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Abstract: Adiabatic elimination is a perturbative model reduction technique based on timescale
separation and often used to simplify the description of composite quantum systems. We here
analyze a quantum experiment where the perturbative expansion can be carried out to arbitrary
order, such that: (i) we can formulate in the end an exact reduced model in quantum form; (ii)
as the series provides accuracy for ever larger parameter values, we can discard any condition on
the timescale separation, thereby analyzing the intermediate regime where the actual experiment
is performing best; (iii) we can clarify the role of some gauge degrees of freedom in this model
reduction technique.

1. INTRODUCTION

Model reduction is an ubiquitous way to make system
analysis and design more tractable. This is especially rele-
vant in quantum systems, where the dimension of the full
state is the product of the dimensions of its components’
states (Nielsen and Chuang (2002)). Adiabatic elimina-
tion approaches model reduction via timescale separation:
the transients associated to fast degrees of freedom are
discarded in order to write a lower-dimensional model
describing the slow degrees of freedom. In principle, as con-
firmed by center manifold theory (Fenichel (1979)), there
exist exact invariant subspaces for the slow dynamics, but
in general they are hard to compute. Perturbative expan-
sions as a function of the timescale separation can provide
approximate slow-variable models at various orders, with
reasonable computational effort (Carr (1981)). In quantum
physics, the lowest-order approximation is routinely used
to summarize the effects on a target system, of standard
couplings to fast surrounding components – in physicists’
words, induced dephasing and dissipation/broadening of
resonance peaks as a perturbation, or reservoir engineering
power when the induced dissipation/stabilization is the
very goal (Haroche and Raimond (2006)). As quantum
control is reaching for more precision, higher accuracy
approximations become of interest.

During the recent years, the technique of center man-
ifolds and perturbative expansion have been systemat-
ically adapted to composite quantum systems (Azouit
et al. (2017); Bouten and Silberfarb (2008); Zanardi et al.
(2016)). General formulas have been obtained for the first
and second order approximation. Besides the actual com-
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putations, there are two main points. The first one is that
the quantum master equation is linear, so in principle
invariant subspaces should exist and be analytic in the
expansion parameter. The second point however, is that
quantum systems must have a particular structure: they
describe the completely positive evolution of a positive
semi-definite state matrix of trace one (Haroche and Rai-
mond (2006)). This structure is the basis to predict any
probabilistic output from the system, so the reduced model
can be physically interpreted as such only if it takes this
particular structure too. It has been shown how this is
obtained systematically in first and second order approxi-
mation (Azouit et al. (2017)), but not at higher order yet.

In this paper, we treat a case where adiabatic elimination
can be carried out to arbitrary order with low computa-
tional effort, and we prove how the completely positive
structure can be preserved all the way. The system under
study comes from an actual experimental setup for mea-
suring the photon number in a harmonic oscillator (Essig
and et al. (2019)).

In this experiment, carried out at ENS Lyon, the photon
number in a harmonic oscillator (HO – playing the role of
the slow subsystem) is measured continuously and without
destroying the photons, thanks to the effect they have
on a qubit coupled to the HO. By measuring the light
reflected from the qubit (the fast subsystem), information
is obtained indirectly and continuously about the HO
photon number. This information output implies that in
the complementary basis, information is perturbed, at the
same rate (Clerk et al. (2010)). Thus, by studying the
slow dynamics governing the perturbation of the HO state,
we can deduce how strongly photon number is measured
in the setup, and optimize parameters. Non-destructive
measurements, harmonic oscillators and qubits are most
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typical building blocks for quantum hardware (Haroche
and Raimond (2006)), so providing new tools for this case
should be practically relevant. Our ability to carry out
adiabatic elimination at all orders allows to work in the
usually less tractable regime where all timescales are of
similar order – in fact, as we explain below, this is the
optimal one.

On the mathematical side, the developments are facilitated
by a natural decoupling between degrees of freedom, such
that we can identify a structure that carries through at
all orders of adiabatic elimination. The results also carry
more general lessons about the conjecture that quantum-
structure-preserving adiabatic elimination should be fea-
sible at all orders in general quantum systems. First, the
conjecture does hold on this example. Second, it is high-
lighted explicitly how a gauge degree in the slow system
parameterization plays a role in obtaining a completely
positive model. This may clarify directions and reasonable
objectives for addressing more general models.

The paper is organized as follows. Section 2 gives the sys-
tem model and recalls the adiabatic elimination approach.
Section 3 contains our main result, with an analysis of
preserving complete positivity in Section 3.2. In Section
4 we illustrate a few concrete implications that can be
computed from the reduced model, and we compare our
predictions to experimental results.

