturbance d ∈ Lm∞ denote

a unique solution of the system (1) by x(t, x0, d), which
is an absolutely continuous function of time defined on
some maximal interval [−τ, T ) for T > 0, then xt(x0, d) ∈
W1,∞

[−τ,0] represents the corresponding state function with

xt(s, x0, d) = x(t+ s, x0, d) for −τ ≤ s ≤ 0.

Given a locally Lipschitz continuous functional V : R ×
W1,∞

[−τ,0]×L
n
[−τ,0] → R+ define its derivative in the Driver’s

form:

D+V (t, φ, d) = lim
h→0+

sup
1

h
[V (t+ h, xh(φ, d̃), ẋh(φ, d̃))

−V (t, φ, φ̇)],

where xh(φ, d̃) is a solution of the system (1) for φ ∈
W1,∞

[−τ,0] and d̃(t) = d for all t ≥ 0 and some d ∈ Rm.

2.2 ISS of time delay systems

The input-to-state stability (ISS) property is an extension
of the conventional stability paradigm to the systems with
external inputs (Teel, 1998; Pepe and Jiang, 2006; Fridman
et al., 2008).

Definition 1. (Pepe and Jiang, 2006; Fridman et al., 2008)

The system (1) is called practical ISS, if for all x0 ∈W1,∞
[−τ,0]

and d ∈ Lm∞ there exist q ≥ 0, β ∈ KL and γ ∈ K such
that

|x(t, x0, d)| ≤ β(‖x0‖W, t) + γ(||d||∞) + q ∀t ≥ 0.

If q = 0 then (1) is called ISS.

For establishment of this stability property, the Lyapunov-
Krasovskii theory can be used (Pepe and Jiang, 2006;
Fridman et al., 2008; Efimov et al., 2018).

Definition 2. A locally Lipschitz continuous functional V :
R+ × W1,∞

[−τ,0] × L
n
[−τ,0] → R+ (i.e., V (t, φ, φ̇)) is called

simple if D+V (t, φ, d) is independent on φ̈.

For instance, a locally Lipschitz functional V : R+ ×
W1,∞

[−τ,0] → R+ is simple, another example of a simple

functional is given in Theorem 6 below.

Definition 3. A locally Lipschitz continuous functional V :
R+ × W1,∞

[−τ,0] × L
n
[−τ,0] → R+ is called practical ISS

Lyapunov-Krasovskii functional for the system (1) if it is
simple and there exist r ≥ 0, α1, α2 ∈ K∞ and α, χ ∈ K
such that for all t ∈ R+, φ ∈W1,∞

[−τ,0] and d ∈ Rm:

α1(|φ(0)|) ≤ V (t, φ, φ̇) ≤ α2(‖φ‖W),

V (t, φ, φ̇) ≥ max{r, χ(|d|)} =⇒ D+V (t, φ, d) ≤ −α(V (t, φ, φ̇)).

If r = 0 then V is an ISS Lyapunov-Krasovskii functional.

Theorem 4. (Fridman et al., 2008) If there exists a (prac-
tical) ISS Lyapunov-Krasovskii functional for the system
(1), then it is (practical) ISS with γ = α−1

1 ◦ χ.

Converse results for Theorem 4 can be found in (Pepe
et al., 2017; Efimov and Fridman, 2019).

3. ROBUST OUTPUT ADAPTIVE REGULATION
WITH BIASED MEASUREMENTS

Consider a nonlinear system for the time t ≥ 0:

ẋ1(t) = x2(t),

ẋ2(t) =A21x1(t) +A22x2(t) +A23x3(t)

+B1(u(t) + Ω(t)θ2) + L1φ(x(t)) + d1(t),

ẋ3(t) =A31x1(t) +A32x2(t) +A33x3(t) (2)

