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Abstract: In this work, we study differential algebraic equations with constraints defined in
a piecewise manner using a conditional statement. Such models classically appear in systems
where constraints can evolve in a very small time frame compared to the observed time scale.
The use of conditional statements or hybrid automata is a powerful way to describe such systems
and are, in general, well suited to simulation with event driven numerical schemes. However,
such methods are often subject to chattering at mode switch in presence of sliding modes, or
can result in Zeno behaviours. In contrast, the representation of such systems using differential
inclusions and method from non-smooth dynamics are often closer to the physical theory but
may be harder to interpret. Associated time-stepping numerical methods have been extensively
used in mechanical modelling with success and then extended to other fields such as electronics
and system biology. In a similar manner to the previous application of non-smooth methods
to the simulation of piecewise linear ODEs, non-smooth event-capturing numerical schemes are
applied to piecewise linear DAEs. In particular, the detailed study of a 2-D dynamical system

of index-2 with a switching constraint using set-valued operators, is presented.
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1. INTRODUCTION

The aim of this work is to study hybrid differential al-
gebraic equations (hybrid DAE), i.e., dynamical systems
with some algebraic constraints switching with respect to
the state variables. Such hybrid DAE systems are used
in numerous field from electronics, Acary et al. (2010)
to chemical process engineering, Stechlinski et al. (2018).
They are especially used in model-based design through
the use of language like MODELICA as in Henningsson
et al. (2019). Various works already studied hybrid DAEs.
For example, DAE including complementarity constraints
are a subset of differential variational inequalities (DVT).
DVIs are defined and studied in Pang and Stewart (2008).
In particular, they analyse the well-posedness of index
one DVI and DAE of mixed index between 1 and 2.
Matrosov (2006) proposes a concept of solutions, which
is inspired by the one of Filippov (1960), for DAE with
discontinuous constraints and differential part. He gives
sufficient conditions for existence of solutions in Matrosov
(2006), and sufficient condition for uniqueness in Matrosov
(2007). Hamann and Mehrmann (2008) and Mehrmann
and Wunderlich (2009) provide a study of well-posedness
of hybrid DAE structured as a hybrid automata. In addi-
tion, a numerical implementation of sliding modes for DAE
systems is provided to avoid chattering when switching. It
is interesting to note that the sliding solutions obtained
in Mehrmann and Wunderlich (2009) are similar to the
solutions from Matrosov (2006), assuming the solution
of z(t) (see (2)) in each mode is obtained by index re-
duction. Furthermore, Mehrmann and Wunderlich (2009)
need explicit transition functions from one mode (DAE) to
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another, in addition to consistent reset conditions. Trenn
(2012) defines solutions of hybrid DAE with exogenous
switching. In particular, he introduces the notion of dis-
tributional solutions which can also be used to efficiently
solve inconsistent initial conditions of classical DAE as
an exogenous switching at ¢ = 0. Camlibel et al. (2016)
extend results of well-posedness of differential inclusions
to differential algebraic inclusions Px € —F(x) with a
maximal monotone operator F(-). Then, assuming the
passivity of the Weierstrass-Kronecker form of a system
(1) with M(-) a maximal monotone operator, sufficient
conditions for the well-posedness of absolutely continuous
(AC) solutions of (1) are given.

Ey(t) = Ay(t) + BA(t) + e
w(t) = Cy(t) + DA(t) +q (1)
w(t) € M(=A(1)).

It important to note that this formalism is the closest
to the example studied in this paper (see (5)), with the
notable difference that in our case the operator M(-) is
not maximal monotone but hypo-monotone. Additionally,
its rewriting in the form of (1) with maximal monotone
operator is not a passive system. Stechlinski et al. (2018);
Barton et al. (2018), and Khan (2018) define from the
Clarke jacobian a notion of generalised differential index
and an associated index reduction procedure in the context
of non-smooth DAE, with at least Lipschitz continuous
constraints. Current implementation and theory are lim-
ited to semi-explicit index-1 non-smooth DAE. Finally,
we can cite another work for index reduction of hybrid
DAE based on non standard analysis by Benveniste et al.
(2017). This work uses non-standard analysis to construct
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well-defined transitions from one mode to another in the
context of hybrid DAE even in the presence of varying
index. In particular, Benveniste et al. (2017) pairs well
with Mehrmann and Wunderlich (2009), which needs the
knowledge of transition and re-initialisation maps when
switching from one mode to another.