2. DESCRIPTION OF THE SETTING

We briefly describe the photon number measurement ex-
periment at ENS Lyon, explaining how it decouples into
two-qubit systems which we then study in the next section.
The reader is referred to Essig and et al. (2019) for more
details on the experiment, and to e.g. Nielsen and Chuang
(2002) for more basic background on quantum systems.
More background about our center manifold approach to
quantum adiabatic elimination can be found in Azouit
et al. (2017). We just recall that a quantum state ρ is
a positive semi-definite Hermitian operator of trace 1.

2.1 The photon number measurement experiment

The idealized experiment (i.e. discarding spurious cou-
plings to the environment) can be described in the fol-
lowing mathematical terms. A harmonic oscillator mode
(photon annihilation operator a) is coupled dispersively
to a possibly detuned and driven qubit (Pauli operators
σx, σy, σz, spontaneous emission operator σ−).

Owing to this coupling, the reflection of light at a given
frequency encodes information about the presence of a
given photon number in the HO. Although the full ex-
periment probes the reflection at many frequencies hence
many photon numbers simultaneously by multiplexing, for
simplicity we will here assume that the drive contains a
single frequency. In the interaction frame and after aver-
aging out the fast counter-rotating terms relative to the
drive frequency 1 , the Hamiltonian reads:

H =
−χ
2

a†a⊗ σz +
∆

2
σz +

Ω

2
σx .

1 Absolute frequencies (GHz for circuit quantum electrodynamics)
are much higher than the frequency differences (MHz range)

Here ⊗ denotes the tensor product between different quan-
tum systems, we drop the tensor with identity I, e.g. σz
means I⊗σz; χ denotes the coupling strength (2π4.9 MHz
in experiment), ∆ is the drive detuning from the qubit
frequency when the HO is empty, and Ω is the drive ampli-
tude (free parameters of the input signal). The qubit state
is monitored by continuously detecting its fluorescence
field, corresponding to the complex amplitude associated
to a measurement channel operator L =

√
κσ− (detection

rate κ = 20 MHz). With the usual superoperator notation

DL(ρ) = LρL† − L†Lρ+ρL†L
2 and ML(ρ) = Lρ + ρL† −

tr(Lρ+ ρL†)ρ, the stochastic master equation for the full
system state ρ reads:

dρt =−i[H, ρt] dt+ κDσ−(ρt) dt

+
√

ηκ
2 Mσ−(ρt) dW

(1)
t +

√
ηκ
2 Miσ−(ρt) dW

(2)
t

dY
(1)
t =

√
ηκ/2 tr(σ−ρt + ρtσ

†
−) dt+ dW

(1)
t

dY
(2)
t =

√
ηκ/2 tr(iσ−ρt − ρtiσ†−) dt+ dW

(2)
t .

Here tr denotes the trace and η ∈ [0, 1] is the measurement

efficiency. The Wiener processes dW
(1)
t , dW

(2)
t capture the

probabilistic character of quantum measurements. The two

quadratures of the output signal (dY
(1)
t , dY

(2)
t ) monitor

the qubit state while it is influenced by the harmonic
oscillator (HO), therefore providing indirect information
about the HO state. As the coupling is through the photon
number operator a†a, one expects to obtain information
about the photon number.

Physicists understand two extreme regimes quite well.
• When the detection rate κ (non-unitary effect) is small,
a major effect of the coupling is obtained when ∆−nχ = 0
for some integer n: the corresponding photon number level
n is at resonance while the others are not, and at low drive
power Ω only the resonant level will allow qubit excitations
via Ωσx, and thus spontaneous emissions. In other words,
the output amplitude will tell if we are on level n or
not. From a mathematical viewpoint, being resonant /
off-resonant boils down to an averaging approximation
or rotating wave approximation (RWA), with well-defined
resonances for κ/χ � 1. However, when κ is small, the
system is only able to weakly leak information to us.
• Conversely, when κ is large, the qubit is able to leak
information very fast to the outside world. However, this
also makes it much less sensitive to the effect of being
coupled, in addition to the outside world, to a HO with
given photon number; in physicists’ terms, the resonance
peaks are broadened by the dissipation such that they can-
not be well distinguished. From a mathematical viewpoint,
this regime allows to apply adiabatic elimination, with
approximation parameter χ/κ� 1; instead of considering
the system as essentially resonant on a particular coupling,
this considers it as essentially dissipative, with the HO
coupling treated as a perturbation (which precisely we
want to detect!).
Unsurprisingly, the most efficient regime to measure pho-
ton number is with χ/κ of order 1 (see 2π4.9 MHz vs. 20
MHz in the experiment). This cannot be faithfully covered
by low-order expansions. In the present paper, by carrying
out adiabatic elimination to arbitrary order, we essentially
provide a solution that is valid for any value of χ/κ and
thus provides correct (partial) information in all regimes.
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Before proceeding, we make two straightforward and exact
simplifications on the full system model. First, the expected
measurement rate achieved by the setup is bounded by the
dissipation induced on the complementary variables by the
term in DL(ρ). We can therefore discard the stochastic
terms and the output equation, to focus on the induced
dissipation in a deterministic system. Second, because
the only operator acting on the HO is the Hamiltonian
a†a, the system naturally decouples: any part of the state
spanned by a subset of eigenvectors of a†a undergoes an
autonomous evolution. The elementary building block is
thus to take two eigenvectors, i.e. focus on distinguishing
between two photon numbers n1 and n2. The model
describing this part of the dynamics, and studied in
Section 3, is:

