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1. INTRODUCTION

The use of convex structures in nonlinear control design
allows to reduce complexity in stability analysis, when
convex structures are combined with the direct method of
Lyapunov instead of having to check stability conditions
for infinite points it is sufficient to check stability only
for a finite number of linear subsystems. Thus, condi-
tions for guaranteeing stability are frequently expressed
in terms of linear matrix inequalities (LMIs) which are
transformed into a convex optimization problem, LMIs
have been widely used in control theory for many rea-
sons, one of them is that they offer tractable solutions,
it means that the algorithms that solve these convex op-
timization problems have polynomial-time complexity see
Gahinet et al. (1994), and their solution can be computed
via commercially available interior-point algorithms Boyd
et al. (1994). Moreover, nonlinear synthesis based on LMIs
allows to easily include performance parameters within the
designs such as decay rate, disturbance rejection, input
and output constraints, state constraints, uncertainties in
the model, and more, by just stacking more constraints to
the LMI problem to solve Tanaka and Wang (2004).

Different methods exist for rewriting nonlinear systems
as an exact convex representation, some of these are ex-
plained in Taniguchi et al. (2001); Baranyi (2004); Sala
and Ariño (2009), in this paper we focus in the ones ob-
tained by applying the nonlinear sector methodology from
Taniguchi et al. (2001), this method employs membership
functions to interpolate between the extreme values for
each nonlinearity.

There are several sources of conservativeness, some have
been tackled in previous results; them may come from
the choice of the candidate Lyapunov function (it can
be quadratic, nonquadratic, periodic, polynomial or piece-
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wise) Guerra et al. (2009); Lendek et al. (2013); Par-
rilo (2000); Johansson et al. (1999), conditions that are
shape-independence of the membership functions Lam
and Lauber (2013), and nonuniqueness in exact convex
representations Sala (2009), among others. One of these
problems is how to properly take into account interac-
tions between the linear subsystems, i.e., how are we sure
that all the interactions among subsystems are stable?
Asymptotically sufficient and necessary conditions have
been obtained in Sala and Arino (2007), these are based
on Polya’s theorem for positive forms on the standard
simplex. However, there is a trade-off between the number
of constraints required to prove positiveness of a function
and conservativeness of the condition, a less conservative
condition requires increasing the number of inequality
constraints and this number grows exponentially due to
permutations, which is reflected on increasing computa-
tional time to find a solution Boyd et al. (1994).

Given this context, the aim of this report is to establish
sufficient shape-independent quadratic stability conditions
for nonlinear control and observer design by exploiting the
concept of copositive matrix while keeping the problem as
tractable.

The document is organized as follows: section 2 briefly
explains the nonlinear sector methodology used to obtain
an exact convex representation for a nonlinear system,
some of the existing definitions, lemmas and notation are
established, then, stability conditions for nonlinear con-
troller and observer design are given based on a quadratic
candidate Lyapunov function, in section 3 new theorems
for nonlinear control and observer design are obtained
based on sufficient conditions for copositivity, in section 4
a numerical example is used to illustrate the effectiveness
of the approach by means of a comparison with previous
lemmas and results, in section 5 a conclusion based on the
obtained results is presented.
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2. PRELIMINARIES

In this section the procedure for obtaining an exact convex
representation for a nonlinear system via the nonlinear
sector methodology is briefly explained, then, stability
conditions for nonlinear control and observer design based
on a quadratic candidate Lyapunov function are trans-
formed into a problem of Positivstellensatz. Some of the
lemmas and definitions used in the literature to satisfy this
constrained positiveness condition are given.

2.1 Nonlinear sector methodology

Consider a continuous time nonlinear system

ẋ(t) = f (x(t)) + g (x(t)) u(t), y(t) = z (x(t)) , (1)

these systems can be rewritten for all x within a compact
of interest Ω by means of the nonlinear sector methodology
from Taniguchi et al. (2001); thus, obtaining an exact
convex representation for

ẋ = A(x)x +B(x)u, y = C(x)x.

