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Abstract: In this paper, we extend the results from Jiao et al. (2019) on distributed linear
quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic
tracking control for leader-follower multi-agent systems. Given one autonomous leader and a
number of homogeneous followers, we introduce an associated global quadratic cost functional.
We assume that the leader shares its state information with at least one of the followers and the
communication between the followers is represented by a connected simple undirected graph.
Our objective is to design distributed control laws such that the controlled network reaches
tracking consensus and, moreover, the associated cost is smaller than a given tolerance for all
initial states bounded in norm by a given radius. We establish a centralized design method for
computing such suboptimal control laws, involving the solution of a single Riccati inequality of
dimension equal to the dimension of the local agent dynamics, and the smallest and the largest
eigenvalue of a given positive definite matrix involving the underlying graph. The proposed

design method is illustrated by a simulation example.
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1. INTRODUCTION

Distributed control for multi-agent systems has drawn
much attention in the past two decades due to its practi-
cal applications, e.g., formation control, intelligent trans-
portation systems and power grids. In the literature, ba-
sically two types of multi-agent systems are considered,
namely leaderless multi-agent systems and leader-follower
multi-agent systems. In the leaderless case, the local agents
reach agreement which depends on the dynamics of all
agents (Olfati-Saber and Murray (2004), Trentelman et al.
(2013)). In the leader-follower case, the states or the
outputs of the followers track that of the leader (Hong
et al. (2006), Ni and Cheng (2010)). One of the attractive
directions in distributed control for multi-agent systems is
to design distributed control laws that minimize certain
global or local performances, while reaching an agreement
for the controlled network.

In the past, quite some work has been devoted to dis-
tributed linear quadratic (LQ) optimal control for leader-
less multi-agent systems. In Tuna (2008), an LQR based
method was used to design distributed synchronizing con-
trol laws for a multi-agent system, without taking any
performance into consideration. In Borrelli and Keviczky
(2008), suboptimal distributed stabilizing control laws
were established for a multi-agent system with general
agent dynamics with respect to an associated global cost
functional, while in Cao and Ren (2010), the optimal
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synchronizing control gain was computed for leaderless
multi-agent systems with single integrator agent dynamics.
In the meantime, the distributed LQ control problem was
also considered in Semsar-Kazerooni and Khorasani (2009)
by utilizing a game theoretic approach, in Movric and
Lewis (2014) by adopting an inverse optimal approach,
and later in Jiao et al. (2019) by employing a suboptimality
approach. For other papers related to this topic, see also
Zhang et al. (2015) and Jiao et al. (2020).

On the other hand, distributed LQ tracking control for
leader-follower multi-agent systems has also attracted
much attention. In Zhang et al. (2011), distributed syn-
chronizing control laws were established using an LQR
based approach without optimizing any performance.
Later on, in Cheng and Ugrinovskii (2015), suboptimal
distributed control laws were proposed for achieving guar-
anteed cost. In Nguyen (2015), a hierarchical LQR based
method was presented to design suboptimal synchronizing
control laws for leader-follower systems, and an inverse
optimal approach was introduced in Movric and Lewis
(2014), see also Zhang et al. (2015).

In the present paper we extend the results from Jiao et al.
(2019) on distributed LQ control for leaderless multi-agent
systems to the case of distributed LQ tracking control
for leader-follower multi-agent systems. Given a leader-
follower system with one autonomous leader and a number
of followers, we introduce an associated global quadratic
cost functional. We assume that the leader shares its state
information with at least one of the followers, and the
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communication between the followers is represented by
a connected simple undirected graph. Our aim is then
to design distributed diffusive control laws such that
the controlled network reaches tracking consensus, i.e.,
the states of the followers track the state of the leader
asymptotically and the associated cost is smaller than an
a priori given upper bound.

