
Integral control of stable nonlinear systems
based on singular perturbations ?

Pietro Lorenzetti ∗ George Weiss ∗ Vivek Natarajan ∗∗

∗ School of Electrical Engineering, Tel Aviv University (TAU), Ramat
Aviv 69978, Israel (e-mail: plorenzetti@tauex.tau.ac.il,

gweiss@tauex.tau.ac.il).
∗∗ System and Control Engineering Group, Indian Institute of

Technology (IIT) Bombay, Mumbai 400076, India (e-mail:
vivek.natarajan@iitb.ac.in).

Abstract: One of the main issues related to integral control is windup, which occurs when,
possibly due to a fault, the input signal u of the plant reaches a value outside the allowed
input range U . This paper presents an integral controller with anti-windup, called saturating
integrator, for a single-input single-output nonlinear plant having a curve of locally exponentially
stable equilibrium points that correspond to constant inputs in U . A closed-loop system is formed
by connecting the saturating integrator in feedback with the plant. The control objective is to
make the output signal y of the plant track a constant reference r, while not allowing its input
signal u to leave U . Using singular perturbation methods, we prove that, under reasonable
assumptions, the equilibrium point of the closed-loop system is exponentially stable, with a
“large” region of attraction. Moreover, when the state of the closed-loop system converges to this
equilibrium point, then the tracking error tends to zero. A step-by-step procedure is presented
to perform the closed-loop stability analysis, by finding separately a Lyapunov function for the
reduced (slow) model and a Lyapunov function for the boundary-layer (fast) system. Afterwards,
a Lyapunov function for the closed-loop system is built as a convex combination of the two
previous ones, and an upper bound on the controller gain is found such that closed-loop stability
is guaranteed. Finally, we show that if certain stronger conditions hold, then the domain of
attraction of the stable equilibrium point of the closed-loop system can be made large by choosing
a small controller gain.

Keywords: nonlinear systems, integral control, singular perturbation method, windup,
Lyapunov methods.

1. INTRODUCTION

Integral control is an important topic in the control liter-
ature, being extensively used to achieve robust asymptotic
regulation and disturbance rejection (it is the simplest
instance of the internal model principle). When the plant
is an uncertain linear system, closed-loop stability can be
achieved if the control gain is sufficiently small and the
plant fulfils certain stability conditions, as discussed in
Morari (1985) and in Fliegner et al. (2003). The theory
has been extended to nonlinear systems, as discussed in
Desoer and Lin (1985) for PI controllers, or in Isidori
and Byrnes (1990), where local stability results can be
found for the more general internal model principle. Later,
regional and semiglobal results have been presented in
Isidori (1997) and in Khalil (2000) for specific classes of
nonlinear systems using high-gain observers. In addition,
in Singh and Khalil (2005) and in Seshagiri and Khalil
(2005) conditional integrators are presented, which provide
integral action inside a boundary layer while acting as
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stable systems outside of it. Besides, recent application of
integral control to port-Hamiltonian systems can be found
in Ferguson et al. (2018) and in the references therein.

In the presence of an integral controller, the windup
problem can occur if the integrator’s state reaches a value
far from its normal operating range, for instance, due to a
fault. This may cause long transients and oscillations that
could lead the system to instability. In order to prevent
the windup phenomenon, several anti-windup techniques
have been investigated, resulting in a rich literature on
the topic. Initially, anti-windup methods were developed
only for specific problems and they lacked a rigorous sta-
bility analysis. In the field of linear systems, one of the
first systematic methods was the conditioning technique
introduced in Hanus et al. (1987). Later, this and other
results have been collected in Kothare et al. (1994), where
a coprime-factor framework has been introduced, and then
in Edwards and Postlethwaite (1998), where a generic ap-
proach in the form of an H∞ optimization framework has
been proposed. A survey of this area is Peng et al. (1996),
where the most relevant PID anti-windup techniques are
summarized. A treatment of the L2 anti-windup problem
can be found in Zaccarian and Teel (2002). In recent years,
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more attention has been devoted to LMIs to tackle more
complex anti-windup scenarios. To this aim, it is worth
mentioning the work of Wu and Lu (2004), where regional
stability is guaranteed in the presence of input saturation
for an exponentially unstable linear system, and the result
in Turner et al. (2007), where uncertainty in the system
model is taken into account. These and other LMI-based
methods can be found in the survey paper of Tarbouriech
and Turner (2009). In addition, an interesting anti-windup
result for PI controllers is in Choi and Lee (2009), where
the conditional integrator scheme is improved by setting
a specific initial value for the integrator when switching
from P to PI control mode.

Nonlinear systems have received less attention in the
anti-windup literature. For Euler-Lagrange systems, an
anti-windup scheme inducing global asymptotic stability
and local exponential stability is proposed in Morabito
et al. (2004), while for affine nonlinear systems an anti-
windup controller based on nonlinear dynamic inversion
is proposed in Herrmann et al. (2010). Other remarkable
results are presented in Rehan et al. (2013) and in da Silva
et al. (2016), where specific classes of nonlinear systems are
addressed, and in the references therein. A recent result on
anti-windup integral control for nonlinear systems is from
Konstantopoulos et al. (2016), where a bounded integral
controller (BIC) is presented. Under suitable assumptions,
the BIC is able to generate a bounded control output
independently from the plant parameters and states, guar-
anteeing closed-loop stability in the sense of boundedness.
As claimed in that paper, most of the control algorithms
depend on the system structure (relative degree etc.) and
they usually lead to complex control schemes that require
a saturation unit to avoid windup scenarios.