The method consists on rewriting each of the ρ non
constant terms (denoted by zi, with i ∈ {1, 2, · · · , ρ}) in
the matrices A(x), B(x) and C(x) in (3) for all x ∈ Ω, via
the interpolation or membership functions defined as hi =
w1

i1
w2

i2
· · ·wr

ir
, where [i1, i2, · · · , ir] is a ρ−digit binary

representation of (i − 1) with i ∈ {1, 2, · · · , r} and r = 2ρ

is the number of membership or interpolation functions
necessary to obtain this exact convex representation, the
weight functions wi

0
and wi

1
that compose the membership

functions are defined as

wi
0
=

z1i − zi

z1i − z0i
, wi

1
=

zi − z0i
z1i − z0i

,

where z1i and z0i stands for the maximum and minimum
values of each non constant term zi within Ω, respectively.
Each non constant term is expressed as the convex sum
of its constant extreme values zi = wi

0

(
z0i
)
+wi

1

(
z1i
)
, the

constant matrices can be obtained by evaluating

Ai = A(x)|hi=1, Bi = B(x)|hi=1, Ci = C(x)|hi=1, (2)

it yields to the following exact convex representation

ẋ(t)=

r∑

i=1

hi (Aix(t)+Biu(t)) , y(t)=

r∑

i=1

hiCix(t). (3)

The membership functions (denoted by hi) belong to
the standard simplex (i.e., they hold the convex sum
properties)

0 ≤ hi ≤ 1,

r∑

i=1

hi = 1. (4)

Developments thereafter assume that the mathematical
model of the system has been rewritten as a convex
structure, and also that the origin of the system x = 0
is contained in the modeling region Ω.

Definition 1. (Positive Johnson (1970)). Let a matrixQ ∈
R

n×n, be called positive definite if xTQx > 0 holds for x 6=
0 and x ∈ R

n. A matrix Q is positive definite if and only
if its symmetric part is positive definite 1

2

(
Q+QT

)
> 0.

Definition 2. (Copositive Parrilo (2000)). Let a matrix Q
be called strictly copositive if hTQh > 0 holds for h� 0,
with Q∈R

r×r and h ∈ R
r.

2.2 Stability conditions for nonlinear control design

First, consider a nonlinear system (1) written as an exact
convex representation (3), assuming that the state vector
x can be fully measured and applying a parallel distributed
compensation control law (denoted as PDC) has the form

u = F (x)x =

r∑

j=1

hjFjx, (5)

where hj are the same membership functions as the
original system, then, our closed-loop system is

ẋ=(A(x)+B(x)F (x)) x=

r∑

i,j=1

hihj (Ai +BiFj)x. (6)

Consider a quadratic candidate Lyapunov function of the
form V (x)=xTPx, it is positive definite if P >0, its time

derivative is V̇ (x)=xTP ẋ+ẋTPx, substituting (6) gives

V̇ =xT





r∑

i,j=1

hihj

(
P (Ai+BiFj)+

(
FT
j BT

i +AT
i

)
P
)



x,

it will be negative ∀x if the following holds
r∑

i,j=1

hihj

(
P (Ai +BiFj) +

(
FT
j BT

i +AT
i

)
P
)
< 0,

since hi ≥ 0 and hj ≥ 0 in Ω they can be just removed

P (Ai +BiFj) +
(
FT
j BT

i +AT
i

)
P < 0,

applying congruence with X = P−1, yields to

−AiX −BiFjX −XFT
j BT

i −XAT
i > 0,

applying substitution with Mj=FjX , then, V̇ is negative
definite if

∑r

i,j=1
hihjQij > 0, with Qij =−AiX−BiMj−

MT
j BT

i −XAT
i .