Let us now define the general framework of linear hybrid
DAE that we wish to study from the point of view
of non-smooth dynamics, and event-capturing numerical
methods. We wish to consider an hybrid linear DAE
defined as:

x(t) = Ax(t) + Bz(t) +e
0= gi(x(t), (1)) = Cix(t) + Diz(t) + q:  (2)

V(x(t), 2(t)) € Xi.
The sets X; = {(x,2z) € R"1T2=" | h;(x,z) = H;x(t) +
F.z(t) + p; > 0} define a partition of R™ such that:
U, X; = R", for all i, int(X;) # 0, and for i # j,
0X;NOX; = 0. Where x, z are the differential and algebraic
variables, respectively. We can build using step-functions !
in a similar fashion to Acary et al. (2014) a generalised

constraint.
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where st(y) = 0if y < 0 and st(y) = 1 if y > 0, the
behaviour in y = 0 depending on later relaxations. In
particular, in the context of piecewise ODE, the work of
Acary et al. (2014) shows that methods for non-smooth
dynamics can be efficiently applied using such reformu-
lation. Then, depending on the concept of solutions ap-
plied on the switching surfaces (using convexification as
in Filippov (1960), or using multivalued functions as in
Aizerman and Pyatnitskiy (1974)), the resulting solutions
may differ. Here, we study the extension of such concepts
of solutions when applied to switching constraints instead
of switching vector fields. In this work, and its associated
working example, we restrain ourselves to the simple case
with only two algebraic constraints Cyx+D z+q; = 0 and
Cox+Dsz+q; = 0 and one switching condition depending
on the sign of h(x,z) = Hx(t) + Fz(t). Then, we construct
a relaxation of these two constraints along the switching
surface h(x,z) = 0 by “filling-in the graph”. Such relaxed
constraint can be designed in h(x,z) = 0 by considering
the convex hull of the left and right limit of g(x,z) when
h(-) < 0 and h(-) > 0, respectively. We could also consider
multi-valued step functions in (3) in a similar fashion to
Aizerman and Pyatnitskiy (1974) approach for discontin-
uous ODEs. For this working example, we consider the
convexification of the constraints along the switching sur-
face. As we have seen, most results consider either a high
index hybrid DAE framework with event-driven numerical
methods and explicit transition functions, or mainly index-
1 DAE with non-smooth constraints aiming at rewriting
the system as a differential inclusion? into a Lipschitz
function, or a maximal monotone operator. In this paper,
a bridge between the hybrid DAE formalism and the non-
smooth DAE formalism is established. We show on a
simple working example the difficulties arising with such
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2 differential algebraic inclusion in the case of Camlibel et al. (2016)

relaxations, as well as how classical non-smooth numerical
methods perform in this context. We also propose some
modification to the numerical scheme to overcome the
associated troubles.

The article is organized as follows: in Section 2.1 we study
the necessary and sufficient conditions for existence of
absolutely continuous solutions to our working example. In
Section 2.3.1, we study the well-posedness of the jumps dy-
namics associated with this example, and in particular the
resulting generalised equation. In Section 2.4.1, we analyse
the well-posedness of the implicit Euler numerical scheme
when applied on our case study and we propose variation of
the implicit Euler scheme to solve problems arising in this
example. Finally, in Section 2.5 we give some numerical
simulations using the proposed numerical scheme, and we
show numerically on some cases a convergence in O(h).
Conclusions, and final thoughts are given in Section 3.

2. ANALYSIS OF A HYBRID DAE EXAMPLE

Let us first introduce some notations. Vectors of real
variables x = (z1,...,%;,...,2,)T in R” are denoted in
bold. In the context of algebraic differential systems, the
variables x will denote differential variables, while z will
denote algebraic variables. In the context of non-smooth
expression, we will in general write A for the Lagrange
multipliers. We now consider the working example of this
paper:

Z1(t) =14 B12(t)

xg(t) :Bgz(t)

if x1(¢t) >0 then

if z1(t) <0 then

)
0=-1- Zl(t) — ZL’Q(t)

which is a particular case of (2) with A = 0, B =
(BlaBQ)Ta Cl = (1)_1)a 02 = (_1)_1)a Hl = (_1’0)7
Hy; = (1,0), D; = 0, and Dy = 0. In 27 = 0, the system
does not have continuous solutions whatever the active
constraint, so we keep strict inequalities in (4).