The outline of this paper is as follows. Section 2 provides
some preliminaries on graph theory and quadratic perfor-
mance analysis for linear systems. In Section 3, we formu-
late the suboptimal distributed linear quadratic tracking
control problem for leader-follower multi-agent systems.
We then address this suboptimal distributed tracking con-
trol problem in Section 4. A simulation example is pre-
sented in Section 5 to illustrate our design method. Finally,
Section 6 concludes this paper.

Notation

We denote by R the field of real numbers, and by R™ the
n-dimensional real Euclidean space. The column vector
1,, € R” denotes the vector whose entries are all equal to
1. For € R™, we define its Euclidean norm ||z|| := vz Tx.
For a given r > 0, we denote by B(r) := {x € R" | ||z|| <
r} the closed ball of radius . We denote by R"*™ the
space of real n x m matrices. For a given matrix A, its
transpose and inverse (if it exists) are denoted by AT and
A~1, respectively. We denote by I,, the identity matrix of
dimension n X n. The Kronecker product of two matrices
A and B is denoted by A® B, which has the property that
(A1®B1)(A2®Bg) = A1 A3® B1 Bs. For a given symmetric
matrix P we denote P > 0 if it is positive definite and
P < 0 if it is negative definite. By diag(ay, as,...,a,), we
denote the n x n diagonal matrix with aq,as,...,a, on
the diagonal.

2. PRELIMINARIES
2.1 Graph Theory

In this paper, a (directed) graph is a tuple G = (V, &)
with nonempty node set ¥V = {1,2,..., N} and edge set
€ C VxV. The edge from node i to node j is represented by
the pair (¢, j) € € with 4, 5 € V. We say the graph is simple
if the edge set £ only contains edges of the form (i, j) with
t # j. The graph is called undirected if (i,7) € £ implies
(4,1) € €. The adjacency matrix of the graph G is defined
as A = [a;;] with a;; = 1 if there is an edge between the
nodes ¢ and j, and a;; = 0 otherwise. For simple graphs,
a;; = 0 for all 4. Furthermore, a graph G is undirected if and
only if A is symmetric. The Laplacian matrix is defined as
L = D — A, where D = diag(dy,ds,...,dy) with d; =
Z;y:l a;; the degree matrix of G. The Laplacian matrix
L of an undirected graph is symmetric and consequently
only has real eigenvalues. Furthermore, all eigenvalues are
nonnegative and 0 is an eigenvalue of L. The graph is
connected if and only if 0 is a simple eigenvalue of L.

For a connected simple undirected graph G, we review the
following result:

Lemma 1. (Hong et al. (2006)). Let G be a connected
simple undirected graph with Laplacian matrix L. Let

,gn be non-negative real numbers with at least
,gn). Then the

91,92, - -
one g; > 0. Define G = diag(¢1,92,---
matrix L 4+ G is positive definite.

2.2 Quadratic Performance of Linear Autonomous Systems

In this subsection, we analyze the quadratic performance
of a linear autonomous system. Consider the autonomous
system B

B(t) = Az(t), 2(0) =z (1)
where A € R™" and x € R” is the state. We consider the
quadratic performance of system (1), given by

J= /OOO " (t)Qux(t) dt (2)

where Q > 0 is a given real weighting matrix. Note that
the performance J is finite if system (1) is asymptotically
stable, i.e., A is Hurwitz.

The following well-known result (Skelton et al. (1997) and
Jiao et al. (2019)) provides a mnecessary and sufficient
condition such that, for a given tolerance v > 0, the
performance (2) satisfies J < .

Theorem 2. Consider system (1) with associated perfor-
mance (2). For given v > 0, we have that A is Hurwitz
and J < « if and only if there exists P > 0 satisfying

ATP+PA+Q <0, (3)
xg Pxo < 7. (4)

In the next section, we formulate the problem that we will
address in this paper.