d
dtρ=−i

[
Ω

2
σx +

∆̃

2
σz −

χ̃

2
σ̃z ⊗ σz, ρ

]
+ κDσ−(ρ) ,(1)

where ρ is the state on a Hilbert space C2⊗C2 equivalent
to two qubits — the one used for measurement, which
we will call the measurement qubit, and the effective one
spanned by the two photon numbers to be distinguished,
which we will call the target qubit; ∆̃ = ∆ − n1+n2

2 χ is
the drive detuning with respect to the measurement qubit
when the HO is centered in the middle between n1 and

n2 photons; χ̃ = (n1−n2)χ
2 expresses the effective coupling

strength with the two photon numbers considered, using
the tilde to distinguish the Pauli operator acting on the
HO component. The goal is to eliminate the measurement
qubit (all operators without tilde) and give an effective
reduced model capturing the average dissipation induced
by the leakage of information out of the HO component.

2.2 The center manifold approach to adiabatic elimination

Consider a general quantum system of the form
d
dtρ = L0(ρ) + εL1(ρ) ,

where L0 and L1 are both superoperators of the type
−i[H, ρ] +

∑
k DLk(ρ). We assume that the behavior of

L0 is easy to analyze and makes ρ converge towards a
manifold of stable equilibria S = {ρ̄|L0(ρ̄) = 0}. The goal
is to express how this set gets perturbed by the presence
of L1. Center manifold theory ensures that, for ε � 1,
there exists a manifold of same dimension as S, ε-close to
S, and on which the dynamics is ε-slow (Fenichel (1979)).
To compute both the manifold and the dynamics, a series
expansion in ε can be used (Carr (1981)). For quantum
systems, since L is linear in ρ, the manifolds boil down to
subspaces and the variations due to L1, treated in bulk
on the slow eigenspace which is separated from the fast
converging one, should be analytic. The meaningful state
space for quantum systems however is not linear, and this
requires more care.

More precisely, we want to assign a quantum state ρs to
the reduced model, where for ε = 0, ρs spans S and moves
as d

dtρs = 0. For ε 6= 0, we search for:

• reduced dynamics of the form d
dtρs = Ls(ρs) =

−i[Hs, ρ] +
∑
k DLs,k(ρ);

• an embedding ρ = K(ρs) =
∑
kMkρsM

†
k of ρs into

the full system, with
∑
kM

†
kMk = I; this form is a

completely positive trace-preserving map, also called
a Kraus map.

This allows us to analyze ρs like a usual quantum system,
while the associated ρ remains physically meaningful.

To compute Ls and K we just impose invariance of the
resulting subsystem under the actual dynamics:

K(Ls(ρs)) = (L0 + εL1)(K(ρs)) for all ρs . (2)

Since solving this exactly can be difficult, one can resort
to a series expansion in ε and separately solve terms of
different orders, increasing the power of ε to improve the
accuracy of the approximation (Carr (1981)). Existing
work has done this up to ε2 for general composite quantum
systems (Azouit et al. (2017); Bouten and Silberfarb
(2008); Zanardi et al. (2016)), with L0 acting only on
a fast subsystem and εL1 denoting its coupling to the
subsystem essentially modeled by ρs. The result at this
order has been explicitly put into quantum structure
(Azouit et al. (2017)), proving positivity preservation.
For higher orders, formulas and proofs appear to get
significantly more complex. Our goal is to carry both the
formulas and the positivity proof to arbitrary order on the
system (1) and derive lessons from this.

3. ADIABATIC ELIMINATION TO ARBITRARY
ORDER

In the system (1), we consider ε = −χ̃/2 and identify the
corresponding form L0 +εL1 in (2). In particular, L0 = I⊗
L̄ only acts on the measurement qubit, with L̄(ρm) :=

−i[Ω
2 σx+ ∆̃

2 σz, ρm] +κDσ−(ρm), and L1 = −i[σ̃z⊗σz, ρ]
takes the form of an interaction Hamiltonian.

3.1 Formulas computing the reduced model

We start by considering the series expansion of the adi-
abatic approximation. We denote by a superscript the
contribution of a given order of approximation to Ls and

K, i.e. Ls =
∑+∞
k=0 ε

kL(k)
s and K =

∑+∞
k=0 ε

kK(k). Note that

to preserve the trace at all orders, we need tr(K(0)(ρs)) = 1
and tr(K(k)(ρs)) = 0 for all k > 0.