As exposed in the introduction, the hybrid constraints
can be embedded into a set-valued constraint obtained
by convexification. We construct the hybrid DAE system
(5) where the constraint is 0 = —z9 + A(z1 + 1) with
A € sign(zp). This constraint (5b) can also be obtained
using (3) on the equations of (4). In addition, this set-
valued algebraic constraint equals the ones of (4) when
x1 < 0 (respectively 21 > 0), and is a convex relaxation of
both in 1 = 0: that is x5 € convexHull({z3 = —1}, {22 =
1}) = [-1,1] (see Fig. 1). This yields the non-smooth DAE

system (5):
d1(t) = 1+ By2(t)
io(t) = Baz(t) o
0= At)(1+a1(t) — z2(t) (5b)

A(t) € sign(z1(t)),

where sign(-) is a set-valued operator, sign : R = R, such

that:
{-1}, fz<0
sign(z) = ¢ [-1,1], ifxz=0
{1}, ifx>0.
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AT = (1,0)

|22 € [-1,1]
Z1

A =(0,—-1)

Fig. 1. Phase-space representation of the constraint of (4)
and (5b)

2.1 Analysis of absolutely continuous solutions

Let us study the conditions on the differential part of
the DAE (5), and in particular on the parameters By,
Bs, for the existence of an absolutely continuous solution
21(t), z2(t) to (5), and in particular a sliding mode along
the switching surface x; = 0, for arbitrary time interval
and initial conditions. Let us also observe that solutions
(z1(t),z2(t)) of the non-smooth constraint of system (5)
are such that:

0 € —z2(t) + |21 ()] + sign(z1(2)) . (6)
Definition 1. (Global AC solutions). We say there exists
global AC solutions if for some initial conditions x(tg) =

xo satisfying (6), there exists a solution to (5a) almost
everywhere and to (5b) for all ¢ € [tg, T'[, and any T > to.

Let us state the main result of this section.

Proposition 2. (AC solutions). The system defined in (5)
has global AC solutions on an arbitrary interval [to, T,
T > to for any consistent initial value x(0) = xo, if and
only if By, By are chosen such that:

B
Bi# 0, =2< 0,

B, (B1 +B2) # 0. (7)

For the sake of conciseness, we refer to Rocca et al.
(2019) for the complete proof. In Fig. 2, we summarise
the conditions of Proposition 2 for existence of global AC
solutions for any initial conditions satisfying (6). From the
proof of Proposition 2 (Rocca et al. (2019)), it appears
that the set of parameters Bj, Bs that satisfy these
conditions can be separated into two subsets: the subset
yielding “sliding-crossing” solutions which are unique with
respect to the initial conditions, and the subset leading
to “sliding-repulsive” solutions, which are not unique in
X(tO) = (07 _1)T

2.2 Analysis of the index reduced system Filippov solutions.

We can compare the sliding mode obtained in the proof
of Proposition 2 (motion in the segment [A~, A"]), with
the study of the solutions from Filippov (1960) in 27 =0
associated with the switching ODE obtained by index
reduction of the DAE in z; < 0 and z; > 0. Such
solutions are defined, for example in Mehrmann and Wun-
derlich (2009). The left vector field £~(-) (for 1 < 0)

2o(By+Bg) >0
71(t) >0
\A )
v, B €
Bo(B1+By) <0 o
Il(f) <0 ’0'
A~ = (0,-1)

Fig. 2. In red (dashed vectors) the “sliding-repulsive”
solutions, and in green (full vectors) the “sliding-
crossing” solutions.

and right vector field £7(-) (for z; > 0) are given by:

_ _ [ B2/(B1+B2) _ (—B2/(B1-B2)
£ (t,x(t) = (—éz/(é1+§2)> £, x(t) = <_B§/(Bi—Bz>) '

In the case of “sliding-repulsive” solutions, the switch-
ing ODE resulting from the index reduction yields the
sliding motion fo(x) = convexHull(f~ (x), fT(x)) N {x €
R?|z; = 0}. The associated solutions correspond to the
same solutions we obtain by our relaxation of the switch-
ing constraint by a generalized equation (GE). In the
particular case of “sliding-crossing” solutions, the index
reduced system does not lead to any sliding motions, as
convexHull(f~ (x), fT(x)) does not intersect the switching
surface. The solutions do not stay on the surface 1 = 0,
and due to the index reduction, the constraint in z; > 0
is not satisfied anymore if z1(tg) < 0. Following the
guidelines for sliding mode detection given by Mehrmann
and Wunderlich (2009), an explicit transition function is
necessary for continuation. The sliding solutions we obtain
using our relaxation is not retrieved by Mehrmann and
Wunderlich (2009) approach. We note that the approach of
convexifying the left and right reduced DAEs has already
been shown to be wrong for some cases in Matrosov (2007)
with an index-1 non-smooth example.