The objective of this paper is to provide a simple integral
controller with anti-windup for stable nonlinear systems,
called saturating integrator, which is straightforward to
implement. The saturating integrator is effective for a wide
range of applications, see for instance Natarajan and Weiss
(2017) for an application of our main result in power
electronics. It also allows us to derive rigorous stability
results using the singular perturbation approach.

Let us now state the problem in precise terms. The
nonlinear plant P to be controlled is described by:

ẋ = f(x, u), y = g(x), (1.1)

where f ∈ C2(Rn×R;Rn) and g ∈ C1(Rn;R). The control
objective is to make the output signal y track a constant
reference signal r ∈ Y := (ymin, ymax) ⊂ R, using an input
signal that takes values in the range U := [umin, umax] ⊂
R (here umin < umax). In order to achieve this goal,
a type of anti-windup integral controller is used, which
we call the saturating integrator. We define the positive
(negative) part of a real number w by w+ = max{w, 0}
(w− = min{w, 0}). The saturating integrator is a system
with input w and state u, described by

u̇ = S (u,w),

where S (u,w) =


w+ u ≤ umin,
w u ∈ (umin, umax),

w− u ≥ umax.

(1.2)

The plant (1.1) and the saturating integrator (1.2) are
connected according to the feedback loop shown in Figure

y

+

−e

u

r∫
S k

P

w

Fig. 1. Closed-loop system formed by the plant P, the
saturating integrator

∫
S and the constant gain k >

0, with the reference r.

1, where k > 0 is a constant gain. The closed-loop system
is described by

ẋ = f(x, u), u̇ = S (u, k(r − g(x))), (1.3)

with state space X := Rn × U . An informal statement
of our main result is that, under reasonable assumptions
on the plant P, for any constant reference r ∈ Y the
following holds: For any small enough feedback gain k > 0,
the closed-loop system (1.3) shown in Figure 1 is locally
exponentially stable around an equilibrium point, with a
“large” region of attraction. When the state converges to
this equilibrium point, then the tracking error e := r − y
tends to zero at an exponential rate.

A similar result but without limitations on u and without
anti-windup, assuming global exponential stability of the
plant’s equilibrium point for any constant input u in the
input space Rm, has been given in Desoer and Lin (1985).

A preliminary version of this work, with many proofs
missing, and following a certain line of reasoning that we
now consider to be out of date, has been presented as
a conference paper, see Weiss and Natarajan (2016). We
believe that the new approach here is much more elegant.

The paper is organized as follows. In Section 2 the
state trajectories of the closed-loop system are studied. In
Section 3 the closed-loop system equations are rewritten
as a singular perturbation model. In Section 4 the main
result is presented, where the stability analysis of the
closed-loop system is proved using singular perturbation
methods. Finally, in Section 5 the domain of attraction of
the closed-loop system equilibrium point is investigated.

2. CLOSED-LOOP TRAJECTORIES

Some care has to be taken to define the closed-loop
trajectories of the system (1.3). First, it has to be ensured
that the state trajectories u of the saturating integrator
(1.2) are well-defined for any input w ∈ L1[0, t]. For this we
resort to a density argument: Note that for a polynomial
input w, the state trajectory u is easy to define.

Let u1 and u2 be the state trajectories of (1.2) cor-
responding to the polynomials w1 and w2. Then by an
elementary argument

|u2(t)− u1(t)| ≤ |u2(0)− u1(0)|+
∫ t

0

|w2(σ)− w1(σ)|dσ.

This shows that u(t) depends Lipschitz continuously both
on u(0) and also on w considered with the L1 norm. For
u2(0) = u1(0) we can write the last estimate as

|u2(t)− u1(t)| ≤ ‖w2 − w1‖L1[0,t]. (2.1)

Hence, by continuous extension, we can define u(t) for any
initial state u(0) and for any input w ∈ L1[0, t] (because
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the polynomials are dense in L1[0, t]). Next, we show the
local existence and uniqueness of state trajectories for the
closed-loop system (1.3), which is not trivial due to the
discontinuity of S .

Notation. For any R > 0 let BR be the closed ball of
radiusR in Rn. For any τ > 0 we denote by Cτ the set of all
the continuous functions on the interval [0, τ ], with values
in U . This is a complete metric space with the distance
induced by the supremum norm, denoted by ‖·‖∞.

Lemma 2.1. Take x0 ∈ Rn and R > 0. Denote M =
max{‖f(x, v)‖ | x ∈ x0+BR, v ∈ U} and let τ ∈ (0, R/M ].
Then, for every u ∈ Cτ , (1.1) with the initial state
x(0) = x0 has a unique solution x ∈ C1([0, τ ];Rn) and
x(t) ∈ x0 +BR for all t ∈ [0, τ ].

Denote by Tτ the (nonlinear) operator determined by
P, that maps any input function u ∈ Cτ into an output
function y ∈ C[0, τ ] (corresponding to x(0) = x0). Then
Tτ is Lipschitz continuous.

