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Abstract: This paper is devoted to a frequency estimation of a pure sinusoidal signal in finite-
time. The parameterization is based on applying delay operators to a measurable signal. The
result is the first-order linear regression model with one parameter, which depends on the signal
frequency. The proposed method of finite-time estimation consists of two steps. On the first step,
the standard gradient descent method is used to estimate the regression model parameter. On
the next step using algebraic equations, finite-time frequency estimate is found. The described
method does not require measuring or calculating derivatives of the input signal and uses one
integrator for the gradient method and another one for the finite-time estimation. The efficiency
of the proposed approach is demonstrated through the set of numerical simulations.
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1. INTRODUCTION

The parameter estimation of sinusoidal signals is an im-
portant and classical problem which has received much
attention from control system theory, see for instance Sto-
ica (1993). From a control systems perspective, an online
estimation is the main field of interest. We are inter-
ested here in the continuous-time estimation of the fre-
quency ω of a pure sinusoidal signal y(t) = A sin(ωt+ φ),
where y(t) is measurable. There are a lot of parameter
estimation methods of sinusoidal signals such as Fourier
analysis, least-squares method, Kalman’s filter, adaptive
notch filter, state-variable filtering techniques etc., see for
instance some recent works Pin et al. (2017), Fedele et al.
(2016), Chen et al. (2017), Na et al. (2015) Yang and Zhao
(2011).

An online frequency estimation is widely used in many
practical applications, for example, as an essential part
of active noise and vibration control, and disturbance
rejection systems Pyrkin and Bobtsov (2016), in a hard
disk drive servo system in order to increase data den-
sity Goh et al. (2001), in precise positioning systems for
nanotechnology Aphale et al. (2008), in dynamic position-
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ing systems for vessels in the presence of waves, winds,
and current Takahashi et al. (2007), in the processing of
measurement data in gravimetry Koshaev et al. (2019).
In power systems, a frequency estimation is used for load
balancing, fault detection, enhance power quality Xia et al.
(2012); Phan et al. (2016). The sensorless speed estimation
approach based on real-time frequency estimation is pro-
posed by Roque et al. (2014).

During the last two decades, a global convergent online fre-
quency estimation is extensively studied. Some approaches
are not restricted to the case of a single sinusoid, in
particular, a signal with bias is considered in Bobtsov and
Romasheva (2007); Bobtsov (2008); Fedele et al. (2010);
Chen et al. (2015); Pin et al. (2017), and the multisinu-
soidal case is presented in Pyrkin et al. (2015); Fedele et al.
(2016); Pin et al. (2015); Chen et al. (2014); Hou (2012);
Carnevale and Galeani (2011); Sharma and Kar (2008);
Carnevale and Astolfi (2008); Hou (2007); Marino and
Tomei (2002); Obregon-Pulido et al. (2002); Bobtsov et al.
(2002); Bobtsov and Lyamin (2000). Estimator with the
smallest possible dimension, 3n−1 (3n for biased signal), is
constructed in Carnevale and Astolfi (2008); Pyrkin et al.
(2015). Estimation problem of the rest multiharmonic
signal parameters is also solved, in particular, by Pyrkin
et al. (2015); Na et al. (2015); Chen et al. (2015); Fedele
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(2012). Some researchers extend methods to the case when
measured signal is corrupted by noise Aranovskii et al.
(2007); Pyrkin et al. (2011); Fedele (2012); Chen et al.
(2014, 2015); Na et al. (2015); Fedele et al. (2016); Pin
et al. (2017).

A desired property of the algorithm is global convergence
of the estimation error to zero. It allows proving the stabil-
ity of the closed-loop system with such estimator. The first
method with global convergence is proposed by Hsu et al.
(1999). In this paper, the authors modify the continuous-
time version of the adaptive notch filter Regalia (1991) by
scaling and normalizing procedure.

Usually, researchers use Lyapunov methods to analyze
convergence of the estimates. A different approach is
described in Sharma and Kar (2008), where asymptotic
convergence is proved using contraction theory.