2.8 Analysis of solutions with bounded discontinuities.

Let us study the existence of discontinuous solutions when
the trajectory cannot continue anymore with an absolutely
continuous solution after some time ¢;. For example, this
is the case if the trajectory reaches the point A~ in Fig.
1 with g—f > 0. Solutions with discontinuities make sense
in a context where the real system evolves in a time scale
much smaller than the one considered in the model.

Analysis of jump dynamics  Assume there is a jump at
some time t;. We first introduce the measure differential
inclusions (MDI) (8) associated with (5). Let us denote
dx the differential measure of x(t). Let us notice that
both sides of the dynamics are considered as Schwartz’
distributions. Hence z is to be considered as a measure. In
term of equality of measures we obtain:
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dz; = dt + B1dA,
d.%‘g = BQdAZ
0€ —za(t) + |z1(¢)| + sign(z1(2)),
with dA.(t) = z(t)dt + 0.0, t;, with dt the Lebesgue
measure associated with time, d;; the Dirac distribution
at t = t;, and o, the amplitude of the jump. Then, at ¢;
the system (8) becomes the algebraic system:
a1 (t]) —a1(t;) = Bio.
2o (t]) — wa(t;) = Bao
0 € X(t) + er (6] — xa(t])
)\(t;L) € sign(xl(tj)).
We assume that x(t) is an AC solution for all ¢ < t;, that
is, x(t;) is satisfying the constraint (6) and there exists
A(t;) € sign(zi(t;)) such that 0 = A(t;) + [z1(¢;)] —
x2(t;). Multiplying the first and second lines of (9) by Bz
and By, respectively, one can eliminate o, in (9), which
can consequently be rewritten as:
B2 ([L’l(tj_) — ,Il(tj_)) = B1 (ng(tj—) — Jig(tj_))
0€ A(t)) + a1 ()] — za(t])
)\(t;') € sign(ml(t;'))
Note that for now we do not enforce conditions for ex-
istence of a continuous solutions at t;“ immediately after
the jump: we only define jump solutions respecting both
formulations with the measures, and the constraint at ¢7.
Let us analyse the jump dynamics in (9). In a similar
fashion to Proposition 2, we give the solutions of (9)
depending on the parameters By, Bs.
Proposition 3. (Jump Dynamics analysis). Let consider the
case By # 0: if Bo/B; < —1 there is a unique solution to
(9), otherwise if Bo /By > —1 there are either one or several

solutions depending on x(t 7 ). Let us now consider B; = 0:

(®)

9)

if x2(t;) € [~1,1] there are infinitely many solutions,
otherwise there is only one solution.

For the sake conciseness we will not provide the proof of
the Proposition 3 in this paper, but in can be found in
Rocca et al. (2019). However, it is interesting to note that,
in the case where By # 0, the study of the solutions to (9)
is equivalent to the study of a generalized equation (GE)
of the form:

0€ flz)+ F(z), (10)
where F : R = R is the maximal monotone operator
sign(z), and f : R — R is a Lipschitz continuous function.
In particular, here we have:

f(z) =az+bl|z|+c, (11)
with a = 7BEl‘2’ b = 1, and ¢ = %xl(t;) — .’Eg(t;) In

Fig. 3, we depict some solutions of the jump equation
(9). We will not enter into the detailed analysis of all the
consistent jumps in this paper. In Rocca et al. (2019), we
provide a detailed study of the AC consistent initialisation
associated with this example by crossing the information
from the complete proof of Proposition 2, and from the
analysis of the jump dynamics.

2.4 Analysis of a time-stepping Backward Euler scheme

Let now consider the backward Euler discretization of
system (5):

Fig. 3. Solutions of the GE (9) associated with jumps from

x(t;) = (0,—1) for various choices of B = (B1,B2)T.

T1k+1 — T1,5 = B(1 + B12zg41)

To k41 — T2,k = hBozp41 , (12)
0 € sign(@1r1) + |[T1k41] — T2,01
with h a fixed time step.
Well-posedness of backward FEuler discretization — One

sees that (12) has a structure quite close to (8), which puts
the backward scheme in a favourable perspective for the
computations of solutions with jumps. This is the object of
the next analysis. In fact, as it is described in more details
in Rocca et al. (2019), in the case where By # 0, (8) can
be reduced to a GE similar to (10) where z is replaced by
z1,5+1 and f(z) becomes:

f(@1 k1) = az1 k1 + 0|21 k| + ¢, (13)

with a = —g—f, b=1,and ¢c = (—xg,k—k g—f(xl,k—kh)).