Proof. It follows from the mean value theorem that for
any u ∈ Cτ , the state trajectory x(t) of P exists and
remains in x0 + BR for all t ≤ τ . Let L1, L2 > 0 be such
that for any z1, z2 ∈ x0 +BR, and for any v1, v2 ∈ U
‖f(z2, v2)−f(z1, v1)‖ ≤ L1‖z2− z1‖+L2‖v2−v1‖. (2.2)

Such L1, L2 exist since f ∈ C2 and {x0 + BR} × U is
compact. Take two state trajectories of P, x1 and x2,
starting from the same initial state x0 and corresponding
to inputs u1 and u2. Then

x2(t)− x1(t) =

∫ t

0

[
f(x2(σ), u2(σ))− f(x1(σ), u1(σ))

]
dσ,

for any t ∈ [0, τ ], whence, using (2.2),

‖x2(t)−x1(t)‖ ≤ L1

∫ t

0

‖x2(σ)−x1(σ)‖dσ+τL2‖u2−u1‖∞.

It follows from Gronwall’s inequality that

‖x2(t)− x1(t)‖ ≤ τL2‖u1 − u2‖∞ eL1t ∀ t ∈ [0, τ ],

which implies that

‖x2 − x1‖∞ ≤ τL2‖u1 − u2‖∞ eL1τ .

Finally, since g ∈ C1, we get

‖y2 − y1‖∞ ≤ LT ‖u1 − u2‖∞,
where LT is the product of τL2e

L1τ and the Lipschitz
constant of g. 2

Proposition 2.2. Let P be described by (1.1) and let
∫

S
be the saturating integrator from (1.2). For every x0 ∈ Rn,
every u0 ∈ U , every k ≥ 0 and every r ∈ R there exists a
τ ∈ (0,∞] such that the closed-loop system from Figure 1
has a unique state trajectory (x, u) defined on [0, τ), such
that x(0) = x0 and u(0) = u0. If τ is finite and maximal
(i.e., the state trajectory cannot be continued beyond τ)
then lim supt→τ ‖x(t)‖ =∞.

Proof. We use the notation from Lemma 2.1, in particu-
lar, R > 0 is arbitrary and x0, u0 are fixed. The Lipschitz
bound of Tτ , which we denote by LT , can be chosen to
be independent of τ ∈ (0, R/M ] (simply choosing the
maximum, which occurs at τ = R/M). Let us denote by
Sτ the input to output map of the saturating integrator
on the time interval [0, τ ]. The estimate (2.1) shows that
Sτ : C([0, τ ];R) 7→ Cτ is Lipschitz continuous, with the

Lipschitz bound τ . If (x, u) is a state trajectory of the
closed-loop system which is defined on [0, τ ], then we must
have (see Figure 1)

u = Sτk(r − Tτu).

This can be regarded as a fixed point equation on Cτ .
For τ sufficiently small so that LT · k · τ < 1, the above
equation has a unique solution according to the Banach
fixed point theorem, see for instance Section 3 in Brooks
and Schmitt (2009). It is easy to see that if u is a solution
of the fixed point equation and x is the corresponding state
trajectory of P starting from x0, then (x, u) is the desired
state trajectory of the closed-loop system on [0, τ ]. The
τ that we have just found is not maximal, because if the
solution exists on the closed interval [0, τ ], then we can
repeat the same argument starting at time τ , and we get
a larger interval of existence of the state trajectory.

Using standard arguments, see for instance Exercise 3.26
in Khalil (2002), we get that if τ > 0 is finite and maximal,
then lim supt→ τ‖x(t)‖ =∞. 2

Remark 2.3. An alternative way to prove existence (but
not uniqueness) of the solution to the closed-loop system
(1.3) is to use the tools from differential inclusions theory.
In particular, (1.2) can be regarded as a constrained
differential inclusion (see for example (5.4) in Goebel et al.
(2012)), where the state u is constrained in the closed set U
and the map S is replaced with the Krasovskii set-valued
map

SK(u,w) =



{w+} u < umin,

[w,w+] u = umin,

{w} u ∈ (umin, umax),

[w−, w] u = umax,

{w−} u > umax.

The set-valued map describing the closed-loop system is
outer semicontinuous (see Definition 5.9 of Goebel et al.
(2012)). Therefore, the closed-loop system (1.3) satisfies
Assumption 6.5 of Goebel et al. (2012) and, according to
Theorem 6.30 of Goebel et al. (2012), it is well-posed.

3. THE CLOSED-LOOP SYSTEM AS A STANDARD
SINGULAR PERTURBATION MODEL

The idea is to regard the constant gain k > 0 from the
closed-loop system of Figure 1 as a “sufficiently small”
parameter such that the closed-loop system (1.3) can be
rewritten as a standard singular perturbation model (see
Chapter 1 of Kokotović et al. (1999) or Chapter 11 of
Khalil (2002)). Then, we can separately analyze the stabil-
ity of the reduced (slow) model and of the boundary-layer
(fast) system, and, using singular perturbation theory,
obtain stability results for (1.3). The stability analysis is
performed following the approach of Khalil (2002) and
Kokotović et al. (1999). Note that in the less general
formulation in Section 11.5 of Khalil (2002), the functions
determining the closed-loop system are required to be
locally Lipschitz, while in Chapter 7 of Kokotović et al.
(1999) it is only required that a unique solution exists for
the closed-loop system, which we have proved in Proposi-
tion 2.2.

The following assumption is common in the singular
perturbation theory (see Chapter 11 of Khalil (2002),
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Kokotović et al. (1999)) and in the theory for nonlin-
ear systems with slowly varying inputs (see Section 9.6
of Khalil (2002), Kelemen (1986), Lawrence and Rugh
(1990)). Recall that U = [umin, umax].