Recently the problem of finite-time estimation has become
very popular, see for instance Pin et al. (2017); Na et al.
(2015); Pyrkin et al. (2011); Gerasimov et al. (2018);
Ortega et al. (2019b).

In this paper, we propose a novel finite-time frequency
estimation of a pure sinusoidal signal. The first-order linear
regression model is constructed using delay operators and
some trigonometric identities. The standard gradient de-
scent algorithm estimates the regression model parameter.
With this estimate, the frequency value is reconstructed at
finite-time.

This paper is organized as follows. The problem statement
is described in Section 2. The main result is presented
in Section 3, where linear regression model and finite-
time estimator are constructed. In Section 4 the computer
simulation results of the proposed algorithm are included
confirming the efficiency of the approach.

2. PROBLEM FORMULATION

Consider the measured signal

y(t) = A sin(ωt+ φ), (1)

where A ∈ R+ is the amplitude, ω ∈ R+ is the frequency
and φ ∈ R is the phase. A, ω and φ are unknown constant
parameters..

The goal is to construct an estimate ω̂(t) of the frequency
ω with finite-time convergence of the error ω̃(t) = ω− ω̂(t)
to zero.

Assumption 1. The upper bound on the signal frequency
ω is known and equal to ω̄.

3. MAIN RESULT

3.1 Preliminaries

In Aranovskiy et al. (2010) authors proposed a simple
frequency identification algorithm of a biased harmonic
signal. Dynamical order of this algorithm is equal to three
that is less than similar algorithms have:



χ̇(t) = k1ζ̇(t)
[
−2αζ̈(t)− α2ζ̇(t)

]
−k1ζ̇2(t)θ̂(t)− k1ζ̈(t)y(t),

θ̂1(t) = χ(t) + k1ζ̇1(t)y(t),

ζ̇1(t) = ζ2(t),

ζ̇2(t) = −2αζ2(t)− α2ζ1(t) + y(t),

ζ(t) = ζ1(t),

(2)

where α and k1 are positive constant parameters, the

frequency estimation is equal to ω̂1(t) =

√∣∣∣θ̂1(t)
∣∣∣.

In Gromov et al. (2017) a first order estimator for a
pure sinusoidal signal is proposed. In that paper authors
proposed a new parameterization of the sinusoidal signal
which is based on the delay operators. The parameteriza-
tion leads to a linear regression model and then the stan-
dard gradient descent method can be applied to estimate
the parameter

ω̂2(t) = arccos(β̂(t))/τ,
˙̂
β(t) = k2y1(t)

[
ψ(t)− 2β̂(t)y1(t)

]
,

ψ(t) = y(t) + y2(t),

y1(t) = y(t− τ),

y2(t) = y(t− 2τ),

(3)

where k2 is positive coefficient, τ is constant delay.

It is shown that the described method provides exponential
semi-global convergence of the frequency estimation error
to zero.

In this paper the results obtained in Gromov et al. (2017)
are extended. Initial equation is parameterized to receive
a regression model. Then an algorithm which provides
convergence of estimate to a real value within a finite time
is proposed.

3.2 Parameterization

Let us construct a linear regression model with measurable
variables and a vector of constant parameters that depends
on the unknown frequency ω.

Consider two auxiliary transport delay operators with the
following outputs

y1(t) = y(t− τ), (4)

y2(t) = y(t− 2τ), (5)

where τ ∈ R+ is a known constant. The signals (4) and (5)
can be rewritten as

y1(t) = y(t− τ) = A sin(ωt− ωτ + φ)

= A sin(ωt+ ϕ) cos(ωτ)−A cos(ωt+ φ) sin(ωτ)

= y(t) cos(ωτ)−A cos(ωt+ φ) sin(ωτ), (6)

y2(t) = y(t− 2τ) = A sin(ωt− 2ωτ + φ)

= A sin(ωt+ φ) cos(2ωτ)−A cos(ωt+ φ) sin(2ωτ)