The GE (13) can be studied using the same method as
in the previous section. It yields that, in this particular
example, the set of vectors B for which there is always
uniqueness of solutions for the discrete scheme, is a sub-
set of the set of B where there are globally continuous
solutions. Additionally, (with the exception of By = 0)
this corresponds to the subset where there is uniqueness of
the continuous solution (w.r.t. the initial condition). Apart
from this sufficient conditions for the well-posedness, the
Euler scheme outputs either no solutions, one solution, or
several solutions?®, depending on the initial condition x;
and the time step h. In particular, it can be shown on
this example that the lack of solution to the discretiza-
tion always corresponds to the lack of solutions to the
MDI (8) on an interval of size h. Even though the Euler
discretization outputs spurious results that do not corre-
spond to the behaviour of the continuous time system,
it seems to always contain, for h sufficiently small, the
one approximating at O(h) the continuous solution. In
particular, this implicit Euler scheme provides a consistent
initialisation on an index-2 DAE with a GE corresponding
to a finite union of strongly connected hyper-planes of the
form C;x+e; = 0 (see Proposition 3 in Rocca et al. (2019)).
Such GE corresponds to our current example.

Minimal implicit Euler discretization  As we have seen
in the previous Section, the classical implicit Euler dis-

3 possibly infinitely many if By = 0 and 1, = —h.
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cretization may output multiple solutions and this for
h > 0 as small as wanted. One needs to refine the results
of the implicit Euler discretization to select the discrete
solution close the continuous time solution. To this aim,
we propose a minimisation over the results of the backward
Euler scheme in order to keep the solutions minimal in the
Euclidean norm.

Proposition 4. (Minimal Backward Euler). Consider a non-
smooth DAE system:

x=Ax+Bz+b

{ 0€ F(x,z),

with x the differential variables, z the algebraic variables,
and where the solutions of the generalized equation?
0 € F(-) can be represented as a finite union of strongly
connected hyper-planes of the form C;x + D;z +¢; = 0
such that (14) is of differentiation index less or equal to
two. If there exists a unique solution Y'(t) = (x(t),z(t))
such that x(¢) is AC on an interval [to, %o + €] then there
exists a time step h > 0 such that the minimal backward
Euler scheme:

(14)

. . 1 2
Dyl = min = ||xp+1 — xx]|7,

X4 1,21, k1 2
Xpt1 — X = hAX;H_l + hBzj41 + hb
0e ]:(Xk-&-l, Zk+1) s

provides a consistent discrete solution to (14). This means

that given Y}, = Y(t;) and Yy, = argmin(p;_ ) then

|Yis — Y(te+h)|| — 0 when h — 0, which can be

simplified to || Yy, — Yi|| = O(h)).

S.t (15)

The underlying idea is to notice that the Euler method
gives an O(h) approximation of the solution of an index-
2 linear DAE with constant coefficients (Brenan et al.,
1996, Theorem 3.1.1). Consequently, if there exists a local
continuous solutions for ¢ € [tg,to + €] on a hypersurface
C;x+ D;z + e; = 0 and if the implicit Euler scheme, for
h < g, is such that C;xx41 + D;zr41 + e; = 0, then this
solution is a O(h) approximation of x(tg + €). Although
the implicit Euler scheme outputs multiple solutions, if
one of the solutions is still on the same constraint as xy,
we know this solution is an O(h) approximation. A proof
on the above particular example is given in Rocca et al.
(2019).

2.5 Implementation and numerical results

In this section we expose some simulation results of the
implicit Euler scheme (15) on the example studied in
the previous sections. In particular, numerical experiments
demonstrate that for example (5), if there exists at least
one continuous solution, then (15) converges in O(h) to one
of these solutions. Furthermore, if the discretization (12)
yields a unique solution for any step size, then it converges
in O(h) to the unique solution of (5). Implementation
has been performed using the software SICONOS 4.2.0 (see
Acary and Pérignon (2007)), a platform for numerical
simulation of non-smooth dynamical systems. The code
of these simulations can be found in the github repository
associated with the SICONOS examples® . In this section,

4 In our working example, the GE can be expressed as a Mixed
Linear Complementarity Problem.

5 https://github.com/siconos/siconos—tutorials/
tree/master/.sandbox/code_IFAC

performance results are not discussed as the optimisation
problem in (15) is currently solved by enumeration of
all® the solutions of the GE associated with the classical
implicit Euler scheme (12). We implement this problem
by formulating (6) as a Linear Complementarity Problem
(LCP) with an equality constraint, also called Mixed

Linear Complementarity Problem (MLCP).