3. PROBLEM FORMULATION

In this paper, we consider a leader-follower multi-agent
system, consisting of one leader and N followers. The
dynamics of the leader is represented by the linear time-
invariant autonomous system
I (t) = Az, (t), 2,(0) = 2p0. (5)
where A € R™ "™ 1z, € R" is the state of the leader
and x,q is its initial state. The dynamics of the followers
are identical and represented by the linear time-invariant
systems
ii(t) ZAl‘i(t)—FBui(t), i=1,2,...,N

(6)
where A € R™"™ B € R"™ "™ and z; € R", u; € R™ are
the state and input of follower i, respectively, and z;q is its
initial state. Throughout this paper, we assume that the
pair (A, B) is stabilizable. Moreover, we make the following
two standard assumptions regarding the communication
between the leader and the followers:

z;(0) = w40,

Assumption 1. We assume that at least one follower re-
ceives the state information of the leader.

Assumption 2. We also assume that the underlying graph
G of the communication between the followers is a con-
nected simple undirected graph.

We consider the infinite horizon distributed linear quadratic
tracking control problem for the leader-follower system
(5) and (6), where the global cost functional integrates
the weighted quadratic difference of states between every
follower and its neighbors and the weighted quadratic
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difference of states between the leader and the followers
communicating with the leader, and where the cost func-
tional also penalizes the inputs in a quadratic form.

Note that, as mentioned in Assumption 1, at least one fol-
lower receives the state information of the leader. Thus, the
leader-follower system (5) and (6) can be interconnected
by a distributed diffusive control law of the form

N
= K ay(@i(?)

where a;; is the ij-th entry of the adjacency matrix A of
the underlying graph G, K € R™*" is an identical feedback
gain for all followers and we have g; > 0 for at least one
i=1,2,...,N. Accordingly, the cost functional considered
in this paper is given by

0= [ e

i=1 j=1
N
Q(z; — x,) +Zu;rRui dt

+ Zgz 4
- (8)

where (9 > 0 and R > 0 are given real weighting matrices
of suitable dimensions.

zj(t) + Kgi(i(t) — 2,(t)) (7)

)" Q(z; — )

’L_:L.’l‘

The distributed linear quadratic tracking problem is then
the problem of minimizing the cost functional (8) for
all initial states x,.o and x;, ¢ = 1,2,...,N over all
distributed diffusive control laws (7) such that the states of
all followers track the state of the leader asymptotically. In
that case we say the network reaches tracking consensus:

Definition 3. We say the control law (7) achieves tracking
consensus for the leader-follower system (5) and (6) if for
alli=1,2,..., N and for all initial states x,¢ and x;q, we
have

x;(t) — zr(t) = 0 as t — oo.

Due to the distributed nature of the control law (7) as
imposed by the network topology, the distributed linear
quadratic tracking problem is a non-convex optimization
problem (Mosebach and Lunze (2014)). It is therefore
difficult, if not impossible, to find a closed form solution
for an optimal controller, or such optimal controller may
not even exist. Therefore, in this paper we will design
distributed control laws which solve a suboptimal version
of this problem.

To proceed, for the ith follower we introduce the following
error state

€ =Ti — Tr,
for ¢ = 1,2,..., N. Subsequently, the dynamics of e; is
given by

é; = Ae; + Bu;, i=1,2,...,N. (9)
(al,....

) u = (uf,...,ul)", and
e = (elT, . ,eL)T, we can then rewrite the error system
(9) in compact form as

e = (IN ®A)6+ (IN ®B)u,
Note that

Denoting © =

e(0) = ep. (10)
e=x—1y®z,.

Correspondingly, by using the fact (L ® K)(1 ® z,) = 0,

the control law (7) can be given by

u(t) = (T ®K)e (11)
where I' = L + G and G = diag(g1, 92, - - -, g ). Similarly,
the cost functional (8) can be written in terms of e and u
as

J(u) = /Ooo e"T®Q)e+u' (In ® R)u dt. (12)

Now, by substituting the control law (11) into the error
dynamics (10), we obtain the closed-loop error system

ée=(In®A+T®BK)e, €(0)=eq. (13)
and the associated cost is now given by
J(K) = / e’ (F RQ+I%® KTRK)e dt (14)
0

Note that the controlled leader-follower system (5) and (6)
reaches tracking consensus, i.e., the states of all followers
track the state of the leader asymptotically, if and only if
the error dynamics (13) is stable.