Assumption 1. There exists a function Ξ ∈ C1(U ;Rn)
such that

f(Ξ(u), u) = 0 ∀ u ∈ U, (3.1)

i.e., for each u0 ∈ U , Ξ(u0) is an equilibrium point
that corresponds to the constant input u0. Moreover,
P is uniformly exponentially stable around these equi-
librium points. This means that there exist ε0 > 0,
λ > 0 and m ≥ 1 such that for each constant input
function u0 ∈ U , the following holds:

If ‖x(0)− Ξ(u0)‖ ≤ ε0, then for every t ≥ 0,

‖x(t)− Ξ(u0)‖ ≤ me−λt‖x(0)− Ξ(u0)‖. (3.2)

Remark 3.1. The uniform exponential stability condition
above can be checked by linearization: If the Jacobian
matrices

A(u0) =
∂f(x, u)

∂x

∣∣∣∣x=Ξ(u0)
u=u0

∈ Rn×n

have eigenvalues bounded away from the right half-plane,

max Reσ(A(u0)) ≤ λ0 < 0 ∀ u0 ∈ U,
then P is uniformly exponentially stable, see (11.16)
in Khalil (2002). From the first part of Assumption 1,
max Reσ(A(u0)) is a continuous function of u0. Hence, if
this function is always negative, then by the compactness
of U , its maximum is also negative. Thus, for the uniform
exponential stability of P we only have to check that each
of the matrices A(u0) is stable (where u0 ∈ U).

Remark 3.2. If there exists a function Ξ with the proper-
ties (3.1) and (3.2), then automatically Ξ ∈ C1 according
to the implicit function theorem since f ∈ C2. The sta-
bility property (3.2) guarantees that all the eigenvalues of
the Jacobians are in the open left half-plane, as discussed
in Remark 3.1.

Assumption 2. The system P satisfies Assumption 1
and, moreover, the function

G(u) := g(Ξ(u)) ∀ u ∈ U,
is monotone increasing, i.e., there exists µ > 0 such
that

G′(u) ≥ µ ∀ u ∈ U.

Note that the function G ∈ C1(U,R), since it is defined
as the composition of two class C1 functions (G := g ◦
Ξ). We denote ymin := G(umin) and ymax := G(umax),
where clearly ymin < ymax. Moreover, using the notation
Y = (ymin, ymax), for any r ∈ Y , we define ur := G−1(r),
which is well-defined in U since G strictly monotone.

In the following, we manipulate the closed-loop equation
(1.3) to rewrite it as a standard singular perturbation
model (see (11.33), (11.34) in Khalil (2002)). We define

h(x, u) := S (u, r − g(x)), (3.3)

and then the closed-loop system (1.3) can be rewritten as

u̇ = k · h(x, u), ẋ = f(x, u). (3.4)

Using that k > 0, we change the time-scale of (3.4)
introducing s := k · t (it is a “slower” time-scale because k

Table 1. Correspondence of our notation with
the one used in Khalil (2002)

this paper ũ x̃ h̃ f̃ k z Ξ̃ s t

Khalil (2002) x z f g ε y h t τ

is small). Rewriting the system (3.4) in the new time-scale
s, we get

du

ds
= h(x, u), k

dx

ds
= f(x, u). (3.5)

To simplify the stability analysis, we move the equilib-
rium point of the closed-loop system (3.5) to the origin.
It follows from Assumption 1 and the notation introduced
after Assumption 2 that the equilibrium point of (3.5) is
(xr, ur), where xr := Ξ(ur). Introducing the variables

x̃ := x− xr, ũ := u− ur, (3.6)

and the functions

h̃(ũ, x̃) := h(x̃+ xr, ũ+ ur), (3.7a)

f̃(ũ, x̃) := f(x̃+ xr, ũ+ ur), (3.7b)

the system (3.5) can be rewritten as

dũ

ds
= h̃(ũ, x̃), k

dx̃

ds
= f̃(ũ, x̃). (3.8)

For k > 0 is small, this is a standard singular perturbation
model according to Section 11.5 of Khalil (2002) (see
equations (11.33) and (11.34) there). Recalling Ξ from
Assumption 1, we introduce the function

Ξ̃(ũ) := Ξ(ũ+ ur)− xr (3.9)

and following the guidelines of Khalil (2002), we define

z := x̃− Ξ̃(ũ). (3.10)

Using the notation introduced above, we reformulate our
(3.5) like (11.35), (11.36) of Khalil (2002), i.e.,

dũ

ds
= h̃(ũ, z + Ξ̃(ũ)), (3.11a)

k
dz

ds
= f̃(ũ, z + Ξ̃(ũ))− k∂Ξ̃

∂ũ
h̃(ũ, z + Ξ̃(ũ)), (3.11b)

which has an equilibrium point at (ũ, z) = (0, 0). Finally,
in accordance with the change of variables (3.6), we define

ũmin := umin − ur , ũmax := umax − ur
and the set Ũ := [ũmin, ũmax] ⊂ R, which contains the
origin. As a consequence, the state space of the closed-loop
system (3.11a), (3.11b) is X̃ := Ũ × Rn. To facilitate the
comparison of our equations with those in Khalil (2002),
the relation between the notation in these two works is
shown in Table 1.