0= —z2+ 71| +a

0< |$1|+1‘1 1 |$1| —x1 >0

0<zy La>-1
agllzfzo

with a € sign(z). This yields a mixed linear complemen-
tarity system (MLCS) 7:

100 .ﬂbl(t) 1 +B12(t)
(0 1 0) <m2(t)> = ( Bzz(t) )
0 2(t) x1 —932+1+)\1(t)—)\2(t)

00

0< 2ml(t) +)\1(t) 1 /\1(75) >0

0< )\3(t) +x1(t) 1 )\Q(t) >0
0<2—A2(t) L As(t) 20

(16)

(17)

with A = (A1, A2, A3)T = (\z1| —xl,l—a,xl_)T. Some
numerical results can be found in Fig. 4. In this figure, we
consider the particular case of sliding-crossing solutions
(here B = (—0.5,1)") where uniqueness of AC solutions
and discrete solutions is guaranteed. We notice that the
resulting solutions in x(¢) are Lipschitz continuous, and
run through all the modes (the initial condition is taken
with z1(fp) < 0). In Fig. 5, the error term [|Y(T') — Yi||
in function of the step size h is depicted. The term Y}
is the numerical approximation of Y (T') by the minimal
implicit Euler numerical scheme when the interval [to, T
is subdivided in k steps of size h. In the case of sliding-
crossing solutions, we choose B = (—0.5,1)T, x(¢y) =
(=5,4), and T = 10. In the case of sliding-repulsive
solutions, we choose B = (—1,0.5)T, x(¢y) = (0,0), and
T = 10. Time-steps are taken linearly spaced in log scale.
We observe the linear convergence rate of the implicit
Euler scheme when there is uniqueness of the numerical
solutions. In addition, we also observe a linear convergence
rate of the minimal implicit Euler scheme when there is
non-uniqueness of the discrete solution (for any time step)
as it is depicted in Fig 5 on the curve associated with the
sliding-repulsive case.

3. CONCLUSION AND FUTURE WORK

In a first time, we analyse the AC solution of a 2D
example of hybrid DAE. We show that in the context
of piecewise linear constraints, we can observe multiplic-
ity of AC solutions. Furthermore, it is not enough to
study each mode independently to conclude on the well-
posedness of AC solutions. In a second time, we studied
the generalised equation resulting from the example jump
dynamic. We conclude on the conditions for well-posedness
of such equation, and build a framework for the study of
numerical solutions. Indeed, in the two last sections, we
show that solutions of an implicit Euler scheme, which
is classically used as an event-capturing scheme for non-
smooth dynamical systems, are solutions of an equation

6 In most cases limited to maximum 3 solutions.
7 Please note that this MLCS formulation is not unique as it depends
of the naming convention for the \; variables.
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phase-space plot x1,x2

5/ —<— x2(x1) with h=0.3
x2(x1) with h=0.9

X

-4 -2 0 2 4
x1

Fig. 4. Phase space plot in (z1,z2) of the numerical
solutions for B = (—0.5,1) and h = 0.9 or h = 0.3.
Initial condition is x¢ = (—5,4)

Linear error convergence with step size

st
1072 2 paan phR \/‘*\/ ¥
= A, pespe AN TV T
=1 ¢
>.. 10-6 L Sl ) i
£ o- | |
= 107 i [
= 0-10 I
B10 H i
510—12 1 “\
1014 —— sliding crossing case L‘
sliding-repulsive case
107 1073 02 107t 10°

1
time step size

Fig. 5. Error ||Y (t) — Y| with respect to time step h. We
consider the two kind of AC solutions: the sliding-
crossing solutions and the sliding-repulsive solutions.

with the same structure as the jump dynamics. It fol-
lows that such numerical scheme can have either none, a
unique, several, or infinitely many solutions depending of
small variations on the considered problem. In particular,
consistence of the numerical scheme is not preserved in
some cases. However, on this example it can be proven
that a “correct” discrete solution can always be retrieved
from the numerous solutions of the implicit Euler scheme.
Consequently, we propose a minimal implicit Euler nu-
merical scheme to select the correct solutions assuming a
time step sufficiently small. In future works, we will extend
these results and observations to more general dynamics
and switching constraint. Another, interesting research
direction would be to make the link with Camlibel et al.
(2016).
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