Let

B(r) = {eo € R™ | [leo|| < r} (15)
be the closed ball of radius r in the state space R™V of the
error system (13). Then, for the leader-follower system (5)
and (6) with initial states such that the error initial state
is contained in a closed ball of a given radius, we want to
design a distributed diffusive controller such that tracking
consensus is achieved and, for all initial states satisfying
(15), the associated cost is smaller than an a priori given
upper bound. Thus, the problem that we will address is
the following;:
Problem 1. Consider the leader-follower multi-agent sys-
tem (5) and (6) and the associated cost functional (8).
Let r > 0 be a given radius and let v > 0 be an a priori
given upper bound for the cost. The problem is to find
a distributed diffusive control law of the form (7) such
that the controlled leader-follower system reaches tracking
consensus and, for all initial conditions xy and z,q such
that eg = xg — 0 satisfies (15), the associated cost (8) is
smaller than the given upper bound, i.e., J(K) < 7.

4. SUBOPTIMAL CONTROL DESIGN FOR
LEADER-FOLLOWER MULTI-AGENT SYSTEMS

In this section, we will address Problem 1 and provide a
suitable control design method. As mentioned before, the
distributed control law (7) achieves tracking consensus and
suboptimal performance for the leader-follower system (5)
and (6) with respect to the given tolerance on the cost
functional (8) if and only if the error dynamics (13) is
stable and J(K) < 7.

Now, let U € RM*N be an orthogonal matrix that
diagonalizes I' = L + G. Define

UTTU := A = diag(A1, A, ..., Ay).
It follows from Lemma 1 that A\; > Oforalli=1,2,..., N.
To simplify the problem formulated in the previous sec-
tion, by applying the state transformation € = (U @I, )e,

system (13) becomes
e=(INn®A+A®BK)e, &(0)=¢ (16)
where ¢ = (é]—,...,é;\r/)T. In terms of the transformed

variable, the cost (14) is then given by

/ Ze NiQ + MK TRK)é; dt. (17)
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Note that the transformed states €;, i = 1,2,..., N
appearing in system (16) and cost (17) are decoupled from
each other. Then we can write system (16) as

é& = (A+\BK)g, i=1,2,...,N. (18)
Also, the cost (17) equals
N
J(K) =" Ji(K) (19)
with .
Ji(K) = /Oo e] \MQ+ NKTRK)g; dt, i=1,2,...,N.
’ (20)

Clearly, the controlled leader-follower system (5) and (6)
reaches tracking consensus with control law (7) if and
only if, for ¢ = 1,2,..., N, the systems (18) are stable.
In addition, the control law (7) is suboptimal if J(K) < ~.

So far, we have transformed the problem of distributed
suboptimal control for the leader-follower system (5) and
(6) into the problem of finding one single static feedback
gain K € R™*" guch that the systems (18) are stable for
1 =1,2,...,N and J(K) < ~. Since the pair (4, B) is
stabilizable, there exists such a feedback gain K (Li et al.
(2010), Zhang et al. (2011)).

The following lemma then provides a necessary and suf-
ficient condition for a given feedback gain K to stabilize
all systems (18) and for given initial states guarantee that
J(K) < 7.

Lemma 4. Let K be a feedback gain. Consider the systems
(18) with given initial states €j9, €29, . ..,Eno and associ-
ated cost functionals (19) and (20). Let v > 0. Then all
systems (18) are stable and J(K) <+ if and only if there
exist P; > 0 satisfying

(A+NBK) P, + Pi(A+ \BK) + \Q + M KTRK <0

(21)
and
N
Z &0 Pieio <7, (22)
i=1
fori=1,2,..., N, respectively.