To zero order (ε = 0), the target qubit undergoes no
dynamics and the measurement qubit converges to the
unique steady state ρ̄ satisfying L̄(ρ̄) = 0. Thus to zero

order, d
dtρs = L(0)

s (ρs) = 0 and K(0)(ρs) = ρs ⊗ ρ̄.

The explicit solutions for the first two orders of approxi-
mation are corollaries of Azouit et al. (2017).

Proposition 1, Azouit et al. (2017): Solving the

invariance equations at orders ε = −χ̃
2 and ε2 yields the

reduced model:

d
dtρs =−iεc1[σ̃z, ρs] + ε2c2Dσ̃z (ρs) +O(ε3) ,

K(ρs) = ρs ⊗ ρ̄ − iε(σ̃zρs ⊗M1 − ρsσ̃z ⊗M†1 )

+ε2(σ̃zρsσ̃z ⊗M2 − ρs ⊗M0) +O(ε3)

+(εβ1 + ε2β2)(σ̃zρsσ̃z − ρs)⊗ ρ̄
where c1 = tr(σz ρ̄); c2 = tr(σz(M1 + M†1 )) ≥ 0; M1 is
computed as the solution with tr(M1) = 0 of:

−L̄(M1) = σz ρ̄− tr(σz ρ̄) ρ̄ ;
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M0 and M2 are respectively computed as solutions of:

L̄(M2) = (M1σz + σzM
†
1 ) + c2ρ̄− c1(M1 +M†1 )

L̄(M0) = (σzM1 +M†1σz) + c2ρ̄− c1(M1 +M†1 )

with tr(M0) = tr(M2) = 0; and β1, β2 are free real
parameters. Moreover, for every ρ̄ full rank, i.e. as soon
as Ω̃ 6= 0, there exist β1, β2, ε making the approximate K
completely positive.

Proof: The terms of first order in ε from (2) give:

L(1)
s (ρs)⊗ ρ̄ = L̄(K(1)(ρs))− i[σ̃z ⊗ σz, ρs ⊗ ρ̄] .

Taking partial trace over the measurement qubit gives

L(1)
s (ρs) = −itr(σz ρ̄) [σ̃z, ρs]. Plugging this back into

the first-order condition, together with the proposed form
of K(1), yields the equation involving M1. Its solution is
discussed in Azouit et al. (2017) and the fact that L(ρ̄) = 0
implies that the general solution can contain the term in
β1 (and others).
At second order we repeat the procedure. Gathering terms
of order ε2 from (2), we have

L(2)
s (ρs)⊗ ρ̄+K(1)(L(1)

s (ρs))

= L̄(K(2)(ρs))− i[σ̃z ⊗ σz, K(1)(ρs)] .

Note that here the terms involvingK(1) contain, on the tar-
get qubit, operations of type σ̃zρsσ̃z or of type (σ̃z)

2ρs =
ρs(σ̃z)

2 = ρs. As before a partial trace allows to eliminate

the term in K(2) and write the explicit expression of L(2)
s ;

positivity of c2 can be checked as in Azouit et al. (2017).
The expressions for K(2) are similarly obtained after plug-

ging its form and the just computed L(2)
s back into the

invariance equation.
The proposed K(ρs) with β1 = 0 can be rewritten as e.g.:

K(ρs) = 1
2 (I + iεσ̃z ⊗ 2M1)ρs(I − iεσ̃z ⊗ 2M†1 )

+ε2σ̃zρsσ̃z ⊗ (M2 − 2M1M
†
1 + β2ρ̄)

+ρs ⊗ ( 1−2ε2β2

2 ρ̄− ε2M0) .

The first line is a positive expression; for given ρ̄ of full
rank, we can choose β2 to make the second line positive,
then ε to make the last line positive. We then obtain the

explicit expression K(ρs) =
∑
j KjρsK

†
j of a completely

positive map. �

The higher order iterations turn out to follow a simple
structure.

Proposition 2:

At any odd order k: L(k)
s (ρs) = −i fk[σ̃z, ρs] for some real

constant fk and K(k)(ρs) = σ̃zρs⊗M(k) + ρsσ̃z ⊗M†(k) for

some operator M(k) on the measurement qubit.

At any even order k: L(k)
s (ρs) = gk

2 (σ̃zρsσ̃z − ρs) for

some real constant gk, and K(k)(ρs) = σ̃zρsσ̃z ⊗M (2)
(k) −

ρs⊗M (0)
(k) for some Hermitian operators M

(0)
(k) ,M

(2)
(k) on the

measurement qubit.