2.3 Stability conditions for nonlinear observer design

The nonlinear observer for the system (3) is defined as

x̂=

r∑

i,j=1

hihj (Aix̂+Biu+Lj (y − ŷ)) , ŷ=

r∑

i=1

hiCix̂, (7)

the observation error is e=x−x̂ and its time derivative is

ė = ẋ− ˙̂x =

r∑

i,j=1

hihj (Ai − LjCi) e. (8)

Consider a quadratic candidate Lyapunov function for the
error V = eTPe, is positive definite if P > 0, its time
derivative is V̇ = eTP ė+ ėTPe and substituting (8) gives

V̇ = eT





r∑

i,j=1

hihj

(
PAi − PLjCi − CT

i L
T
j P +AT

i P
)



 e,

it is negative ∀e if the following holds
r∑

i,j=1

hihj

(
−PAi + PLjCi + CT

i L
T
j P −AT

i P
)
> 0,

since hi ≥ 0 and hj ≥ 0 in Ω they can be just removed

−PAi + PLjCi + CT
i L

T
j P −AT

i P > 0,

substituting Nj = PLj, then V̇ is negative definite if
∑r

i,j=1
hihjQij>0, with Qij=−PAi+NjCi+C

T
i N

T
j −A

T
i P .
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2.4 The problem of Positivstellensatz

Both cases controller and observer design have been trans-
formed into a problem of Positivstellensatz, which is ba-
sically proving that a constrained polynomial is positive
Chesi (2010). Notice that Qhh is a quadratic function of
h and increasing the number of membership functions in-
volved will increase the degree of this polynomial function
as in results based on Polya’s theorem such as Fang et al.
(2006); Sala and Ariño (2009); Kruszewski et al. (2009).
The stability conditions obtained for both cases are of the
form

Qhh > 0, (9)

with Qhh =
∑r

i,j=1
hihjQij , where Qij are matrices with

constant terms and some of them are decision variables
(terms to be found). A trivial solution for (9) would be
Qij > 0 ∀i, j, but this is a conservative solution, it does
not take into account the interaction between subsystems
nor the positiveness in the h functions. There are many
shape-independent relaxations available to satisfy the pos-
itiveness of (9) such as :

• Lemma 1. (Tanaka et al. (1998)). A sufficient condi-
tion for the expression (9) to be positive is

Qii > 0,
Qij +Qji ≥ 0, ∀j < i,

(10)

holds for i, j ∈ {1, 2, · · · , r}.
• Lemma 2. (Tuan et al. (2001)). The equation (9) is
positive for hi ≥ 0 if





1

r − 1
Qii

1

2
(Qij +Qji)

1

2
(Qij +Qji)

1

r − 1
Qjj




 > 0, ∀j < i. (11)

holds for i, j ∈ {1, 2, · · · , r}.
• Lemma 3. (Kim and Lee (2000)). The expression (9)
holds if we guarantee that

Qii − Zii ≥ 0,
Qij +Qji − 2Zij ≥ 0, ∀j < i,







Z11 Z21 · · · Zr1

Z21 Z22 · · · Zr2

...
...

. . .
...

Zr1 Zr2 · · · Zrr






> 0.

(12)

• Lemma 4. (Xiaodong and Qingling (2003)). The in-
equality in (9) holds if there are matrices such that

Qii − Zii ≥ 0,
Qij +Qji − Zij − ZT

ij ≥ 0, ∀j < i,







Z11 ZT
21 · · · ZT

r1

Z21 Z22 · · · ZT
r2

...
...

. . .
...

Zr1 Zr2 · · · Zrr







> 0.

(13)

All the previous lemmas consider the h functions as
positive scalars subject to an algebraic and inequality
constraint (i.e., h≥ 0 and

∑
h=1); is easy to check that

the condition h≤ 1 is also guaranteed, since you can only
satisfy

∑
h=1 with positive scalars smaller or equal to 1.

Verifying that a matrix Q is not copositive is a well known
NP-complete problem Murty and Kabadi (1987), it can
not be verified by checking its eigenvalues, all the positive
definite matrices are copositive, but the converse is false.