= y(t) cos(2ωτ)−A cos(ωt+ φ) sin(2ωτ). (7)

Consider a new variable

ν(t) = y1(t) sin(2ωτ)− y2(t) sin(ωτ). (8)

Let us transform the model (8):
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ν(t) = 2y1(t) sin(ωτ) cos(ωτ)− y2(t) sin(ωτ)

= [y(t) cos(ωτ)−A cos(ωt+ φ) sin(ωτ)] sin(2ωτ)

− [y(t) cos(2ωτ)−A cos(ωt+ φ) sin(2ωτ)] sin(ωτ)

= y(t) [cos(ωτ) sin(2ωτ)− cos(2ωτ) sin(ωτ)]

= y(t)
[
2 cos2(ωτ) sin(ωτ)− sin(ωτ)(cos2(ωτ)

− sin2(ωτ))
]

= y(t) sin(ωτ).

So we can write

2y1(t) sin(ωτ) cos(ωτ)− y2(t) sin(ωτ) = y(t) sin(ωτ). (9)

After dividing both sides of the last equation by sin(ωτ)
we have

2y1(t) cos(ωτ)− y2(t) = y(t),

cos(ωτ)y1(t) =
1

2
[y(t) + y2(t)] . (10)

Remark 1. To guarantee that sin(ωτ) 6= 0 the delay τ
should be chosen such that

τ <
π

ω̄
. (11)

From equation (10) a regression model can be written as

z(t) = θ3φ(t), (12)

where

z(t) =
1

2
[y(t) + y2(t)] , (13)

φ(t) = y1(t) and θ3 = cos(ωτ).

3.3 Gradient estimator

Parameter θ3 can be estimated from equation (12) using
the standard gradient descent method:

˙̂
θ3(t) = −k3φ2(t)θ̂3(t) + k3φ(t)z(t), (14)

where k3 is a positive coefficient.

Then frequency can be found from (14):

ω̂3(t) =
1

τ
arccos

(
θ̂3(t)

)
. (15)

3.4 Finite-time estimator

In the previous subsection parameterization of model (1)
is carried out and the gradient estimator is used to recon-
struct the frequency ω. Now we can obtain a finite-time
observer, see for instance Gerasimov et al. (2018), Ortega
et al. (2019b), Ortega et al. (2019a).

Proposition 1. Consider regression model (12) and the
parameter estimator (14).

Then for

t ≥ t1 :

∫ t1

0

φ2(τ)dτ > 0, (16)

we can find a finite-time parameter estimator of θ

θ̂F (t) =
θ̂3(t)− θ̂3(0)wc(t)

1− wc(t)
, (17)

where

wc(t) =

{
µ if w(t) ≥ µ,
w(t) otherwise,

(18)

with µ ∈ (0, 1),

ẇ(t) = −k3φ2(t)w(t), w(0) = 1. (19)

Proof. Consider the error function θ̃3(t) = θ̂3(t)−θ3, then

for derivative of θ̃3(t) we have

˙̃
θ3(t) =

˙̂
θ3(t)− θ̇3 = −k3φ2(t)θ̃3(t). (20)

Solution of the previous equation can be found in the
following form

θ̃3(t) = θ̃3(0)e
−
∫ t

0
k3φ

2(τ)dτ
= θ̃3(0)w(t). (21)

Then for (21) we have{
θ̃3(t) = θ̃3(0)w(t) =

[
θ̂3(0)− θ3

]
w(t),

θ̃3(t) = θ̂3(t)− θ3.
(22)

From (22) we obtain

θ3 = θ̂F (t) =
θ̂3(t)− θ̂3(0)w(t)

1− w(t)
. (23)

Using (23) to find ω̂F (t) from ω̂F (t) = 1
τ arccos

(
θ̂F (t)

)
completes the proof.

Increasing a value of µ decreases estimation duration.
However, if the value is close to one, then 1−w(t) is close
to zero and sensitivity to noise is high.