+B2(u(t) + Ω(t)θ2) + L2φ(x(t)) + d2(t),

y1(t) = x1(t) + θ1, y2(t) = x3(t),

where x1(t) ∈ Rn and x2(t) ∈ Rn are the position
and velocity, respectively, x3(t) ∈ Rp is an additional
state, x(t) = [x>1 (t) x>2 (t) x>3 (t)]> ∈ R2n+p is the total
state vector of (2), the initial conditions x(0) = x0 ∈
R2n+p are unknown; u(t) ∈ Rm is the control input;
y(t) = [y>1 (t) y>2 (t)] ∈ Rn+p is the output available
for measurements, d(t) = [d>1 (t) d>2 (t)] ∈ Rn+p is the
disturbance with d ∈ Ln+p

∞ ; θ1 ∈ Rn is the vector of
biases in the measurements of the position x1(t), θ2 ∈ Rr is
the vector of uncertain parameters in the state dynamics,
θ = [θ>1 θ>2 ] ∈ Rn+r, the regressor Ω : R+ → Rm×r is a
known continuous matrix function; the nonlinearity φ can
be partitioned as

φ(x) =

[
φ1(x)
φ2(x3)

]
,
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where φ1 : R2n+p → Rs1 and φ2 : Rp → Rs2 , then we can
decompose

L1 = [L11 L12], L2 = [L21 L22],

and φ(x) is assumed to be Lipschitz continuous; all the
matrices are constant and known having the corresponding
dimensions.

Therefore, the considered system is subject to unknown
inputs d(t), it contains unknown parameters θ (part of
them corrupt the measurements), and the equations of (2)
are nonlinear and time-varying due to the presence of φ
and Ω, respectively. The goal is to design an (dynamical)
output control input u(t) = u(y1(t), y2(t),Ω(t)) ensuring
a practical ISS property of the closed loop system for all
x0 ∈ R2n+p and all d ∈ Ln+p

∞ under the restriction to
minimize the computational complexity of the algorithm
(in order to be able to use the proposed solution as a
component of an embedded system).

We will use the following hypothesis about the properties
of (2):

Assumption 1. For the regressor function Ω(t) there is a
known upper bound Ω̄ ≥ 0 such that supt≥0 |Ω(t)| ≤ Ω̄.

The function φ admits a global Lipschitz constant γ ≥ 0:
|φ(x)−φ(x′)| ≤ γ|x−x′| for all x, x′ ∈ R2n+p. The function
φ2 : Rp → Rs2 is known.

Under the introduced restriction on φ the system (2) has
well-defined solutions for all t ≥ 0 for any x0 ∈ R2n+p and
any d ∈ Ln+p

∞ (Khalil, 2015).

4. MAIN RESULTS

Due to a rather complicated structure of the considered
system and introduced uncertainty, clearly, for realization
of a robustly stabilizing control it is necessary to use the
full state x(t) information. Consequently, it is required
to design an estimator for x1(t), which is measured with
an unknown bias θ1, and for its velocity x2(t). Facing all
uncertain terms presented in (2), i.e. θ2 and d(t), such
an observation problem becomes rather intriguing, and a
corresponding observer solving these issues will be also
complex and nonlinear. In (Fridman and Shaikhet, 2016,
2017) an approach is presented for design of a linear
delayed output static control for a linear system, which
avoids a state observer design by introducing the estimates
of x(t) through delayed output y(t) values. Hence, such a
method has a low computational capacity (since for delay
operation only memory is needed). In this work we will
follow the same approach.

Defining x1(t − h) = x1(0) for t ∈ [0, h], where h > 0 is
the delay, the control algorithm proposed in this paper is

u(t) =−(K1 +K2)y1(t) +K2y1(t− h) (3)

−K3y2(t)−K4φ2(y2(t)) +K1θ̂1(t)

−Ω(t)θ̂2(t),

where θ̂1(t) ∈ Rn and θ̂2(t) ∈ Rr are the estimates of θ1

and θ2, respectively; Ki ∈ Rm×n for i = 1, 2, K3 ∈ Rm×p
and K4 ∈ Rm×s2 are the control gains to be derived.