Remark 3.3. Since Ξ̃ ∈ C1(Ũ ,Rn), the change of variables
(3.10) is stability preserving, i.e., the origin of (3.11a),
(3.11b) is asymptotically (exponentially) stable, if and
only if the origin of (3.8) is asymptotically (exponentially)
stable.

3.1 Formulation of the reduced (slow) model

The reduced (slow) model is obtained setting k = 0 in
(3.11b), and solving the resulting algebraic equation

0 = f̃(ũ, z + Ξ̃(ũ)),

which yields z = 0. Substituting z = 0 in (3.11a), the
following reduced (slow) model is obtained:

dũ

ds
= h̃(ũ, Ξ̃(ũ)) (3.12)
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Fig. 2. Closed-loop representation of the reduced (slow)
model (3.13).

Note that using the definition of h from (3.3) and the
definition of G from Assumption 2, the reduced (slow)
model (3.12) can be described equivalently by

dũ

ds
= S (ũ+ ur, r −G(ũ+ ur)). (3.13)

The reduced closed-loop system is shown in Figure 2.

3.2 Formulation of the boundary-layer (fast) system

The boundary-layer (fast) system is obtained by rewrit-
ing the second equation in (3.8) in the original fast time-
scale t = s

k as

ż = f̃(ũ, z + Ξ̃(ũ)), (3.14)

where ũ ∈ Ũ is treated as a fixed parameter.

4. STABILITY ANALYSIS - SINGULAR
PERTURBATION ANALYSIS

In order to perform the stability analysis of the closed-
loop system (3.11a), (3.11b), we want to use Theorem 2.1
from Kokotović et al. (1999), or, equivalently, Theorem
11.3 from Khalil (2002). As already mentioned at the
beginning of Section 3, the smoothness assumptions in
Khalil (2002) are more stringent than those in Kokotović
et al. (1999) and our system fits only into the latter’s
framework. However, the proofs of the two aforementioned
theorems are the same.

The analysis will be performed following the guidelines in
Section 11.5 of Khalil (2002), by first finding two distinct
Lyapunov functions V and W , respectively for the reduced
(slow) model (3.12) and the boundary-layer (fast) system
(3.14). Then, the interconnection conditions (see Section
11.5 of Khalil (2002)) are verified, proving the stability of
the closed-loop system. (A similar approach was taken in
the recent paper Weiss et al. (2019).)

4.1 Stability of the reduced (slow) model

We have to find a Lyapunov function V (ũ) for (3.12)
such that (11.39) in Khalil (2002) holds, i.e.,

dV

ds
=
∂V

∂ũ
h̃(ũ, Ξ̃(ũ)) ≤ − α1ψ

2
1(ũ), (4.1)

for all ũ ∈ Ũ , where α1 > 0 and ψ1 is a positive definite
function. Consider the candidate

V (ũ) = 1
2 ũ

2 ∀ ũ ∈ Ũ . (4.2)

It follows from (3.13) that

dV

ds
= ũ

dũ

ds
= ũS (ũ+ ur, r −G(ũ+ ur)).

Recalling that Ũ = [umin − ur, umax − ur] and 0 ∈ Ũ ,
if ũ(s) = 0, then the system (3.13) has reached its

equilibrium point (recall r = G(ur)). If ũ(s) > 0, then
recalling that G is monotone increasing (see Assumption
2), it follows that

dũ

ds
= G(ur)−G(ũ(s) + ur) < 0,

therefore
dV

ds
= ũ

dũ

ds
< 0 .

If ũ(s) < 0, then by a similar argument, the same
conclusion is obtained. This proves that (4.2) is indeed

a Lyapunov function for (3.12), defined for all ũ ∈ Ũ .

Remark 4.1. Note that the above argument tells us also
that if ũ(0) ∈ Ũ , then the saturating integrator

∫
S of

the reduced model in Figure 2 is behaving like a standard
integrator, since ũ(s) ∈ (ũmin, ũmax) for all s ≥ 0.

According to the mean value theorem, there exists a
v ∈ (ur, ũ+ur) if ũ > 0 (or v ∈ (ũ+ur, ur) if ũ < 0), such
that |G(ũ+ ur)−G(ur)| = |G′(v)ũ| ≥ µ|ũ| (recall µ from

Assumption 2), for all ũ ∈ Ũ . Then, we can write

dV

ds
= −

∣∣ũ[G(ur)−G(ũ+ ur)]
∣∣ ≤ −|ũ|µ|ũ| = −µũ2,

for all ũ ∈ Ũ . Therefore, condition (4.1) holds with

ψ1(ũ) = |ũ| and α1 = µ. (4.3)

4.2 Stability of the boundary-layer (fast) system

We have to find a Lyapunov function W (ũ, z) for (3.14)
such that (11.40) and (11.41) in Khalil (2002) hold, i.e.,

dW

dt
=
∂W

∂z
f̃(ũ, z + Ξ̃(ũ)) ≤ −α2ψ

2
2(z),

W1(z) ≤ W (ũ, z) ≤ W2(z),
(4.4)

for all (ũ, z) ∈ Ũ × Bε0 (recall ε0 from Assumption 1),
where α2 > 0 and ψ2, W1, W2 are positive definite con-
tinuous functions. We use Lemma 9.8 of Khalil (2002),
which, under Assumption 1 and some smoothness require-
ments on f̃ , guarantees the existence of W such that the
conditions in (4.4) hold, together with additional proper-

ties. The aforementioned requirements on f̃ are: Denoting
p(z, ũ) := f̃(ũ, z + Ξ̃(ũ)) (this function is denoted by g in
Lemma 9.8 of Khalil (2002)), it should hold that∥∥∥∥∂p∂z (z, ũ)