4. SIMULATION RESULTS

In this section, we present the simulation results that
illustrate the efficiency of the proposed estimation algo-
rithm. All simulations have been performed in Mathworks
Simulink.

Let us compare the simulation results of algorithm de-
scribed in this paper and algorithms proposed in Ara-
novskiy et al. (2010) and Gromov et al. (2017). The fol-
lowing parameters we use for simulations:

• ω = 1, A = 1, φ = 0 in (1);
• α = 1, k1 = 10 and initial conditions χ(0) = 0,
ζ1(0) = 0 and ζ2(0) = 0 in algorithm (2).

• k2 = 10, τ = 0.1 and β̂(0) = 1 in algorithm (3);

• k3 = 10, τ = 0.1, µ = 0.99, t1 = 2τ and θ̂3(0) = 1 for
finite-time method (17)–(19).

Fig. 1 demonstrates the transients of frequency estimates
for algorithms from Aranovskiy et al. (2010), Gromov et al.
(2017) and algorithm (17)–(19).

Fig. 2 demonstrates transients of the frequency estimates
for the standard gradient decent method from (14)–(15)
and for the finite-time method (time t1 = 0.03s is used
for simulation of finite-time observer) for sinusoidal signal
y(t) = sin(10t), with parameters τ = 0.01, µ = 0.99 and

the initial condition θ̂3(0) = 1. In all cases the finite-time
estimate is obtained at t1 = 0.03.

Fig. 3 demonstrates the transients of the frequency es-
timates ω̂3(t) for the standard gradient decent method
from (14)–(15) and ω̂F (t) for the proposed algorithm (17)–
(19) for the sinusoidal signal y(t) = sin(ωt) with different
values of frequency ω and fixed value of parameter k = 50,
parameters τ = 0.01, µ = 0.99 and the initial condition

θ̂3(0) = 1. In this case also the performance is independent
of the frequency value.
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Fig. 1. The frequency ω and its estimates for algorithms: 1)
ω̂1(t) for Aranovskiy et al. (2010); 2) ω̂2(t) for Gromov
et al. (2017); 3) ω̂F (t) for finite-time method (17)–(19)

To demonstrate the robustness of the proposed algorithm,
let us consider the noised measured signal

y(t) = sin(20t) + δ(t), (24)

where additive noise δ(t) is simulated as a uniformly dis-
tributed process ranging within [−0.5, 0.5] whose influence
is shown as the blue curve plotted in Fig. 4.

The simulation result for the noise scenario with param-
eters k = 3, τ = 0.1 is shown in Fig. 5. The proposed
algorithm is still able to provide finite-time estimate in
presence of additive disturbance.

The time behavior of ω̂(t) and ω̂F (t) for measured signal
y(t) with an additive exponentially correlated noise ∆(t)
is shown in Fig. 7. The noise is modeled by a shaping
filter W (s) = 3/(s + 50) with frequency-bounded input
white noise of power N = 0.1. In this case k = 3,
τ = 0.1. The effect of the additive noise is shown as the
blue curve plotted in Fig. 6. The identification algorithm
demonstrates robustness to additive perturbations.

5. CONCLUSION

The finite-time frequency estimation problem for a pure
sinusoidal signal without bias was considered. A linear
regression model with measured variables and a vector
of constant parameters that depends on the unknown
frequency was obtained using transport delay operators.

Decreasing tuning gain in the gradient descent method,
we decrease sensitivity to the measurement noise. Without
the finite-time estimation scheme, it dramatically increases
estimation duration. However, with this scheme estimate is
obtained at the same predefined time, but it is less affected
by noise, because performance of the proposed method is
independent of the frequency value and the tuning gain of
the used internally gradient descent method.

Future investigations will be devoted to extending the
methodology to the case of multisinusoidal signal estima-
tion.