Similarly, an adaptive law for θ̂1(t) can be synthesized:

˙̂
θ1(t) = (F1 + F2)y1(t)− F2y1(t− h) (4)

+F3y2(t) + F4φ2(y2(t))− F1θ̂1(t),

where Fi ∈ Rn×n for i = 1, 2, F3 ∈ Rn×p and F4 ∈ Rn×s2
are the adaptation gains which will be defined later. An

adaptive law for θ̂2(t) is more sophisticated, and such a
choice of the structure will become clear from the stability
analysis given next:

˙̂
θ2(t) = Ω>(t)[(S1 + S2)y1(t)− S2y1(t− h) (5)

+S3y2(t) + S4φ2(y2(t))− S1θ̂1(t)]

−S5θ̂2(t),

where Si ∈ Rm×n for i = 1, 2, S3 ∈ Rm×p, S4 ∈ Rm×s2
and S5 ∈ Rr×r are also the adaptation gains.

Remark 5. There is also an algebraic way to solve the
problem of estimation of unknown values θ1, θ2 and
signals x1(t), x2(t) (in the framework of indirect adaptive
control), which is based on some structural restrictions and
auxiliary filtering. Indeed, let p = n and

J1L11 = J2L21

for some matrices J1 and J2, then define ζ(t) = J1x2(t)−
J2x3(t) with

ζ̇(t) = Y1(y1(t)− θ1) + Y2ẏ1(t)

+Y3y2(t) + Y4(u(t) + Ω(t)θ2)

+Y5φ2(y2(t)) + J1d1(t)− J2d2(t),

where

Y1 = J1A21 − J2A31, Y2 = J1A22 − J2A32,

Y3 = J1A23 − J2A33,

Y4 = J1B1 − J2B2, Y5 = J1L12 − J2L22.

Let also for brevity

d1(t) = 0, d2(t) = 0, Y1 6= 0.

Note that by construction:

ζ̇(t) = J1ÿ1(t)− J2ẏ2(t),

and equating the expressions for ζ̇(t) we obtain:

ζ̃(t) = −Y1θ1 + Y4Ω̃(t)θ2,

which is a linear regressor model with respect to unknown
parameters θ1 and θ2 that can be used for their identifica-
tion, where ζ̃(t) and Ω̃(t) variables calculated as

Ω̃(t) =
λ2

(s+ λ)2
Ω(t),

ζ̃(t) = J1
λ2s2

(s+ λ)2
y1(t)− Y2

λ2s

(s+ λ)2
y1(t)

−J2
λ2s

(s+ λ)2
y2(t)− λ2

(s+ λ)2
[Y1y1(t) + Y3y2(t)

+Y4u(t) + Y5φ2(y2(t))]

with s being the differentiating operator and λ > 0 is a
tuning parameter of the filters. Inversely, if

d1(t) = 0, d2(t) = 0, Y1 = 0, θ2 = 0,

then

ψ(t) =
1

s+ 1
ζ(t) = J1

s

s+ 1
y1(t)− J2

1

s+ 1
y2(t)

is a variable that we can calculate, and
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ψ(t) = ζ(t)− 1

s+ 1
ζ̇(t)

= ζ(t)− 1

s+ 1
[Y2ẏ1(t) + Y3y2(t)

+Y4u(t) + Y5φ2(y2(t))].

Hence, for a nonsingular J1 we obtain:

x2(t) = J−1
1 ψ̃(t),

where

ψ̃(t) = ψ(t) + Y2
s

s+ 1
y1(t) +

1

s+ 1
[Y3y2(t)

+Y4u(t) + Y5φ2(y2(t))] + J2y2(t)

can be calculated using filters. If d1(t) 6= 0 and d2(t) 6= 0,
then these approaches lead to a reconstruction of unknown
parameters and variables corrupted by noises, and robust
estimation tools should be applied. Next, a control design
has to be performed. A drawback of such solutions is also
their computational complexity comparing to (3), (4), (5),
where just additional adaptation algorithms (observers or

filters) are introduced to calculate θ̂1(t) and θ̂2(t) in order
to compensate the influence of θ1 and θ2.

