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Abstract: The distributed coordination problems for networked Euler-Lagrange systems are
investigated in this paper, where both the distributed synchronization control and the distribut-
ed containment control are considered. Compared with the existing traditional asymptotically
stable control laws, the desired cooperative control objectives of this paper can be realized
in finite time, and the estimate of the settling times are explicitly provided. Another distinct
feature of our work is that the communication interactions between neighboring agents are
unidirectional, which is more practical in real applications. Finally, some simulation results are
shown to validate the feasibility of the theoretical schemes.
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1. INTRODUCTION

Recently, distributed finite-time coordination control has
become an interesting research topic due to the growing
demands on the fast convergence rate of the networked sys-
tems. Unlike traditional asymptotic stability, finite-time
convergence promises advantages in disturbance rejection
and robustness against uncertainties.

Driven by the fact that a large class of dynamical sys-
tems involving robotic manipulators, marine vehicles, s-
pacecraft, and so forth, can be modeled by the Euler-
Lagrange systems, much attention has been paid on the
cooperative control for networked Euler-Lagrange systems.
The asymptotically convergent distributed synchroniza-
tion, tracking and containment control schemes were de-
veloped in Mei et al. (2013); Zhao et al. (2015); Xu et al.
(2019), Lu et al. (2019); Lu and Liu (2019) and Mei
et al. (2012); Cheng et al. (2017), respectively. When satis-
factory coordination control performance with finite-time
convergence is considered, distributed finite-time tracking
problems with unknown bounds of the model uncertainties
and external disturbances were addressed in Chen et al.
(2013). In Zhao et al. (2015), distributed finite-time track-
ing control in the absence of relative velocity measure-
ments was solved. By using the back-stepping approach,
the distributed tracking control was also investigated in He
et al. (2018). It is worth noting that the communication
networks between adjacent followers in Chen et al. (2013);
Zhao et al. (2015); He et al. (2018) are undirected.

⋆ This work was supported by the National Science and Technol-
ogy Major Project of China under grant 2017YFB13010000 and
2018AAA0102703, and the National Natural Science Foundation of
China under Grant U1713223, 61673026.

Motivated by the discussions mentioned above, this paper
aims at dealing with the distributed synchronization and
containment control problems for multiple Euler-Lagrange
systems, where the communication graphs are presumed
to be directed. The main contributions of our work are
two-fold. First, different from the asymptotically stable
control strategies proposed in Mei et al. (2013); Zhao et al.
(2015); Xu et al. (2019); Lu et al. (2019); Lu and Liu
(2019); Mei et al. (2012); Cheng et al. (2017), the control
objectives of this paper can be achieved in finite time,
and the settling times are explicitly provided. Second,
the information flows in the communication topologies are
unidirectional as compared with Chen et al. (2013); Zhao
et al. (2015); He et al. (2018).

The rest of this paper is arranged as follows. The prelim-
inaries are presented in Section 2. Distributed finite-time
synchronization control and containment control are dis-
cussed in Section 3 and Section 4, respectively. Simulation
examples are provided in Section 5 and conclusions are
drawn in Section 6.

2. PRELIMINARIES

2.1 Notations

Given a constant α ∈ R and a vector x = (x1, . . . , xn)
T ∈

Rn, the symbol x[α] is defined as x[α] = sig(x)α =
(sgn(x1)|x1|α, . . . , sgn(xn)|xn|α)T with sgn(xi), i = 1, . . . ,
n, being a sign function. The notation diag{xi} is denoted
as a diagonal matrix with the elements xi, i = 1, . . . , n,
on its diagonal. The minimum eigenvalue of a real sym-
metric matrix A is represented by λm(A). The convex
hull of the set X = {x1, . . . , xn} is defined as Co(X) =
{
∑n

i=1 αixi|αi ≥ 0,
∑n

i=1 αi = 1, xi ∈ X}.
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2.2 Euler-Lagrange system

The Euler-Lagrange equality is introduced in the following:

Hi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, (1)

with qi, q̇i, q̈i ∈ Rp being the generalized position, veloc-
ity and acceleration vectors, respectively. The notations
Hi(qi) ∈ Rp×p, Ci(qi, q̇i) ∈ Rp×p, gi(qi) ∈ Rp and τi ∈ Rp

represent the symmetric positive definite inertia matrix,
the Coriolis and centrifugal torque matrix, the gravitation-
al torque vector and the control torque vector, respectively.