REFERENCES

Aphale, S.S., Bhikkaji, B., and Moheimani, S.O.R.
(2008). Minimizing scanning errors in piezoelectric
stack-actuated nanopositioning platforms. IEEE Trans-
actions on Nanotechnology, 7(1), 79–90.

Aranovskii, S., Bobtsov, A., Kremlev, A., and Luk’yanova,
G. (2007). A robust algorithm for identification of the
frequency of a sinusoidal signal. Journal of Computer
and Systems Sciences International, 46(3), 371–376.

Aranovskiy, S., Bobtsov, A., Kremlev, A., Nikolaev, N.,
and Slita, O. (2010). Identification of frequency of biased
harmonic signal. European Journal of Control, 16(2),
129 – 139.

Bobtsov, A., Lyamin, A., and Romasheva, D. (2002).
Algorithm of parameters’identification of polyharmonic
function. IFAC Proceedings Volumes, 35(1), 439–443.

Bobtsov, A. and Lyamin, A. (2000). A problem of on-line
continuous-time estimation of parameters of polyhar-
monic function. In Proceedings of the 2nd International
Conference. Control of Oscillations and Chaos (Cat.
No. 00TH8521), volume 2, 388–389. IEEE.

Bobtsov, A.A. (2008). New approach to the problem
of globally convergent frequency estimator. Interna-
tional Journal of Adaptive Control and Signal Process-
ing, 22(3), 306–317.

Bobtsov, A.A. and Romasheva, D.A. (2007). Frequency
estimator of a biased sinusoid. In Proceedings of the 46th
IEEE Conference on Decision and Control, 5534–5538.
IEEE.

Carnevale, D. and Astolfi, A. (2008). A minimal dimension
observer for global frequency estimation. In Proceedings
of the 2008 American Control Conference, 5236–5241.
IEEE.

Carnevale, D. and Galeani, S. (2011). On the tuning of
a hybrid observer for multiple frequency estimation. In
Proceedings of the 50th IEEE Conference on Decision
and Control and European Control Conference, 6091–
6096. IEEE.

Chen, B., Pin, G., Ng, W.M., Hui, S.Y.R., and Parisini,
T. (2017). An adaptive-observer-based robust estima-
tor of multi-sinusoidal signals. IEEE Transactions on
Automatic Control, 63(6), 1618–1631.

Chen, B., Pin, G., Ng, W.M., Hui, S.R., and Parisini,
T. (2015). A parallel prefiltering approach for the
identification of a biased sinusoidal signal: Theory and
experiments. International Journal of Adaptive Control
and Signal Processing, 29(12), 1591–1608.

Chen, B., Pin, G., and Parisini, T. (2014). An adaptive
observer-based estimator for multi-sinusoidal signals. In
Proceedings of the 2014 American Control Conference,
3450–3455. IEEE.

Fedele, G. (2012). Non-adaptive second-order generalized
integrator for sinusoidal parameters estimation. Inter-
national Journal of Electrical Power & Energy Systems,
42(1), 314–320.

Fedele, G., Ferrise, A., and D’Aquila, G. (2016). A global
frequency estimator based on a frequency-locked-loop
filter. In Proceedings of the 2016 American Control
Conference (ACC), 7001–7006. IEEE.

Fedele, G., Ferrise, A., and Frascino, D. (2010). Structural
properties of the sogi system for parameters estima-
tion of a biased sinusoid. In Proceedings of the 9th
International Conference on Environment and Electrical
Engineering, 438–441. IEEE.

Gerasimov, D., Ortega, R., and Nikiforov, V. (2018).
Adaptive control of multivariable systems with reduced
knowledge of high frequency gain: Application of dy-
namic regressor extension and mixing estimators. IFAC-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

605
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(a) ω = 20

(b) ω = 40

(c) ω = 80

Fig. 3. The estimates ω̂3(t) and ω̂F (t) for different values
of frequency ω

Fig. 4. The sinusoidal signal y(t) with additive noise Fig. 5. The estimates ω̂3(t) and ω̂F (t) of the frequency
ω = 20 rad/s
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