It is worth noting that a complexity of (3), (4), (5) comes
from another side. Initially the system (2) is delay-free
(the state x(t) ∈ R2n+p), then (3), (4), (5) introduces the
delay h and transforms the system into the retarded type
time-delay dynamics (Fridman, 2014) (the state function

is from C2n+p
[−h,0]), while for the stability analysis we will

perform below an additional transformation of the closed-
loop system to the neutral type (with the state from

W1,∞
[−h,0]). Therefore, (3), (4), (5) needs a rather sophis-

ticated analysis, but it allows a simple realization.

The restrictions on selection of the control and adaptation
gains, and the conditions to check, are given in the
following theorem.

Theorem 6. Let Assumption 1 be satisfied, if for given Ki,
Fi with i = 1, 4 and Si with i = 1, 5 the system of linear
matrix inequalities

Q ≤ 0, P = P
>
> 0, α > 0, β > 0, δ > 0, η > 0, (6)

M>M≤ ρIs1+s2
, 4

e−$h

h2
In ≥ αB>B

S = G>P + qh
2G>Γ

>
ΓA,

S2 = −qh2G>Γ
>

ΓB, S4 = qh
2G>Γ

>
ΓM

Q =


Q11 N N

N
>
M − αqI3n+p M

N
>

M M − βI3n+p

0 0 0

N
>

M M

0 0 0

0 N 0

0 M 0

0 M 0

Q44 0 −S5

0 M − (η − qh2
)I3n+p 0

−S>5 0 −δIr

 ,
Q11 = PA+A>P + qh

2A>Γ
>

ΓA+ ρβγ
2
C
>
C +$P,

Q44 = −2S5 + (qh
2|B1|2Ω̄

2
+$)Ir,

N = P + qh
2A>Γ

>
Γ, M = qh

2
Γ
>

Γ,

is feasible with respect to P , α, β, δ and η for some q > 0,
$ > 0 and ρ > 0, where

A =

 0 In 0 0

A21 − B1K1 A22 − hB1K2 A23 − B1K3 B1K1

A31 − B2K1 A32 − hB2K2 A33 − B2K3 B2K1

F1 hF2 F3 −F1

 ,
B =

 0

B1K2

B2K2

−F2

 , G =

 0

B1

B2

0

 , D =

 0

In
Ip
0

 ,
M =

 0 0

L11 L12 − B1K4

L21 L22 − B2K4

0 F4

 , C = diag
[
In In Ip 0

]
,

S =
[
S1 hS2 S3 −S1

]
, S4 =

[
0 S4

]
,

Γ =
[

0 In 0 0
]
.

Then the system (2) with the control (3) and adaptive laws
(4), (5) is practically ISS.

All proofs are omitted due to space limitations.

The conditions of the theorem connect the control param-
eters to be tuned (the gains Ki, Fi, Si and the admissible
delay h), the auxiliary constants (q > 0, $ > 0, ρ > 0)
and the variables of linear matrix inequalities (Q ≤ 0,
P > 0, α > 0, β > 0, δ > 0 and η > 0), which are
obtained applying numerical solvers to (6). It is worth
noting that the inequality Q ≤ 0 in (6) is always satisfied
for a sufficiently small value of h.

Remark 7. The presentation above is given by factorizing
the LMIs in the briefest way, which, however, may be more
conservative. For example, taking

ξ(t) =
[
z>(t) R>(t) φ>(Cz(t)) θ̃>2 (t) d>(t) θ>2

]>
we obtain that if for given Ki, Fi with i = 1, 4 and Si with
i = 1, 5 the system of linear matrix inequalities

Q ≤ 0, P = P
>
> 0, α > 0, β > 0, δ > 0, η > 0, (7)