Proof. (<) Since (22) holds, there exist ; := &, Piéio+€;
with sufficiently small ¢; > 0, ¢ = 1,2,..., N such that
SV i < 7. Because there exists P; > 0 such that (21)
and e, Pié;o < ~; holds for all i = 1,2,..., N, by taking
A=A+ )\BK and Q = \;Q + M?K " RK, it follows from
Theorem 2 that all systems (18) are stable and J;(K) < ;
fori=1,2,...,N. Since J(K) = Y.~ | Ji(K), this implies
that J(K) < Y1, 7 < 7.

(=) Since J(K) < v and J(K) = Zfil Ji(K), there
exist v; := J;(K) + ¢; with sufficiently small ¢; > 0,
i=1,2,..., N such that 25\7:1 v; < 7. Because all systems
(18) are stable and J;(K) < ~; for ¢ = 1,2,..., N, by
taking A = A+ \;BK and Q = \;Q + \2K " RK, it again
follows from Theorem 2 that there exist P; > 0 such that
(21) and z},P;Z;0 < 7; hold for all i = 1,2,..., N. Since
Zi’vﬂ ~; < 7, this implies that Ziv=1 TPt < Zf\il v <
. O

Lemma 4 establishes a necessary and sufficient condition
for a given feedback gain K to stabilize all systems (18)

and to satisfy, for given initial states of these systems,
J(K) < 5. However, Lemma 4 does not yet provide a
design method for computing such K. Therefore, in the
following we will provide a method to find such K.

Lemma 5. Consider the leader-follower system (5) and (6)
with associated cost functional (8). Let x,0 be the given
initial state of the leader and x;9, ¢ = 1,2..., N be the
given initial states of the followers, respectively. Let v > 0
be a given tolerance. Let ¢ be any real number such that
0<c< % We distinguish two cases:
(a) if
— <c¢< —, 23
A+ Ay T AN (23)
then there exists P > 0 satisfying
ATP+PA+ (N3 —2cA\y)PBRIBTP+AnQ < 0.
(24)
(b) if

0<e< (25)

2
A1+ AN
then there exists P > 0 satisfying

ATP 4+ PA+ (X2 —2c\)PBR™'BTP 4+ AnQ < 0.

(26)
In both cases, if in addition P satisfies
N
Z(Jﬂio — 2,0) | Pxi0 — Tr0) <7, (27)
i=1

then the distributed control law (7) with K := —cR™'BT P
achieves tracking consensus for the controlled leader-
follower system (5) and (6), and with the initial states
xro and x;p we have J(K) < 7.

Proof. Since the line of the proof for case (b) is analogous
to that for case (a), we will only give the proof for case
(a). Using the upper and lower bounds on ¢ given by (23),
it can be verified that 02)\% —2c)\; < 02/\?\, —2cAn < 0 for
i=1,2,...,N. It is then easily seen that (24) has many
positive definite solutions. Since also A\; < Ay, any such
solution P is a solution to the N — 1 Riccati inequalities
ATP 4+ PA+ (*X? —2c)\)PBR™'B"P + \Q < 0,
i=1,2,...,N. (28)
Equivalently, P also satisfies the Lyapunov inequalities
(A—c\BR'B"P)"P+4+ P(A—c\;\BR"'B"P)
+MQ+ANPBRIB'P<0,i=1,2,...,N.
Next, by substituting € = (UT ® I,,)e into (22) we have
SN el Peiy < v, which is equal to (27).

Next, taking P, = P for i = 1,2,...,N and K :=
—cR7!BTP in inequalities (21) and (22) immediately
gives us inequalities (29) and (27). Then it follows from
Lemma 4 that all systems (18) are stable and J(K) <
v. Subsequently, the controlled leader-follower system
reaches tracking consensus and J(K) < . O

(29)

We will now apply Lemma 5 to establish a solution to
Problem 1. The next theorem provides a condition under
which, for given radius r and upper bound ~, suboptimal
distributed diffusive control laws exist, and explains how
these can be computed.