2.3 Graph theory

Consider a directed graph G = (V, E ,A) with the node set
V = (v1, . . . , vn), the edge set E ⊆ V×V and the adjacency
matrix A = [aij ]n×n. An edge (vi, vj) in G means that the
information of vi can be received by vj , but not vice versa.
The adjacency matrix A = [aij ]n×n is defined such that
aij > 0 if (vj , vi) ∈ E and aij = 0 otherwise. The Laplacian
matrix L = [lij ]n×n associated with A can be defined as
lii =

∑n
j=1,j ̸=i aij and lij = −aij , j ̸= i, i, j = 1, . . . , n.

The directed graph is strongly connected if there exists
a directed path between every pair of distinct nodes. A
directed graph contains a directed spanning tree if there
exist a root node as well as directed paths from the root
node to all other nodes.

2.4 Some basic lemmas

Lemma 1. (Mei et al. (2012)) The matrix A ∈ Rn×n is a
nonsingular M -matrix if and only if A−1 exists and each
entry of A−1 is non-negative. Additionally, there exists a
diagonal matrix D = diag(di) with di > 0, i = 1, . . . , n,
such that DA + ATD is a symmetric positive definite
matrix.

Lemma 2. (Meng et al. (2010)) For x ∈ R, α ∈ R>0, it

holds that d|x|α+1

dt = (α + 1)sig(x)αẋ and dx[α+1]

dt = (α +
1)|x|αẋ.
Lemma 3. (Meng et al. (2010)) Let 0 < α ≤ 1 and
x1, . . . , xp ≥ 0. Then,

∑p
i=1(x

α
i ) ≥ (

∑p
i=1 xi)

α.

Lemma 4. (Meng et al. (2010)) Consider a continuous
system ẋ = f(x, t) with f(0, t) = 0. Suppose that there
exist 0 < α < 1, β > 0, c > 0 and a radially unbounded
positive definite continuous function V (x, t) such that

V̇ (x, t)+cV (x, t)+βV (x, t)α ≤ 0 (or V̇ (x, t)+cV (x, t)α ≤
0). Then, V (x, t) converge to zero in finite time and the

settling time is bounded by T ≤ 1
c(1−α) ln

cV (x(t0),t0)
1−α+β

β

(or T ≤ V (x(t0),t0)
1−α

c(1−α) ).

3. DISTRIBUTED FINITE-TIME
SYNCHRONIZATION CONTROL

3.1 Problem formulation

The finite-time distributed synchronization control is in-
vestigated in this section. Suppose that there exist n agents
with the following communication graphs:

Assumption 1. The communication topology among all
agents is directed that contains a directed spanning tree.

Lemma 5. (Mei et al. (2013)) Suppose that Assumption 1
holds. By adjusting the order of the agents, the Laplacian
matrix L can be expressed by the Frobenius normal form:

L =


L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...
Lk1 Lk2 · · · Lkk

 ,
where 1 ≤ k ≤ n, Lii ∈ Rri×ri is either a scalar or a square

irreducible matrix and
∑k

i=1 ri = n. The communication
network is strong connected when k = 1. If k > 1, the
subgraph associated with L11 is strongly connected and
Lii, i = 2, . . . , k are nonsingular M -matrices.

Lemma 6. (Wang et al. (2018)) If the communication
graph G is directed strongly connected, there exists an
eigenvector ξ = (ξ1, . . . , ξn)

T corresponding to the zero
eigenvalue of L, where ξi > 0, i = 1, . . . , n. For any fixed
e > 0, ε > 0 and δ > 0 satisfying ε ̸= δ, denote ∆(e, ε, δ) =
{z : ∃ρ ⊥ ξ, γ ≥ 0, such that z = eρ[ε] + γρ[δ], and

∥z∥ = 1}. Then, it holds that infz∈∆(e,ε,δ) z
T L̂z = χ > 0,

where L̂ = 1
2 (ΞL+ LTΞ) with Ξ = diag{ξi}, i = 1, . . . , n.

In this section, we aims at designing control protocols such
that qi(t) → qj(t), i, j = 1, . . . , n, in finite time.

3.2 Controller design and analysis

Some auxiliary variables are designed in the following:

ψi(t) =
n∑

j=1

aij(qi(t)− qj(t)), (2)

s̄i(t) = ψi(t) + k1q̇
[α1]
i (t), (3)

where the constants k1 > 0 and 1 < α1 < 2.