S = G>P + qh
2G>Γ

>
ΓA,

S2 = −qh2G>Γ
>

ΓB, S4 = qh
2G>Γ

>
ΓM

Q =


Q11 NB NM

B>N> B>MB − 4q
e−$h

h2
In B>MM

M>N> M>MB M>MM− βIs1+s2
0 0 0

D>N> D>MB D>MM
0 0 0

0 ND 0

0 B>MD 0

0 M>MD 0

Q44 0 −S5

0 D>MD − (η − qh2)In+p 0

−S>5 0 −δIr

 ,
Q11 = PA +A>P + qh

2A>Γ
>

ΓA + βγ
2
C
>
C +$P,

is feasible with respect to P , α, β, δ and η for some
q > 0 and $ > 0 (where the meaning of other variables
is the same as in the formulation of Theorem 6), then the
system (2) with the control (3) and adaptive laws (4), (5)
is also practically ISS. However, it is worth to stress a more
nonlinear nature of (7) comparing with (6).

Introducing additional mild restrictions we can reformu-
late the conditions of Theorem 6 by considering the control
and adaptation gains Ki, Fi, Si as solutions of LMIs:

Corollary 8. Let Assumption 1 be satisfied, if the system
of linear matrix inequalities

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1713



Q̃ ≤ 0, P
−1

= P
−> ≥ 0, α > 0, β > 0, δ > 0, η > 0, (8)[

ρIs1+s2
M>

M I3n+p

]
≥ 0,

[
I3n+p P

−1
C
>

CP
−1 1

ργ2
In

]
≥ 0,[

2P
−1 −

α

4
e
$h

∆
−1 U>G> −W>I>

GU − IW I3n+p

]
≥ 0,

∆ = c

[
In 0 0 0

0 c
−1
In 0 0

0 0 Ip 0

0 0 0 In

]
,

Σ = G> + qh
2
B
>
1 (ΓA0P

−1 − B1U),

Σ2 = −qh2B>1 B1U2,
[

0 S4

]
= qh

2
B
>
1

[
L11 L12 − B1K4

]

Q̃ =


Q̃11 I3n+p I3n+p 0 I3n+p 0 Q̃17

I3n+p −αqI3n+p 0 0 0 0 −Γ
>

I3n+p 0 −βI3n+p 0 0 0 −Γ
>

0 0 0 Q44 0 −S5 0

I3n+p 0 0 0 Q55 0 −Γ
>

0 0 0 −S>5 0 −δIr 0

Q̃
>
17 −Γ −Γ 0 −Γ 0 −

1

qh2
In

 ,
Q̃11 = A0P

−1
+ P
−1A>0 − GU − U

>G> + IW

+W>I> + βI3n+p +$P
−1
, Q̃17 = −P−1A>0 Γ

>
+ U>B>1 ,

Q44 = −2S5 + (qh
2|B1|

2
Ω̄

2
+$)Ir, Q55 = −(η − qh2)I3n+p,

is feasible with respect to P−1, U , W, Σ, K4, F4, S4, S5,
α, β, η and δ for some given q > 0, c > 0, $ > 0, µ > 0
and ρ > 0, where

A0 =

 0 In 0 0
A21 A22 A23 0
A31 A32 A33 0
0 0 0 0

 , I =

 0
0
0
In

 ,
and the matrices B, G, D, M, C and Γ are defined in
Theorem 6. Then for

[K1 hK2 K3 K5 ] = UP, [ F1 hF2 F3 F5 ] =WP,

[ S1 hS2 S3 S6 ] = ΣP,

the system (2) with the control and adaptive laws

u(t) =−(K1 +K2)y1(t) +K2y1(t− h) (9)

−K3y2(t)−K4φ2(y2(t))−K5θ̂1(t)

−Ω(t)θ̂2(t),

˙̂
θ1(t) = (F1 + F2)y1(t)− F2y1(t− h) (10)

+F3y2(t) + F4φ2(y2(t)) + F5θ̂1(t),

˙̂
θ2(t) = Ω>(t)[(S1 + S2)y1(t)− S2y1(t− h) (11)

+S3y2(t) + S4φ2(y2(t)) + S6θ̂1(t)]

−S5θ̂2(t),

is practically ISS.