Theorem 6. Consider the leader-follower system (5) and
(6) with associated cost functional (8). Let r > 0 be a
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given radius and let v > 0 be an a priori given upper
bound for the cost. Let ¢ be any real number such that
0<e< % We distinguish two cases:

(a) if
<c< 2
<< D
A+ AN T AN
then there exists P > 0 satisfying
ATP4+PA+ (P4 —2cAN)PBR™'BTP+AnQ < 0.
(31)

(30)

(b) if

0<e< (32)

A+ AN ’
then there exists P > 0 satisfying

ATP 4+ PA+4 (*A? —2c\)PBR™'BT P+ AnQ < 0.
(33)

In both cases, if in addition P satisfies

Y
P < T—zl , (34)
then the distributed control law (7) with K := —cR™'BT P
achieves tracking consensus for the controlled leader-
follower system (5) and (6) and J(K) < « for all initial
states x,¢o and x( satisfying

To— 1y ® o EB(’/’). (35)
Proof. Again, due to the fact that the line of the proof
for case (b) is analogous to that for case (a), we only give
the proof for case (a). Let P > 0 satisfy (31) and (34).
Next, we will show that if the initial states x,o and xg
satisfy 9 — 1y ® z0 € B(r), then (27) holds. Indeed, if
|0 — 1n ® x|l < r, then
N
Z(mio — xy0) ' P(zi0 — Tro)
i=1
=(x0 — 1n @ 270) (I ® P)(20 — 1y ® @y0)
<7:l2||$0 — 1y @z <.

It then follows from Lemma 5 that the controlled leader-
follower system (5) and (6) reaches tracking consensus with
the given K and J(K) < « for all initial states z,¢ and
satisfying (35). O
Remark 7. Theorem 6 states that after choosing c satis-
fying the inequality (30) for case (a) and finding P > 0
satisfying (31) and (34), the distributed control law with
local gain K = —cR~'BT P is y-suboptimal for all initial
states of the leader-follower system satisfying the condition
(35). According to (34), the smaller the solution P of (31),
the smaller the quotient % is allowed to be, leading to a
smaller upper bound and a larger radius. The question
then arises: how should we choose the parameter ¢ in (30)
so that the Riccati inequality (31) allows a positive definite
solution that is as small as possible. In fact, one can find
a positive definite solution P(c,¢) to (31) by solving the
Riccati equation

ATP+PA—PBR(c)'B"P+Q(e) =0 (36)
with R(c) = mR and Q(e) = AnQ + €l,, where
¢ is chosen as in (30) and € > 0. If ¢; and ¢y as in
(30) satisfy ¢; < co, then we have R(c;) < R(cq), so,
clearly, P(ci,€) < P(co,€). Similarly, if 0 < €; < €, we
immediately have Q(e1) < Q(ez). Again, it follows that

P
0—a@ |
N,

Fig. 1. The underlying graph of the communication be-
tween the leader and the followers.

P(e,e1) < P(c,e3). Therefore, if we choose € > 0 very
close to 0 and ¢ = ﬁ, we find the ‘best’ solution to
the Riccati inequality (31) in the sense explained above.

Likewise, if ¢ satisfies (32) corresponding to case (b), it
can be shown that if we choose € > 0 very close to 0 and
¢ > 0 very close to ﬁ, we find the ‘best’ solution to

the Riccati inequality (33) in the sense explained above.
5. SIMULATION EXAMPLE

In this section, we will use a numerical example borrowed
from Nguyen (2015) to illustrate the design method for the
suboptimal distributed control laws given in Theorem 6.