Lemma 5. (Parrilo (2000)). A sufficient condition for a
matrix Q to be copositive is that it can be written as the
sum of a positive semidefinite matrix Pd and a nonnegative
matrix Λ with entries λij :

Q = Pd + Λ (14)

with Pd≥0 and λij≥0; there are copositive matrices that
can not be expressed in this form Quist et al. (1998).

3. MAIN RESULTS

In this section positiveness of the membership functions
is considered into the Lyapunov analysis for nonlinear
control and observer design, the new theorems obtained
are based on the concept of copositive matrix.

Theorem 1. The origin of the system (3) is asymptotically
stable under a control of the form (5) if there are proper
size matrices X = XT > 0, Mj , λij = λT

ij ≥ 0, for all j<i
such that :








Q11 − λ11 QT
21

− λT
21

· · · QT
r1 − λT

r1

Q21 − λ21 Q22 − λ22 · · · QT
r2 − λT

r2
...

...
. . .

...
Qr1 − λr1 Qr2 − λr2 · · · Qrr − λrr







> 0. (15)

is strictly positive definite for Qii = −AiX −BiMi −
XAT

i −M
T
i BT

i , Qij=
1

2

(
−AiX−BiMj−XAT

i −MT
j BT

i

)
+

1

2

(
−AjX−BjMi−XAT

j −MT
i BT

j

)
with j < i and i, j ∈

{1, 2, · · · , r}. The gains for the controller are Fj=MjX
−1.

Proof. The closed-loop system (6) can be written as

ẋ(t) =
r∑

i=1

h2

iGiix(t) + 2
∑

i<j≤r

hihj

(
Gij +Gji

2

)

x(t),

with Gij =Ai+BiFj and consider a quadratic candidate
Lyapunov function V = xTPx, with P > 0, its time-
derivative is V̇ = xTP ẋ+ ẋTPx = −xTQhhx, where Qhh

is equal to

Qhh =

r∑

i,j=1

hihj

(
∆T

ijP + P∆ij

)
, (16)

this can be rewritten as

h̄T








P∆11 +∆T
11
P P∆21 +∆T

21
P · · · P∆r1 +∆T

r1P

P∆21 +∆T
21P P∆22 +∆T

22P · · · P∆r2 +∆T
r2P

...
...

. . .
...

P∆r1 +∆T
r1P P∆r2 +∆T

r2P · · · P∆rr +∆T
rrP







h̄,

(17)

with h̄ = [h1I h2I · · · hrI]
T

and ∆ij = 1

2
(Gij +Gji).

Now, consider a copositive matrix Γij ∈ R
rn×rn, which

means that the quadratic form

Γhh =







h1I
h2I
...

hrI







T







γ11 γT
21 · · · γT

r1

γ21 γ22 · · · γT
r2

...
...

. . .
...

γr1 γT
r2 · · · γrr








︸ ︷︷ ︸

Γij







h1I
h2I
...

hrI






,

is positive for hi, hj≥0, with γij∈ R
n×n for all 1≤j<i≤r,

a sufficient condition for Γij to be copositive is that it
is composed by blocks of positive semidefinite matrices,
therefore, γij ≥ 0. According to Lemma 5, if Γij is a
copositive matrix, then, (17) is also copositive if (18) holds.
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






P∆11+∆T
11
P−γ11 P∆21+∆T

21
P−γ21 · · · P∆r1+∆T

r1P−γr1
P∆21 +∆T

21
P −γ21 P∆22 +∆T

22
P −γ22 · · · P∆r2 +∆T

r2P −γT
r2

...
...

. . .
...