∥∥∥∥ ≤ L1 and

∥∥∥∥∂p∂ũ (z, ũ)

∥∥∥∥ ≤ L2‖z‖, (4.5)

for all (z, ũ) ∈ Br × Ũ (where ε0 ≤ r < ∞). The first

condition follows from p ∈ C2 and Br × Ũ being compact.
For the second condition, for any j ∈ {1, 2, . . . n}, we define

Fj(z, ũ) :=
∂pj
∂ũ (z, ũ) ∈ R. Since f̃(ũ, Ξ̃(ũ)) = 0 for all

ũ ∈ Ũ , then Fj(0, ũ) = 0 for all ũ ∈ Ũ . For every fixed

(z, ũ) ∈ Br × Ũ , we introduce the function F̃j : [0, 1]→ R
such that F̃j(σ) = Fj(σz, ũ), hence F̃j(0) = 0 and F̃j(1) =
Fj(z, ũ). According to the mean value theorem, there

exists ξ ∈ (0, 1) such that Fj(z, ũ) = F̃j(1)−F̃j(0) = F̃ ′j(ξ).

Therefore, we get that for all (z, ũ) ∈ Br × Ũ

|Fj(z, ũ)| ≤
∥∥∥∥∂Fj∂z

(ξz, ũ)

∥∥∥∥ · ‖z‖ =

∥∥∥∥ ∂pj
∂z∂ũ

(ξz, ũ)

∥∥∥∥ · ‖z‖,
which holds because p ∈ C2 and Br × Ũ is compact.
Recall that Fj(z, ũ) is the j-th component of ∂p

∂ũ (z, ũ).
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Thus, the above inequality implies the second estimate in
(4.5). Therefore, we can apply Lemma 9.8 of Khalil (2002),
which yields the existence of W such that

c1‖z‖2 ≤W (ũ, z) ≤ c2‖z‖2, (4.6a)

∂W

∂z
f̃(ũ, z + Ξ̃(ũ)) ≤ −c3‖z‖2, (4.6b)∥∥∥∥∂W∂z

∥∥∥∥ ≤ c4‖z‖, ∥∥∥∥∂W∂ũ
∥∥∥∥ ≤ c5‖z‖2, (4.6c)

for all (ũ, z) ∈ Ũ × Bε0 , where ci, i = 1, . . . 5 are positive
constants. It follows that the conditions (4.4) (and more)
are satisfied with

ψ2(z) = ‖z‖, α2 = c3, W1(z) = c1‖z‖2

and W2(z) = c2‖z‖2.
(4.7)

4.3 Interconnection conditions

The interconnection conditions to be verified are (11.43)
and (11.44) in Khalil (2002), i.e.,

∂V

∂ũ
[h̃(ũ, z+ Ξ̃(ũ))− h̃(ũ, Ξ̃(ũ))] ≤ β1ψ1(ũ)ψ2(z), (4.8)[

∂W

∂ũ
− ∂W

∂z

∂Ξ̃

∂ũ

]
h̃(ũ, z + Ξ̃(ũ))

≤ β2ψ1(ũ)ψ2(z) + γψ2
2(z), (4.9)

for some constants β1,β2,γ and for all (ũ, z) ∈ Ũ × Bε0 .

Substituting V from (4.2), Ξ̃ from (3.9), h̃ from (3.7a) and
h from (3.3), the left-hand side of (4.8) reduces to

ũ[S (ũ+ur, r−g(z+Ξ(ũ+ur)))−S (ũ+ur, r−g(Ξ(ũ+ur)))].

The function S is Lipschitz in the second argument with
constant 1, i.e., |S (u, e1) − S (u, e2)| ≤ |e1 − e2|, for all
u, e1, e2 ∈ R. Therefore, we can write

ũ[S (ũ+ ur, r − g(z + Ξ(ũ+ ur)))

−S (ũ+ ur, r − g(Ξ(ũ+ ur)))]

≤ |ũ|
∣∣g(z + Ξ(ũ+ ur))− g(Ξ(ũ+ ur))

∣∣ ≤ Lg|ũ|‖z‖,
where Lg, the Lipschitz constant of g is well-defined since
g ∈ C1 and Bε0 ⊂ Rn is compact. Hence, choosing

β1 = Lg, (4.10)

the interconnection condition (4.8) holds. For what con-
cerns (4.9), since S (u, 0) = 0 for all u ∈ R and S is
Lipschitz in the second argument, the following holds:

|h̃(ũ, z + Ξ̃(ũ))|
=
∣∣S (ũ+ ur, r − g(z + Ξ(ũ+ ur)))−S (ũ+ ur, 0)

∣∣
≤ |r − g(z + Ξ(ũ+ ur))|. (4.11)

Denoting q(ũ, z) := r − g(z + Ξ(ũ + ur)), it is clear that
q ∈ C1 and q(0, 0) = 0. It follows that there exists Cq > 0
such that

|q(ũ, z)| ≤ Cq
∥∥∥∥ ũz
∥∥∥∥ ≤ Cq(|ũ|+ ‖z‖), (4.12)

for all (ũ, z) ∈ Ũ ×Bε0 . On the other hand, from (4.6c), it
follows that:∣∣∣∣∂W∂ũ − ∂W