The distributed finite-time synchronization control law is
proposed as follows:

τi(t) = τ̄i1(t) + τ̄i2(t), (4)

with

τ̄i1(t) =−Hi(qi)

k1α1
Ω−1ψ̇i(t) + Ci(qi, q̇i)q̇i(t) + gi(t), (5)

τ̄i2(t) =−Hi(qi)

k1α1
(s̄i(t) + s̄

[α2]
i (t)), (6)

where 0 < α2 < 1 and Ω = diag{|q̇i(ν)(t)|α1−1} with
q̇i(ν)

(t) being the ν-th entry of q̇i(t), ν = 1, . . . , p.

Theorem 1. Consider the networked Euler-Lagrange sys-
tems (1) with Assumptions 1, the synchronization can be
achieved in finite time by using the distributed control
strategies (4)-(6).

Proof 1. The time variable t will be omitted to facilitate
the analysis. Substituting (4)-(6) into the Euler-Lagrange
equality (1) yields that

q̈i =H−1
i (qi)[τ̄i1 + τ̄i2 − Ci(qi, q̇i)q̇i − gi(qi)]

=− 1

k1α1
(Ω−1ψ̇i + s̄i + s̄

[α2]
i ). (7)

The Lyapunov function is chosen as
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Va =
1

2
s̄Ti s̄i. (8)

Taking the derivative of Va along the trajectories (3) and
(7), one has

V̇a = s̄Ti ˙̄si = s̄Ti (ψ̇i(t) + k1α1Ωq̈i)

=−s̄Ti Ωs̄i − s̄Ti Ωs̄
[α2]
i , (9)

where Lemma 2 is applied. When q̇i ̸= 0, it follows

from Lemma 3 that s̄Ti Ωs̄
[α2]
i ≥ λm(Ω)

∑p
ν=1 |s̄i(ν)

|α2+1 ≥
λm(Ω)(

∑p
ν=1 |s̄i(ν)

|2)
α2+1

2 ≥ λm(Ω)∥s̄i∥α2+1. Then, it can

be further deduced from (9) that

V̇a ≤−λm(Ω)∥s̄i∥2 − λm(Ω)∥s̄i∥α2+1

=−2λm(Ω)Va − 2
α2+1

2 λm(Ω)V
α2+1

2
a , (10)

where Ω̄ = diag{ωα1−1
ν }, 0 < α2+1

2 < 1 since 0 < α2 < 1.
It follows from Lemma 4 that Va → 0 in finite time, which
indicates that s̄i → 0 in finite time. Furthermore, the
settling time T1 is bounded by

T1 ≤ 1

λm(Ω)(1− α2)
ln(2

1−α2
2 λm(Ω)Va(0)

1−α2
2 + 1).(11)

When q̇i = 0, it follows from (7) that q̈i = − 1
k1α1

(s̄i +

s̄
[α2]
i ) ̸= 0 if s̄i ̸= 0. Also note that q̈i > 0 and q̈i < 0
for s̄i < 0 and s̄i > 0, respectively. Following the similar
analysis as shown in Feng et al. (2002) and Yu et al. (2005),
it is derived that the sliding mode s̄i = 0 can be reached
in finite time that can be defined as T2.

When t > max{T1, T2}, it is easy to deduce from (3) that

ψi = −k1q̇[α1]
i , which is equivalent to

q̇i = −k̄1ψ[ᾱ1]
i , (12)

where k̄1 = 1
k
α1
1

> 0 and 1
2 < ᾱ1 = 1

α1
< 1. In the

following, this proof will be divided into three steps.

Step 1: Let Ψ1 = (ψT
1 , . . . , ψ

T
r1)

T , Q1 = (qT1 , . . . , q
T
r1)

T . It
follows from (2) and (12) that

Ψ1 = (L11 ⊗ Ip)Q1, (13)

Q̇1 =−k̄1Ψ[ᾱ1]
1 . (14)

Note from Lemmas 5 and 6 that the subgraph associated
with the matrix L11 is strongly connected and there exists
an eigenvector ξa = (ξ1, . . . , ξr1)

T corresponding to the
eigenvalue zero with ξi > 0, i = 1, . . . , r1. The Lyapunov
function is designed as

Vb =

r1∑
i=1

p∑
ν=1

ξi
1 + ᾱ1

|ψi(ν)
|1+ᾱ1 , (15)

where ψi(ν)
represents the ν-th entry of ψi, ν = 1, . . . , p.