Proof: We proceed by iteration. The property is true for
k = 1, 2. The statement essentially holds because when

plugging in all the knowledge from previous orders, the
invariance condition for odd k takes the same form as for
k = 1, while for even k it takes the same form as for k = 2.
Indeed, for a general k, the invariance condition reads:

L(k)
s (ρs)⊗ ρ̄+

∑k−1
j=1K

(k−j)(L(j)
s (ρs))

= L̄(K(k)(ρs))− i[σ̃z ⊗ σz, K(k−1)(ρs)] .

The partial trace over measurement qubit gives an expres-

sion for L(k)
s . Assume that our form holds up to k − 1.

• For k odd, thanks to (σ̃z)
2ρs = ρs(σ̃z)

2 = ρs, each term
on the left hand side contains a linear combination of σ̃zρs
and ρsσ̃z only. The same holds true for the remaining term
trmeas.qubit(i[σ̃z ⊗ σz, K(k−1)(ρs)]) on the right hand side.
It is not hard to check that, provided our form holds true
up to k − 1, the terms in σ̃zρs and in ρsσ̃z have opposite

imaginary coefficient, confirming the form of L(k)
s . For

instance, for j = 2 on the left, we have

σ̃zρs ⊗Mk−2 + ρsσ̃z ⊗M†k−2

−σ̃z( σ̃zρs ⊗Mk−2 + ρsσ̃z ⊗M†k−2 )σ̃z

= [σz, ρs]⊗ (Mk−2 −M†k−2)

and tr(Mk−2 −M†k−2) is imaginary.
• Similarly, for k even, each term on the left hand side
contains a linear combination of σ̃zρsσ̃z and ρs only, as
does the remaining term on the right hand side; and when
actually checking a term it is obvious that the coefficients
of σ̃zρsσ̃z and of ρs are real and opposite.
• This form of the equations also implies the same type
of solution for K(k), i.e. k even is like k = 2 and k odd is
like k = 1. Note that we do not claim here (yet) to ensure
gk positive or K completely positive, so we have nothing
more to prove. �

The series expansion from Proposition 2 can also be
summarized in the following form:

Ls(ρs) =−if [σ̃z, ρs] +
g

2
Dσ̃z (ρs) (3)

K(ρs) = (I+σ̃z)
2 ρs

(I+σ̃z)
2 ⊗Q0 + (I-σ̃z)

2 ρs
(I-σ̃z)

2 ⊗Q1

+ σ̃zρsσ̃z−ρs
2 ⊗Q2 + i(σ̃zρs−ρsσ̃z)

2 ⊗Q3

where f is odd in ε; g is even in ε and still must be proven
positive; Qk for k = 0, 1, 2, 3 are Hermitian operators. To
satisfy trace preservation i.e. tr(K(ρs)) = 1 for all ρs,
we need tr(Q0) = tr(Q1) = 1. We further must prove
complete positivity of this form, which we will do in the
next subsection. We first set out to formally solve the
system as a whole.

Note that the first line of K in (3) extracts only the
diagonal components of ρs in the σ̃z basis, while the second
line extracts only the off-diagonal components.

Theorem 3: The system (1) admits an invariant subsys-
tem of the form (3), with:

• Q0 = ρ̄0 the steady state of the measurement qubit if

the target qubit was in the ground state ρs = (I+σ̃z)
2 ;

this state satisfies L̄(ρ̄0) + i χ̃2 [σz, ρ̄0] = 0.
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• Q1 = ρ̄1 the steady state of the measurement qubit if

the target qubit was in the excited state ρs = (I−σ̃z)
2 ;

this state satisfies L̄(ρ̄1)− i χ̃2 [σz, ρ̄1] = 0.

• g = −(λ+λ∗)
2 ≥ 0 and f = λ−λ∗

4i , where λ is an
eigenvalue of the matrix

A =


−κ/2 −∆̃ 0 0

∆̃ −κ/2 −Ω 0
0 Ω −κ −κ− iχ̃
0 0 −iχ̃ 0

 .

• Q2 = cQ̃2 and Q3 = cQ̃3 where the vectorized
versions of Q̃2 and Q̃3 correspond respectively to the
real part and imaginary part of the eigenvector of A
associated to λ, and c is an arbitrary complex number.

Proof: Plugging the form (3) into the invariance equation,
we get expressions on the measurement qubit, multiplying
factors of the form σ̃zρs, ρsσ̃z, ρs and σ̃zρsσ̃z. Rearranging
and separating these four terms yields:

L̄(Q0) + i χ̃2 [σz, Q0] = 0

L̄(Q1)− i χ̃2 [σz, Q1] = 0

L̄(Q2) = −gQ2 + 2if(iQ3) + i χ̃2 (σz(iQ3) + (iQ3)σz )

L̄(iQ3) = −g(iQ3) + 2ifQ2 + i χ̃2 (σzQ2 +Q2σz ) .