∂z

∂Ξ̃

∂ũ

∣∣∣∣ ≤
(
c5‖z‖2 + c4‖z‖

∥∥∥∥∂Ξ̃

∂ũ

∥∥∥∥
)

≤ CW ‖z‖,
(4.13)

for all (ũ, z) ∈ Ũ × Bε0 , where CW > 0. Therefore, using
(4.11), (4.12) and (4.13) on the left hand side of (4.9), we
get[
∂W

∂ũ
− ∂W

∂z

∂Ξ̃

∂ũ

]
h̃(ũ, z + Ξ̃(ũ)) ≤ CqCW ‖z‖(|ũ|+ ‖z‖),

for all (ũ, z) ∈ Ũ ×Bε0 . Hence, choosing

β2 = γ = CqCW , (4.14)

the interconnection condition (4.9) holds.

4.4 Closed-loop stability analysis

We use the result from Theorem 11.3 of Khalil (2002)
to prove that the equilibrium point (Ξ(ur), ur) of the
closed-loop system (1.3) is locally exponentially stable
and, consequently, the output y of P converges to r ∈ Y
(recall that Y = (ymin, ymax) and ur = G−1(r)).

Theorem 4.2. Consider the closed-loop system (1.3), where
P satisfies Assumption 2 and r ∈ Y . Then there exists a
κ∗ > 0 such that if the gain k ∈ (0, κ∗), then (Ξ(ur), ur)
is a (locally) exponentially stable equilibrium point of the
closed-loop system (1.3), with state space X = Rn ×U . If
the initial state (x(0), u(0)) ∈ X of the closed-loop system
satisfies ‖x(0)− Ξ(u(0))‖ ≤ ε0, then

x(t)→ Ξ(ur), u(t)→ ur, y(t)→ r,

and this convergence is at an exponential rate.

Proof. Consider the singularly perturbed system (3.11a),

(3.11b) with state space X̃ = Ũ × Rn, and recall the
Lyapunov functions V (ũ) and W (ũ, z) that satisfy (4.1),
(4.4), (4.8) and (4.9). According to Theorem 11.3 of Khalil
(2002), it follows that the function defined as

ν(ũ, z) := (1− d)V (ũ) + dW (ũ, z) , 0 < d < 1, (4.15)

is a Lyapunov function for the closed-loop system (3.11a),
(3.11b), for every d ∈ (0, 1), as long as

k < κd :=
α1α2

α1γ + 1
4d(1−d) [(1− d)β1 + dβ2]2

,

where α1, α2, β1, β2, γ are from (4.3), (4.7), (4.10), (4.14).
In particular, the maximum value of κd occurs at d∗ :=
β1

β1+β2
and it is given by κ∗ := α1α2

α1γ+β1β2
. As a consequence,

choosing d = d∗ in (4.15), the origin of the closed-loop
system (3.11a), (3.11b) is asymptotically stable for all k ∈
(0, κ∗). Moreover, since V (ũ) and W (ũ, z) are quadratic,
the origin of the closed-loop system (3.11a), (3.11b) is
exponentially stable (see Corollary 2.2 of Kokotović et al.
(1999)). To investigate the region of attraction, we proceed
as follows. From (4.2), it is clear that

V (ũ) ≤ 1

2
max{ũ2

min, ũ
2
max} ∀ ũ ∈ Ũ ,

and from (4.6a), it follows that

W (ũ, z) ≤ c2ε2
0 ∀ (ũ, z) ∈ Ũ ×Bε0 . (4.16)

We introduce the compact positively-invariant set

L :=

{
(ũ, z) ∈ Ũ × Rn | ν(ũ, z)

≤ (1− d∗)1

2
max{ũ2

min, ũ
2
max}+ d∗c2ε

2
0

}
. (4.17)

It is clear from the above reasoning that Ũ × Bε0 ⊂ L,

and, therefore, that Ũ ×Bε0 is contained in the domain of
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attraction of the origin of (3.11a), (3.11b) for all k < κ∗.
Finally, the change of variable (3.10) is stability preserving
(see Remark 3.3), hence the equilibrium point (Ξ(ur), ur)
of the system (1.3) is locally exponential stable with region
of attraction containing all (x(0), u(0)) ∈ Rn×U such that
‖x(0) − Ξ(u(0))‖ ≤ ε0. Since y(t) = g(x(t)) and g is a
C1 function, we have that y(t) converges to g(Ξ(ur)) =
G(ur) = r at an exponential rate. 2

Remark 4.3. A proportional block τp can be added in
parallel to the saturating integrator, after the block k in
the block diagram of Figure 1. In this way a feedback loop
with a PI controller is obtained. The resulting closed-loop
system is given by

ẋ = f(x, u+ kτp(r − g(x))), u̇ = S (u, k(r − g(x))),

where k ∈ (0, κ∗) (κ∗ from Theorem 4.2). Defining

β(x, u) := f(x, u+ kτp(r − g(x)))− f(x, u),

the above closed-loop system can be rewritten as

ẋ = f(x, u) + β(x, u), u̇ = S (u, k(r − g(x))). (4.18)

The term β(x, u) is vanishing at the equilibrium point,
(β(Ξ(ur), ur) = 0), therefore Lemma 9.1 from Khalil
(2002) (“vanishing perturbations”) can be applied with the
Lyapunov function (4.15). It follows that if τp is sufficiently
small, then the perturbed closed-loop system (4.18) is
locally exponentially stable around the equilibrium point
(Ξ(ur), ur). The proportional term may improve the tran-
sient response, but the domain of attraction of the equilib-
rium point may shrink. We cannot prove the existence of a
relatively large domain of attraction, as we did in Theorem
4.2 without the proportional block.