Based on Lemma 6, the derivative of Vb along the trajec-
tories (13) and (14) can be calculated by

V̇b =

r1∑
i=1

p∑
ν=1

ξiψ
[ᾱ1]
i(ν)

ψ̇i(ν)
= −k̄1(Ψ[ᾱ1]

1 )T [L̂a ⊗ Ip]Ψ
[ᾱ1]
1

=−k̄1∥Ψ[ᾱ1]
1 ∥2( Ψ

[ᾱ1]
1

∥Ψ[ᾱ1]
1 ∥

)T [L̂a ⊗ Ip](
Ψ

[ᾱ1]
1

∥Ψ[ᾱ1]
1 ∥

)

≤−k̄1χa

r1∑
i=1

p∑
ν=1

|ψi(ν)
|2ᾱ1 , (16)

where L̂a = 1
2 (ΞaL11 + LT

11Ξa) with Ξa = diag{ξi}, i =
1, . . . , r1. Besides, the notation χa = infza∈∆(1,ᾱ1,δ) z

T
a L̂aza

with za =
Ψ

[ᾱ1]

1

∥Ψ[ ¯̄α1]

1 ∥
, δ ̸= ᾱ1. Note that 0 < 2ᾱ1

1+ᾱ1
< 1 since

1
2 < ᾱ1 < 1. According to Lemma 4, one can obtain that

p∑
ν=1

|ψi(ν)
|2ᾱ1 =

p∑
ν=1

(|ψi(ν)
|1+ᾱ1)

2ᾱ1
1+ᾱ1

≥ (

p∑
ν=1

|ψi(ν)
|1+ᾱ1)

2ᾱ1
1+ᾱ1 . (17)

It also can be derived from Lemma 4 that

m∑
i=1

(

p∑
ν=1

|ψi(ν)
|1+ᾱ1)

2ᾱ1
1+ᾱ1 ≥ (

m∑
i=1

p∑
ν=1

|ψi(ν)
|1+ᾱ1)

2ᾱ1
1+ᾱ1 .(18)

Combining with (17) and (18) yields

m∑
i=1

p∑
ν=1

|ψi(ν)
|2ᾱ1 ≥ (

m∑
i=1

p∑
ν=1

|ψi(ν)
|1+ᾱ1)

2ᾱ1
1+ᾱ1 . (19)

Let ξa = maxi=1,...,r1{ξi}. It follows from (15), (16) and
(19) that

V̇b ≤ −k̄1χa(
1 + ᾱ1

ξa
)

2ᾱ1
1+ᾱ1 V

2ᾱ1
1+ᾱ1

b . (20)

It can be further deduced from Lemma 4 that Vb → 0, i.e.,
ψi → 0, i = 1, . . . , r1, in finite time. It thus follows from
(2) that qi → qj , i, j = 1, . . . , r1, in finite time with the
settling time bounded by

T3 ≤ max{T1, T2}+
ξ

2ᾱ1
1+ᾱ1
a (1 + ᾱ1)

1−ᾱ1
1+ᾱ1 Vb(0)

1−ᾱ1
1+ᾱ1

k̄1χa(1− ᾱ1)
.(21)

Step 2: Denote Ψ2 = (ψT
r1+1, . . . , ψ

T
r1+r2)

T , Q2 =

(qTr1+1, . . . , q
T
r1+r2)

T . In light of (2) and (3), it is not d-
ifficult to get that

Ψ2 = (L21 ⊗ Ip)Q1 + (L22 ⊗ Ip)Q2, (22)

Q̇2 =−k2Ψ[ᾱ1]
2 . (23)

It follows from Lemma 5 that L22 is a non-singular M -
matrix. From Lemma 1, there exists a diagonal matrix
Da = diag{di} with di > 0, i = r1+1, . . . , r1+r2, such that
DaL22+L

T
22Da is symmetric positive definite. Consider the

following Lyapunov function:

Vc =

r1+r2∑
i=r1+1

p∑
ν=1

di
1 + ᾱ1

|ψi(ν)
|1+ᾱ1 . (24)

Note that Ψ1 → 0 in finite time T3. When t > T3, by
adopting the similar analysis as presented in Step 1, the
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derivative of Vc along the trajectories (22) and (23) is
computed as follows:

V̇c =

r1+r2∑
i=r1+1

p∑
ν=1

diψ
[ᾱ1]
i(ν)

ψ̇i(ν)
= −k̄1(Ψ[ᾱ1]

2 )T [Pa ⊗ Ip]Ψ
[ᾱ1]
2

≤−k̄1λm(Pa)

r1+r2∑
i=r1+1

p∑
ν=1

|ψi(ν)
|2ᾱ1

≤−k̄1λm(Pa)(

r1+r2∑
i=r1+1

p∑
ν=1

|ψi(ν)
|1+ᾱ1)

2ᾱ1
1+ᾱ1

≤−k̄1λm(Pa)(
1 + ᾱ1

da
)

2ᾱ1
1+ᾱ1 V

2ᾱ1
1+ᾱ1
c , (25)

where Pa = 1
2 (DaL22+L

T
22Da), da = maxi=r1+1,...,r1+r2{di}.

Note that 0 < 2ᾱ1

1+ᾱ1
< 1 since 1

2 < ᾱ1 < 1. It follows from
Lemma 4 that Vc → 0, i.e., ψi → 0, i = r1+1, . . . , r1+r2, in
finite time. It further can be derived from (2) that qi → qj ,
i, j = r1 + 1, . . . , r1 + r2, in finite time with the settling
time estimated by

T4 ≤ T3 +
d

2ᾱ1
1+ᾱ1
a (1 + ᾱ1)

1−ᾱ1
1+ᾱ1 Vc(0)

1−ᾱ1
1+ᾱ1

k̄1λm(Pa)(1− ᾱ1)
. (26)

Step 3: Note that the matrices Lii, i = 3, . . . , k are
nonsingular M -matrices. Therefore, following the similar
analysis as shown in Step 2, the finite-time synchronization
can also be realized when the subgraphs are associated
with Lii, i = 3, . . . , k.

Combining with the aforementioned discussions, one can
conclude that qi → qj , i, j = 1, . . . , n, in finite time,
which indicates that all agents can reach an agreement
in finite time and thereby achieving the goal of finite-time
synchronization. 2

4. DISTRIBUTED FINITE-TIME CONTAINMENT
CONTROL

4.1 Problem formulation

The distributed finite-time containment control with mul-
tiple dynamic leaders are considered in this section, where
agent 1 to agent m are followers and agent m+1 to agent
n are leaders. Let qF and qL be the column stack vectors
of qi, i = 1, . . . ,m and qi, i = m+ 1, . . . , n, respectively.

Assumption 2. The leaders have no neighbors and at least
one leader have directed pathes to all followers. Besides,
only a portion of followers have access to the leaders.

Lemma 7. (Mei et al. (2012)) If Assumption 2 holds,
one can get the following Laplacian matrix L by proper
decomposition:

L =

[
L1 L2

0(n−m)×m 0(n−m)×(n−m)

]
,

where L1 ∈ Rm×m and L2 ∈ Rm×(n−m). Moreover,
the matrix L1 is a nonsingular M -matrix, each entry of
the matrix −L−1

1 L2 is non-negative and all row sums of
−L−1

1 L2 equal one.

Denote qd(t) = (qTd1
(t), . . . , qTdm

(t))T = −(L−1
1 L2⊗Ip)qL(t)

with qdi(t) ∈ Rp, i = 1, . . . ,m. It is not difficult to deduce

from Lemma 6 that qd(t) is within the convex hull spanned
by the leaders. Consequently, the control objective of this
section is to design distributed control strategies such that
qF (t)− qd(t) → 0 in finite time.

A commonly-used estimator v̂i(t), which is used to esti-
mate q̇di(t), is introduced as follows:

˙̂vi(t) = −βsgn[
m∑
j=1

aij(v̂i(t)− v̂j(t))

+

n∑
j=m+1

aij(v̂i(t)− q̇j(t))], (27)

where β is a positive constant.

Lemma 8. (Mei et al. (2012)) Suppose that Assumption
2 holds and the velocity and acceleration vectors of the
leaders are all bounded. By choosing β > ∥q̈d(t)∥, it can
be obtained that v̂i(t)− q̇di(t) → 0 in finite time.