The first two equations characterize Q0 and Q1 up to a
scalar factor; the conditions tr(Q0) = tr(Q1) = 1 fix this
scalar to yield the first part of the solution.
Defining S+ = Q2 + iQ3 and S− = Q2 − iQ3 = (S+)†, the
remaining two equations decouple into

L̄(S+)− i χ̃2 (σzS+ + S+σz) = −(g − 2if)S+

and its hermitian conjugate. Since g and f are part of
the unknowns, we here have an eigenvalue equation on the
Hilbert space of the measurement qubit. The eigenvalues
give the reduced dynamics – real part for g, imaginary part
for f – and the eigenvectors give Q2, Q3. The matrix A in
the statement corresponds to parameterizing S+ = α1σx+
α2σy + α3σz + α4I, with complex coefficients α1 to α4

stacked in this order into a column vector. Since we have
no further equality conditions, the eigenvector is defined
up to a scalar factor, c in the statement. Matrix A is
rigorously the state matrix governing the evolution of a
component |n2〉〈n1|⊗Q(t) of the full quantum system; the
latter cannot be unstable so A must bes stable, ensuring
that g is positive. This can also be checked, although a bit
tediously, with the generalized Routh-Hurwitz criterion. �

Computational efficiency of model reduction: Compared to
studying the full system, we now have an eigenvalue equa-
tion on the Hilbert space of the measurement qubit only.
Compared to a finite order expansion, we now solve an
eigenvalue equation for the measurement qubit dynamics,
instead of computing the inverse of this dynamics.

Regarding eigenvalues: Matrix A in Thm.3 has 4 eigen-
values, yielding 4 possible reduced dynamics. For χ̃ small,
a single eigenvalue is close to zero, giving the slow dy-
namics that we search to characterize. For larger χ̃, the
4 eigenvalues become of similar order. One may want
to select the eigenspace which follows analytically from
χ̃ = 0, with the idea of recovering Prop.2. Alternatively,

one may acknowledge that we are really interested in the
evolution of trmeas.qubit(ρ), corresponding essentially to α4

in the proof of Thm.3. Generically, α4 does not follow
autonomous dynamics, it is governed by all 4 eigenvalues of
A, and on the long run the slowest one will dominate. From
this viewpoint, the effective measurement rate is obtained
by taking g corresponding to the slowest eigenvalue of A.

Regarding eigenvectors: The free scalar factor c in the
statement indicates a gauge degree of freedom on how ρs is
mapped into the full space; e.g. we could a priori use ρ′s =
UρsU

† instead of ρs, with some arbitrary unitary U , write
the dynamics L′s on ρ′s, and map this to the full space as
K′(ρ′s) = K(U†ρ′sU). By imposing the form with σ̃z, we are
taking away some gauge freedom, but not all. In particular,
if K is the map from Thm.3 associated to a scalar c and
K′ is the map associated to c′ = eiθ c, one checks that
this corresponds to ρ′s = eiθσz/2ρse

−iθσ̃z/2. This makes
physical sense as the dynamics, involving σ̃z only, is indeed
invariant under this unitary basis transformation. It is
most natural to assume K(ρs) = ρs ⊗ ρ̄ for ε = 0, but
this still leaves the choice to define ρ′s with an arbitrary
function θ(ε) satisfying θ(0) = 0.

Changing |c| also has a clear effect, in relation with
ensuring complete positivity of K, as we discuss next.

3.2 Ensuring complete positivity

The norm of c defining Q2 and Q3 in Thm.3 determines
whether an off-diagonal element of ρs will be mapped to a
small or large contribution in the actual ρ. For the extreme
case c = Q2 = Q3 = 0, the off-diagonals of ρs would
be in the kernel of K and the reduced model would just
describe that a state of the form p |n1〉〈n1| ⊗ ρ̄0 + (1 −
p)|n2〉〈n2| ⊗ ρ̄1 with p ∈ [0, 1] is a steady state of the full
dynamics. Taking c 6= 0 allows to model the target qubit
coherences, i.e. terms involving |n1〉〈n2|. On the other
hand, taking c very large, the result of K(ρs) dominated
by such off-diagonal terms would not be positive i.e. not a
proper quantum state. We recall that ρ must be a positive-
semidefinite Hermitian matrix (we just say “positive”) of
trace 1 in order to represent a quantum state. We have the
following remarkable result.

Theorem 4: There exists a value for the scalar factor c
in Theorem 3 such that:

• the resulting map K is positive on the qubit state
space, i.e. it maps every positive ρs to positive ρ, and
for any c′ > c this would not be true anymore;
• the resulting map K is completely positive, i.e. K⊗ I

is positive on the state space of two qubits, and for
any c′ > c this would not be true anymore;
• the resulting map K covers the full invariant mani-

fold, i.e. every positive ρ on the invariant subspace
takes the form K(ρs) for some positive ρs.