P∆r1 +∆T
r1P −γr1 P∆r2 +∆T

r2P −γr2 · · · P∆rr +∆T
rrP −γrr







> 0. (18)

Then, pre- and post- multiplying it by a proper size
diagonal matrix of X , with X=P−1 yields to






∆11X+X∆T
11
−Xγ11X ∆21X+X∆T

21
−Xγ21X · · · ∆r1X+X∆T

r1−Xγr1X

∆21X +X∆T
21 −Xγ21X ∆22X +X∆T

22 −Xγ22X · · · ∆r2X +X∆T
r2 −XγT

r2X
...

...
. . .

...
∆r1X +X∆T

r1 −Xγr1X ∆r2X +X∆T
r2 −Xγr2X · · · ∆rrX +X∆T

rr −XγrrX







> 0, (19)

substituting Mj = FjX and λij = XγijX , with λij ≥ 0,
yields to conditions in Theorem 1, which is equivalent to
find Pd > 0 for Pd = Q − Λ in Lemma 5, this concludes
the proof.

Theorem 2. The origin of the system (3) is asymptotically
stable under a control of the form (5) if there are proper
size matrices X = XT > 0, Mj , λii = λT

ii ≥ 0,
1

2

(
λij − λT

ij

)
> 0 for all j<i, such that :








Q11 − λ11 QT
21

− λT
21

· · · QT
r1 − λT

r1

Q21 − λ21 Q22 − λ22 · · · QT
r2 − λT

r2
...

...
. . .

...
Qr1 − λr1 Qr2 − λr2 · · · Qrr − λrr







> 0. (20)

is strictly positive definite for Qii = −AiX −BiMi −
XAT

i −M
T
i BT

i , Qij=
1

2

(
−AiX−BiMj−XAT

i −MT
j BT

i

)
+

1

2

(
−AjX−BjMi−XAT

j −MT
i BT

j

)
with j < i and i, j ∈

{1, 2, · · · , r}. The gains for the controller are Fj=MjX
−1.

Proof. It follows directly from previous developments,
consider that the elements λij with j < i are full matrices
and they hold the positive condition 1

2

(
λij + λT

ij

)
> 0.

Theorem 3. The origin of the error system (8) with the
observer (7) is asymptotically stable if there are proper
size matrices P = PT > 0, Nj , γij ≥ 0, for all j < i such
that








Q11 − γ11 QT
21

− γT
21

· · · QT
r1 − γT

r1

Q21 − γ21 Q22 − γ22 · · · QT
r2 − γT

r2

...
...

. . .
...

Qr1 − γr1 Qr2 − γr2 · · · Qrr − γrr







> 0. (21)

is elementwise strictly positive definite with Qij=−PAi+
NjCi+CT

i N
T
j −AT

i P and i, j ∈ {1, 2, · · · , r}, where the

gains for the observer are computed as Lj = P−1Nj.

Proof. It follows directly from previous developments.

Theorem 4. The origin of the error system (8) with the
observer (7) is asymptotically stable if there are proper
size matrices P = PT > 0, Nj,

1

2

(
γij − γT

ij

)
≥ 0, for all

j<i, such that







Q11 − γ11 QT
21 − γT

21 · · · QT
r1 − γT

r1

Q21 − γ21 Q22 − γ22 · · · QT
r2 − γT

r2
...

...
. . .

...
Qr1 − γr1 Qr2 − γr2 · · · Qrr − γrr







> 0. (22)

is elementwise strictly positive definite with Qij=−PAi+
NjCi+CT

i N
T
j −AT

i P and i, j ∈ {1, 2, · · · , r}, where the

gains for the observer are computed as Lj = P−1Nj.

Proof. It follows directly from previous developments, just
consider 1

2

(
γij + γT

ij

)
> 0.

The conditions for control design in Theorems 1 and 2
should be at least as good as Lemma 3 and 4, respectively,
there is an equivalence given by Lemma 5.

The concept of copositive matrices can be applied to previ-
ous results where the Positivstellensatz problem appears,
not only to controller and observer design for continuous
systems as it was the case for this report. It is neither con-
strained to be applied only for systems with double-sums,
it can be adapted for analyzing higher-order polynomials
as shown in Parrilo (2000).