4.2 Controller design and analysis

Some auxiliary variables are given by

ϕi(t) =
n∑

j=1

aij(qi(t)− qj(t)), (28)

s̃i(t) = ϕi(t) + k2 ˙̃q
[α3]
i (t), (29)

where ˙̃qi(t) = q̇i(t) − v̂i(t) with v̂i(t) introduced in (27),
the constants k2 > 0 and 1 < α3 < 2.

The distributed finite-time containment control algorithm
is developed as follows:

τi(t) = τ̃i1(t) + τ̃i2(t), (30)

with

τ̃i1(t) =−Hi(qi)

k2α3
Θ−1ϕ̇i(t) + Ci(qi, q̇i)q̇i(t) + gi(t), (31)

τ̃i2(t) =−Hi(qi)

k2α3
(s̃i(t) + s̃

[α4]
i (t)), (32)

where 0 < α2 < 1 and Θ = diag{| ˙̃qi(ν)(t)|α3−1} with
˙̃qi(ν)

(t) being the ν-th entry of ˙̃qi(t), ν = 1, . . . , p.

Theorem 2. Suppose that Assumptions 2 hold. The finite-
time containment control problem with dynamic leaders
for multiple Euler-Lagrange systems (1) can be solved
under the proposed distributed control laws (30)-(32).

Proof 2. The time variable t will be omitted for simplicity
if no confusion occurs. Based the the Euler-Lagrange e-
quation (1) and the distributed finite-time control schemes
(30)-(32), it can be deduced that

q̈i =H−1
i (qi)[τ̃i1 + τ̃i2 − Ci(qi, q̇i)q̇i − gi(qi)]

=
1

k2α3
(Θ−1 ˙̃qi − s̃i − s̃

[α4]
i ). (33)

The Lyapunov function is constructed by

Vd =
1

2
s̃Ti s̃i. (34)

When q̇i ̸= 0, following the similar analysis as provided in
the proof of Theorem 1, one has
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V̇d ≤ −2λm(Θ)Vd − 2
α4+1

2 λm(Θ)V
α4+1

2

d . (35)

Note that 0 < α4+1
2 < 1 since 0 < α4 < 1. By invoking

Lemma 4, it can be concluded that Vd → 0 in finite time,
which leads to s̃i → 0 in finite time. In addition, the
settling time can be estimated by

T5 ≤ 1

λm(Θ)(1− α4)
ln(2

1−α4
2 λm(Θ)Vd(0)

1−α4
2 + 1).(36)

When ˙̃qi = 0, it can be deduced from (33) that q̈i =

− 1
k2α3

(s̃i + s̃
[α4]
i ) ̸= 0 if s̃i ̸= 0. It also can be observed

that q̈i > 0 and q̈i < 0 if s̃i < 0 and s̃i > 0, respectively. It
thus follows that the finite-time reachability of s̃i = 0 can
be guaranteed with the settling time bounded by T6.

When t > max{T5, T6}, it follows from (29) that ϕi =

−k2 ˙̃q[α3]
i , i.e., ˙̃qi = q̇i − v̂i = −k̃2ϕ[α̃3]

i with k̃2 = 1
k
α3
2

> 0

and 1
2 < α̃3 = 1

α3
< 1. From Lemma 8, one obtains that

v̂i → q̇di in finite time and the settling time can be further
defined by T7. When t > max{T5, T6, T7}. it can be derived
from (28) that

ϕ= (L1 ⊗ Ip)qF + (L2 ⊗ Ip)qL

= (L1 ⊗ Ip)(qF − qd), (37)

and thus

ϕ̇= (L1 ⊗ Ip)(q̇F − q̇d) = (L1 ⊗ Ip)(q̇F − v̂)

=−k̃2(L1 ⊗ Ip)ϕ
[α̃3]. (38)

Due to the fact that the matrix L1 is a M -matrix, it thus
can be followed from Lemma 1 that there exists a diagonal
matrix Db = diag{di} with di > 0, i = 1, . . . ,m, such that
DbL1+L

T
1Db is symmetric positive definite. The Lyapunov

function is given by

Ve =
m∑
i=1

p∑
ν=1

di
1 + α̃3

|ϕi(ν)
|1+α̃3 , (39)

where ϕi(ν)
represents the ν-th entry of ϕi, ν = 1, . . . , p.