Proof: The key ingredient of our proof is the Schur comple-
ment argument: block matrix [A, B ; B†, C] is positive if
and only if C is positive and A−BC−1B† is positive.

Writing ρn,m = 〈n|ρs|m〉, we can rewrite (3) in the form:

K(ρs) = ρn1,n1
|n1〉〈n1| ⊗ ρ̄0 + ρn2,n2

|n2〉〈n2| ⊗ ρ̄1

+ρn1,n2 |n1〉〈n2| ⊗M + ρn2,n1 |n2〉〈n1| ⊗M† .
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Positivity: Applying the Schur argument to the blocks
distinguished by n1, n2, map K is positive if and only if
1. ρn2,n2 ρ̄1 is positive (OK whenever ρs is positive); and

2. ρn1,n1 ρ̄0 −
ρn1,n2

ρn2,n1

ρn2,n2
Mρ̄−1

1 M† is positive. This de-

pends on M . The positive ρs can span all cases with
ρn1,n1

≥ ρn1,n2
ρn2,n1

/ρn2,n2
, in particular with equality.

Thus, considering the worst case, we must have

ρ̄0 ≥Mρ̄−1
1 M† , (4)

in other words matrix [ρ̄0, M ; M†, ρ̄1] positive. The first
part of the statement just amounts to selecting the value
of c saturating this condition.

Complete positivity: A positive map acting on a qubit, is
by definition completely positive if K⊗I is positive on the
state space of two qubits. In matrix form, we need

[K(A), K(B) ; K(B†), K(C)] (5)

positive for any positive state ρ̂ = [A, B ; B†, C] of
two qubits, meaning with A,B,C being operators on C2

and ρ̂ satisfying the Schur conditions. Applying the Schur
argument to (5) with our expression of K and using tensor
product properties, we get the conditions:
1. C ⊗ ρ̄1 must be positive. Since C must be positive for ρ̂
to be positive, this is always satisfied as ρ̄1 is positive.
2. A⊗ρ̄0−(B† C−1B)⊗(Mρ̄−1

1 M†) must be positive. Since

{X > X̃ and Y > Ỹ } is sufficient to imply X⊗Y > X̃⊗Ỹ ,
the condition is satisfied when ρ̂ is positive (whose Schur

argument yields the X > X̃ property) and ρ̄0 > Mρ̄−1
1 M†

(the Y > Ỹ property). The latter is the condition (4) for
positivity of K, proving the second point.

Surjectivity: We must show that if K(q) is positive (of
trace one), then q is positive (of trace one), for the
Kraus map saturating the condition (4). By the Schur
argument, having K(q) positive first requires qn2,n2

ρ̄1

positive and thus qn2,n2
≥ 0; reversing the roles of n1

and n2 in this argument, we get the condition qn1,n1
≥ 0.

The remaining Schur condition for positivity of K(q) is
qn1,n1

ρ̄0 −
qn1,n2

qn2,n1

qn2,n2
Mρ̄−1

1 M† positive, or equivalently

ρ̄0 − rMρ̄−1
1 M† (6)

positive where r =
qn1,n2

qn2,n1

qn2,n2
qn1,n1

. Having c saturate the

condition (4) means that ρ̄0 − |c̃|
2

|c|2 Mρ̄−1
1 M† cannot be

positive for |c̃||c| > 1. Thus in (6) we must take r ≤ 1,

which implies that q is positive. �

4. ANALYZING THE REDUCED SYSTEM

From this model reduction, we can deduce fundamental
properties about the measurement setup performance.

Information-theoretic bound: It should be impossible to
acquire information about the photon number in the target
system, faster than information is leaking out of the whole
setup through the measurement qubit. The output signal
leaking out of the latter is proportional to κ tr(ρσx), while
the (indirect) output signal corresponding to (3) would
be g tr(ρσz). (This is why we have used g/2 instead of g
in (3).) Matrix A in Thm.3 has only stable eigenvalues,
with their sum tr(A) = −2κ, so we readily see that the
dissipation rate in the reduced model satisfies g/2 = −(λ+

λ∗)/4 ≤ κ even when taking the fastest eigenvalue. Ap-
plying the generalized Routh-Hurwitz criterion allows to
tighten this, proving g/2 ≤ κ/2. Asymptotically, we would
rather expect to be bounded by the slowest eigenvalue,
which is readily bounded by tr(A)/4 and thus g/2 ≤ κ/4.