Consider a leader-follower multi-agent system, consisting
of one leader and five followers. The dynamics of the leader
is given by

@(t) = Ay (), 2,(0) = @ro,
and the dynamics of the followers are identical and repre-
sented by
where

(Ei(O):(Ei(h i:1,2,...,5

(3. =)

The pair (A, B) is stabilizable. Assume the underlying
graph representing the communication between the leader
and the followers is given as in Figure 1. The graph
representing the communication between the followers is
then the undirected cycle graph with the Laplacian matrix

2 -10 0 -1

-1 2 -1 0 O
L=10-12 -10
0 0 -1 2 -1
-1 0 0 -1 2

Since the leader shares its state information only with
follower 2, it follows from Lemma 1 that the associated di-
agonal matrix G = diag(g1, g2, - - .,g5) = diag(0,1,0,0,0).
Furthermore, we consider the cost functional

o4 5 5
J(u) :/0 %ZZ%‘(%‘ — ;)" Q(z; — x)

i=1 j=1
5 N
+ Zgi(%‘ —2,) Qzi —x,) + ZU:RUZ dt
=1 i=1
with
20
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Fig. 2. Plots of the states z,1 and 2! = (z11,...,251)
(upper plot) and z,2 and 2 = (z1,2,...,252) (lower
plot) of the six decoupled local agents without control

Let the desired tolerance for the cost functional be v = 20.
Our aim is then to design a control law of the form

5
ui(t) = K Z aij(zi(t) — x;(t) + Kgi(zi(t) — 2. (1)) (37)

such that the controlled leader-follower system reaches
tracking consensus and the associated cost satisfies J(K) <
20 for all initial states xg and x,q satisfying the condition
|0 — 15 ® xro|| < r with radius r to be specified later.

In this simulation example, we will use the design method
of case (a) in Theorem 6. For I' = L + G the smallest
and largest eigenvalues are \; = 0.1392 and A5 = 4.1149,
respectively. We first compute a solution P > 0 to (31) by
solving

ATP + PA+ (*X2 —2c\s)PBR™'B'P + \sQ + ¢l =0

(38)
with e sufficiently small as mentioned in Remark 7. Here
we choose € = 0.01. In addition, we choose ¢ = )\1%% =
0.4701, which is the ‘best’ choice as mentioned in Remark
7. Then by solving (38) using Matlab, we compute

p_ 13.2553 3.3886
~\ 3.3886 9.2760 )

Correspondingly, the control gain is equal to K =
(1.5931 4.3610). We now compute the radius r of a ball
B(r) of initial states for which the distributed control
law (37) is suboptimal, i.e. J(K) < 20. We compute that
the largest eigenvalue of P is equal to 15.1952. Hence for
every radius r such that % > 15.1952 the inequality (34)
holds. Thus, the distributed controller with local gain K is
suboptimal for all z.¢ and xq satisfying ||zo— 15 Qx| < 7
with r < 1.1473.

As an example, the following initial states of the agents
satisfy this norm bound: z), = (0.3 —0.5), z{, =
(0.7 =0.2), x4, = (0.3 —=0.6), z4, = (0.2 0.3), ], =
(—0.1 —=0.7), zJ, = (0.2 —0.6). The plots of the state of
the six local agents without control are shown in Figure 2.
Figure 3 shows that the controlled leader-follower system
reaches tracking consensus.

Fig. 3. Plots of the states z,; and 2! = (1,1,
(upper plot) and z,5 and z? = (21 2, . .
plot) of the controlled leader-follower system

S T51)
., %5,2) (lower

6. CONCLUSION

In this paper, we have studied the distributed linear
quadratic tracking control problem for leader-follower
multi-agent systems. We have considered leader-follower
systems consisting of one autonomous leader and N fol-
lowers, together with an associated global cost functional.
We assume that the leader shares its state information
with at least one of the followers and the underlying graph
connecting the followers is a connected simple undirected
graph. For this type of leader-follower systems, we have
provided a design method to compute distributed subop-
timal control laws such that the controlled network reaches
tracking consensus and the associated cost is smaller than
a given tolerance for all initial states bounded in norm by
a given radius. The computation of the local gain involves
the solution of a single Riccati inequality, whose dimension
is equal to the dimension of the agent dynamics, and also
involves the largest and smallest eigenvalue of a positive
definite matrix capturing the underlying graph structure.
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