Note that 0 < 2α̃3

1+α̃3
< 1 since 0 < α̃3 < 1. By applying

Lemma 2 and following the similar discussions as in (15)-
(20), the time derivative of Ve along with (38) can be
calculated as

V̇e =
m∑
i=1

p∑
ν=1

diϕ
[α̃3]
i(ν)

ϕ̇i(ν)
= −k2(ϕ[α̃3])T [Pb ⊗ Ip]ϕ

[α̃3]

≤−k2λm(Pb)
m∑
i=1

p∑
ν=1

|ϕi(ν)
|2α̃3

≤−k2λm(Pb)(
m∑
i=1

p∑
ν=1

|ϕi(ν)
|1+α̃3)

2α̃3
1+α̃3

≤−k2λm(Pb)(
1 + α̃3

db
)

2α̃3
1+α̃3 V

2α̃3
1+α̃3
e , (40)

where Pb = 1
2 (DbL1 + LT

1Db), db = maxi=1,...,m{di}.
Therefore, it can be concluded from Lemma 4 that Ve → 0
in finite time, i.e., ϕ→ 0 in finite time. Besides, the setting
time is bounded by

T8 ≤ max{T5, T6, T7}+
d

2α̃3
1+α̃3

b (1 + α̃3)
1−α̃3
1+α̃3 Ve(0)

1−α̃3
1+α̃3

k2λm(Pb)(1− α̃3)
.(41)

Since L1 is a nonsingular M -matrix, one can deduce that
L1 is invertible from Lemma 1. Consequently, it can be
further derived from (37) that qF − qd → 0 within T4.
In other words, the multiple followers can converge to
a convex hull spanned by the multiple dynamic leaders
in finite time, which implies that the objective of the
finite-time containment control with dynamic leaders for
multiple Euler-Lagrange systems can be achieved. 2

5. SIMULATIONS

The efficiency of the proposed control strategies is demon-
strated in this section. Each agent is modeled by two-link
robot manipulators whose dynamics can be referred to Lu
and Liu (2019).

Example 1: The correctness of the distributed finite-time
synchronization control laws (4)-(6) is confirmed in this
example. The communication graph and initial position
and velocity vectors of five agents (agent 1 to agent 5) is
shown in Fig. 1 and Table 1, respectively. The parameters
are chosen as k1 = 0.85, α1 = 1.1 and α2 = 0.8. In order
to show the synchronization performance, the evolution of
each agent is provided in Fig. 2.

Fig. 1. A communication network including five agents.

Table 1. The initial position and velocity vec-
tors of the five agents.

follower initial position (rad) initial velocity (rad/s)

agent 1 (−3.0,−4.0)T (0.15,−0.10)T

agent 2 (−6.5,−7.5)T (0.45, 0.05)T

agent 3 (8.5,−1.5)T (−0.25,−0.15)T

agent 4 (−4.0, 5.0)T (0.25, 0.20)T

agent 5 (5.5,−2.0)T (−0.15, 0.25)T
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Fig. 2. The synchronization performance of the five agents.
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It can be observed from Fig. 2 that the five agents achieve
synchronization within finite time 8.0 s, and thus pursuing
the finite-time synchronization control objectives.

Example 2: In this example, the effectiveness of the
distributed finite-time control laws (30)-(32) is vali-
dated. A communication topology among five follow-
ers (agents 1-5) and four leaders (agents 6-9) is ex-
hibited in Fig. 3. The position vectors of the leader-
s are give by q6 = [−0.04sin(t),−0.02sin(t)]T , q7 =
[0.05cos(t),−0.02sin(t)]T , q8 = [0.02sin(t), 0.05cos(t)],
q9 = [0.02cos(t),−0.03sin(t)]T and the initial position and
velocity vectors of five followers can be referred to Table 1.
We choose k2 = 0.75, α3 = 1.1, α4 = 0.9 and β = 0.8. The
containment error of each follower is displayed in Fig. 4 to
show the containment performance.

Fig. 3. A communication network including five followers
and four leaders.
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Fig. 4. The containment errors of the five followers.

It follows from Fig. 4 that the containment errors of the
followers are converged to zeros within finite time 8.0 s.
Therefore, the containment control problem is addressed
in finite time.

6. CONCLUSION

The distributed synchronization and containment control
problems for multiple Euler-Lagrange systems are ad-
dressed in this paper, where the communication networks
are presumed to be directed. The satisfactory coordina-
tion control objectives of our work are achieved in finite
time, and the estimate of the settling times are explicitly
presented.
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