Optimal operation point: To optimize induced measure-
ment rate, i.e. g in Thm.3, we can just study the slowest
eigenvalue of A as function of the parameters Ω, ∆̃, κ while
the coupling χ̃ between target system and measurement
device is just fixed to its highest possible value. From
the intuition discussed in the introduction, we expect that
κ should take an intermediate value, Ω high enough to
get ρ̄ significantly different from ground state at this κ;
regarding ∆̃, it was not a priori clear what is best, as the
resonance intuition (∆̃ = ±χ̃) only holds for Ω̃, κ small.
The eigenvalues of A can be investigated by root locus
analysis as function of Ω̃2 or ∆̃2, with other parameters
fixed. Exploring this root locus for various κ, the largest g
appears when A has two equal eigenvalues, at ∆̃ = 0. Plug-
ging this condition into the root polynomial, we obtain
(Ω̃2−κ2/4+χ̃2+iκχ̃)3

Ω̃4κ2
= 27

16 . This together fixes the operating

point Ω̃2 ' 5.6058...( χ̃2 )2, κ ' 4.3055... χ̃2 and enables a

measurement rate g ' 1.2424... χ̃2 . Local optimality of the
degenerate situation can be understood as follows. When
a situation with two equal eigenvalues is perturbed by
a complex parameter δ, generically the eigenvalues split
as
√
δ and this is the dominating effect; except when

the eigenvalues split along a purely imaginary direction,
which for a generic complex matrices is not typical, one of
the two eigenvalues gets closer to 0. Thus, moving away
from the degenerate situation is less optimal on the worst
eigenvalue, at least locally.

4.1 Comparison to experimental results

A more accurate model of the experimental setup includes
the finite damping time of the harmonic oscillator:

d
dtρ=−i[−χ

2
a†a⊗ σz +

∆

2
σz +

Ω

2
σx, ρ] + κDσ−(ρ) (7)

+Γ1Da(ρ) + 2ΓφDa†a(ρ),

with small damping rates Γ1,Γφ. The “dephasing” term
in Γφ perturbs the phase of the mode (conjugate variable
to the photon number a†a), like the measurement, and
its rate just adds up to the effect of the measurement
computed by adiabatic elimination. The “relaxation” term
in Γ1 describes energy loss; it implies that photon number
is not exactly conserved and the decoupling into two-
dimensional subspaces, leading to (1), is not exact any-
more.

In the experiments, the harmonic oscillator is initialized in
a coherent state, which is a superposition of different pho-
ton numbers. Then the qubit is driven and continuously
measured during a time t. To compare our predictions with
the actual system state, at time t a standard direct Wigner
tomography measurement of the harmonic oscillator is per-
formed with an auxiliary device. By repeating the experi-
ment many times for the same parameter values, and for
different end times t, this gives access to the density ma-
trix of the harmonic oscillator ρHO(t) = trmeas.qubit(ρ(t))
corresponding to the evolution (7).
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Fig. 1. Measured decay rate of |ρHO,n1n2 |/
√
ρHO,n1n1ρHO,n2n2 (dots) and adiabatic elimination theory (line) as a function

of detuning ∆ in units of χ.

The impact of the continuous-time photon number mea-
surement should be most characteristic on variables of
the form |ρHO,n1n2

|/√ρHO,n1n1
ρHO,n2n2

, where the indices
n1, n2 denote components in photon number basis. Indeed,
assuming Γ1 = 0 and using the adiabatic elimination
results, the dynamics for ρs in the subspace spanned by
the states with n1 or n2 photons reads

ρ̇s = −if [σ̃z, ρs] +
g

2
Dσ̃z

(ρs) +
Γφ
2

(n1 − n2)2Dσ̃z
(ρs). (8)

This equation predicts an exponential decrease:

|ρs,n1n2
|

√
ρs,n1n1

ρs,n2n2

(t) = e−(Γφ(n1−n2)2+g)t .

On the experimental results, we do observe an exponential
decrease of |ρHO,n1n2

|/√ρHO,n1n1
ρHO,n2n2

(t). We can ex-
tract the corresponding decay rate, to compare it with the
prediction Γφ(n1 − n2)2 + g of adiabatic elimination with
Γ1 = 0 and computing g using the matrix A, for various
values of n1, n2 and of the detuning ∆. As shown on Figure
1, theory and experiment are in good agreement, without
having to adjust any model parameters. The differences
between the two are most probably due to the approxi-
mation Γ1 = 0 in the theoretical model, while in reality
1/Γ1 = 3.8 µs for an experiment duration of about 5 µs.

5. CONCLUSION

We have been able to relate an adiabatic elimination
series expansion at arbitrary order, to an exact model
reduction in quantum form, for all parameter values on
an existing experimental setup. The fact that the target
system is a qubit subject to a single σz coupling is the
key to obtaining ideal results. However, we believe that
Proposition 2 together with Theorems 3 and 4 indicate
how high-order adiabatic elimination should behave more
generally, at least for dispersive-type coupling (single term

in the coupling Hamiltonian). Namely, there should exist
simple gauge conditions ensuring a completely positive
reduced model, and if not exactly surjective as in Thm.4,
the model should at least be close to it. The resulting
reduced model could miss states ρ which would be small
extrapolations of the image of K(ρs).
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