5. STABILITY ANALYSIS - DOMAIN OF
ATTRACTION

Assumption 3. There exists κ0 > 0 such that for any
k ∈ [0, κ0], the closed-loop system formed by P and
the saturating integrator, as shown in Figure 1, with
any r ∈ Y , has a unique state trajectory on the
interval [0,∞), for any initial state in X. Moreover,
at any time t ≥ 0, the state (x(t), u(t)) depends
continuously on the initial state (x(0), u(0)).

The above assumption is not trivial, because the differ-
ential equations describing the closed-loop system are not
continuous (the discontinuity is in S ). We note that the
saturating integrator is irreversible (in time) and hence
the closed-loop system usually has no uniquely defined
backwards (in time) state trajectories.

Theorem 5.1. Assume that P satisfies Assumption 2 and
the closed-loop system from Figure 1 satisfies Assumption
3. Let r ∈ Y , let T > 0 and let XT ⊂ X be a compact set
such that if (x0, u0) ∈ XT , then the state trajectory x of P
starting from x(0) = x0, with constant input u0, satisfies

‖x(T )− Ξ(u0)‖ ≤ ε0 .

Then there exists a κ∗T ∈ (0, κ0] such that for any k ∈
(0, κ∗T ), if the initial state (x0, u0) of the closed-loop system
is in XT , then the state trajectory (x, u) of (1.3) satisfies

x(t)→ Ξ(ur), u(t)→ ur, y(t)→ r,

and this convergence is at an exponential rate.

Proof. Recall the changes of variables (3.6), (3.10) and the

state space X̃ = Ũ ×Rn of the closed-loop system (3.11a),

(3.11b). Define the set X̃T ⊂ X̃ as the image of the set XT

through the change of variables just mentioned. Then for
every (ũ0, z0) ∈ X̃T , state trajectory z of the boundary-
layer system (3.14) starting from z(0) = z0, with fixed
input ũ0, satisfies ‖z(T )‖ ≤ ε0, i.e., z reaches Bε0 in time

T . Clearly X̃T is compact.

The convergence of z to Bε0 can be regarded as an
exponential one (since T is finite, there exist m̃T ≥ 1 and

λ̃T > 0 such that ‖z(t)‖ ≤ m̃T e
−λ̃T t‖z(0)‖). Therefore,

applying Lemma 9.8 of Khalil (2002), we get a Lyapunov
functionW (ũ, z) for the boundary-layer system (3.14) such

that (4.6a) to (4.6c) hold for all (ũ, z) ∈ X̃T . Note that
the constants ci, i = 1, . . . 5 in this case are different, since
m̃T and λ̃T are, in general, different from m and λ of
Assumption 1. From this point on, everything proceeds as
in the proof of Theorem 4.2, substituting the inequality
(4.16) with

W (ũ, z) ≤ c2 max{‖z‖2 | z ∈ ΠX̃T } ∀ (ũ, z) ∈ X̃T ,

where Π denotes the projection onto the second component
in the product Ũ × Rn, and modifying the definition of L
in (4.17) accordingly. 2

Remark 5.2. The reason why we may call XT a possibly
“large” domain of attraction is the following: If P happens
to be globally asymptotically stable (GAS) for every
constant input u0 ∈ U , then every initial state of the
closed-loop system is contained in one of the sets XT of
the form

XT = {(x0, u0) ∈ X | ‖x(T )− Ξ(u0)‖ ≤ ε0 , ‖x0‖ ≤ T} ,
if we choose T large enough. (In the above formula, x(·)
denotes the state trajectory of P, starting from x(0) = x0

and with constant input u0.) If we choose a “region of
interest” K ⊂ X that is compact, then there exists a k > 0
such that all the closed-loop state trajectories starting
from K will converge to the unique equilibrium point.
Indeed, the interiors of the sets XT as defined above are an
open covering of K, so that K ⊂ XT if T is large enough.
Then we have to choose a gain k ≤ κ∗T . Of course, the
price for choosing a very large T is that we may have to
choose a very small gain k, and this may deteriorate the
dynamic response of the closed-loop system.

A similar, but more complicated statement can be made
for plants that are almost globally asymptotically stable
for every constant input u0 ∈ U , as encountered for
instance in Barabanov et al. (2017) and Natarajan and
Weiss (2018).

6. CONCLUSION

This paper presented an integral controller with anti-
windup (saturating integrator), for a single-input single-
output nonlinear plant P, based on singular perturbations
theory. Under reasonable assumptions, it was proved that
the closed-loop system from Figure 1 is able to track a
constant reference signal r, while not allowing the input u
to exit the range U = [umin, umax]. Moreover, it has been
shown that the equilibrium point of the closed-loop system
has a “large” region of attraction.

In the future, we plan to formulate a similar theory
for multi-input multi-output (MIMO) nonlinear plants. In
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fact, this extension to MIMO plants would open a new
range of possibilities, for instance in the stability analysis
of electric power grids.
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