The last important observation is that for the algorithms
(3), (4), (5) the variables K , F and S have an additional
linear constraint (i.e., K1 = −K5, F1 = −F5 and S1 =
−S6), which is hard to formulate in terms of an LMI since
K = UP , W = FP and S = ΣP , then a possible solution

is to assume that the variable θ̂1(t) in the algorithms (9),
(10), (11) enters with an independent gain.

Let us consider some results of application of the proposed
robust adaptive output control.

5. SIMULATION RESULTS

To illustrate the proposed approach, we consider an in-
verted pendulum stabilization problem. We use the dy-

lr
lp

mp

θr

mr

θ

Fig. 1. The inverted pendulum notation, see Aranovskiy
et al. (2019).

namic model and mechanical parameters of the setup pre-
viously reported in Aranovskiy et al. (2019). The notation
is shown in Fig. 1.

Define the state variable vector x :=
[
θ θ̇ θ̇r

]>
, where

θ is the angle between the pendulum and the vertical,
and θr is the angle of the reaction wheel with respect to
the pendulum; note that the reaction wheel velocity θ̇r is
assumed to be available due to the equipment specifics.
Following Aranovskiy et al. (2019), the system dynamics
is given by

ẋ1 = x2,

ẋ2 = a1 sin(x1)− b1u,
ẋ3 = −a1 sin(x1) + b2u,

(12)

where a1 = 50, b1 = 1.4, b2 = 31, and u is the motor
current considered as the control input. The measured
signals are y1 = x1 + θ1 and y2 = x3, where θ1 is the
unknown constant bias of the pendulum position sensor.
It is straightforward to verify that the model (12) can be
written in the form (2) with Ω(t) ≡ 0. The goal is to
drive the system to the origin and to estimate the bias θ1.
In Aranovskiy et al. (2019), the goal has been achieved
constructing a nonlinear velocity observer for the state x2

combined with the state-feedback control law; however,
only local convergence has been shown. In this section,
we apply the control law (3), (4). It can be verified that
the LMI (7) is feasible with h = 0.006 and K1 = −68,
K2 = −1764, K3 = −0.12, F1 = 1, F3 = 6 · 10−4, and
K4 = F2 = F4 = 0, thus the conditions of Remark 7 are
met.

For simulations, we choose the bias as θ1 = −10◦ ≈
−0.1745. The initial conditions are chosen such that
y1(0) = 0, i.e., x1(0) = −θ1, and x2(0) = 0, x3(0) = 0.

The simulation results of the pendulum stabilization and
the θ1 estimation with the control law (3), (4) are shown

in Fig. 2 for the estimated pendulum position y1 − θ̂1 and

the bias estimation θ̂1. The reaction wheel velocity y2 is
depicted in Fig. 3. The simulation results illustrate the the
proposed delay-based control law stabilizes the system and
allows for the bias estimation.
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(a) The corrected pendulum position y1 − θ̂1.
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(b) The bias estimate θ̂1 and the true bias value θ1.

Fig. 2. Stabilization of the inverted pendulum.
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Fig. 3. Stabilization of the inverted pendulum: the reaction
wheel velocity y2.

6. CONCLUSIONS

Considering a Lipschitz nonlinear system, whose model
contains external perturbation and uncertain parameters,
while the measurements are available with a constant bias,
the problem of robust output adaptive stabilization has
been solved. Due to a severe uncertainty of the plant, the
state reconstruction has been avoided by introducing arti-
ficial delays of the output in the feedback and adaptation
algorithms. Applying the Lyapunov-Krasovskii approach,
the conditions of practical ISS have been established,
which are based on linear matrix inequalities. The efficacy
of the proposed approach is demonstrated in simulations
for an inertia wheel nonlinear pendulum. Extension of the
proposed method to a more general class of systems is a
direction of future research.
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