It is important to remark that only the property of
positiveness in the membership functions was taken into
account h ≥ 0 in the previous developments, therefore,
an appropriate method for including the information of
the algebraic constraint

∑
h = 1 in the stability analysis

should reduce the existing gap. To illustrate this fact
consider the easier case, which is a nonlinear system with
two membership functions h1 and h2, the inequalities
in Theorem 1 and 2 are sufficient to satisfy stability
conditions in the black-region that represents hi ≥ 0 in
Fig. 1, the region corresponding to the algebraic constraint
h1+h2=1 is indicated with a blue-line and we must satisfy
stability conditions only for the intersection of both, which
is indicated with a red-line.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fig. 1. Illustration of the algebraic condition.
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Fig. 2. Comparison between Theorem 1 and Lemma 3.
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Fig. 3. Comparison between Theorem 2 and Lemma 4.

4. NUMERICAL EXAMPLE

Example 1. Consider the matrices for a nonlinear system
given in Fang et al. (2006); Kruszewski et al. (2009) written

in a convex representation (3) are A1 =

[
1.59 −7.29
0.01 0

]

,

B1=

[
1
0

]

, A2=

[
0.02 −4.64
0.35 0.21

]

, B2=

[
8
0

]

, A3=

[
−a −4.33
0 0.05

]

and B3 =

[
−b+6
−1

]

, the parameters (a, b) vary within the

range a ∈ [−10, 40] and b∈ [−10, 17] and a control law of
the form (5) is designed. The feasible points for Theorem 1
and Lemma 3 are indicated with are indicated with × and
�, respectively in Fig. 2. The feasible points for Theorem 2
and Lemma 4 are indicated with are indicated with × and
�, respectively in Fig. 3. These points were obtained via
the LMI solvers available in the Robust Control Toolbox
in MATLAB R2019b, see Gahinet et al. (1994).

The solution for the point (a, b) = (38, 15) found using
Theorem 2, the matrices found are

F1 = [−1.7053 5.1795] ,

F2 = [−0.8528 −11.9668] ,

F3 = [−1.8248 49.1549] ,

the matrix associated to the Lyapunov function is

0 0.5 1 1.5 2 2.5 3
-10

-5

0

5

10

15

20

(a) States of the system.

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

(b) Time evolution of the Lyapunov function.

Fig. 4. Time evolution of the system in closed-loop.

P =

[
0.0568 0.2863
0.2863 6.8039

]

,

the solution obtained was simulated with initial conditions
x(0)T =[−10 20] and the membership functions are

h1 =
cos(10x1) + 1

4
, h2 =

sin(10x1) + 1

4
,

h3 = −
sin(10x1) + cos(10x1)

4
+

1

2
,

these functions has been taken from Montagner et al.
(2009) and the time evolution of the system with the
Lyapunov function obtained is shown in Fig. 4a and Fig.
4b, respectively.

5. CONCLUSION

New conditions for controller and observer design have
been established exploiting the concept of copositive ma-
trix and sufficient tests for guaranteeing it. The conditions
obtained in Theorem 1 and 2 seems to be as good as
Lemmas 3 and 4, respectively, but, no formal proof for
it was given for establishing an equivalence.

Future’s work might include the second property of the
convex sum (

∑
h = 1) via Finsler’s Lemma see Lendek

et al. (2018) to improve the obtained conditions or maybe
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using a different method. Existing results can be applied
to get better results, such as considering partitions of the
simplex space Kruszewski et al. (2009), stacking convex
sums which yields to an increasing in the degree of the
polynomial in the Positivstellensatz problem Fang et al.
(2006); Sala and Arino (2007) which yields to asymptot-
ically necessary and sufficient conditions, consider shape
dependence of the membership functions Bernal et al.
(2009); Lendek and Lauber (2016) or allow the candidate
Lyapunov function to go beyond quadratic forms maybe
using a nonquadratic approach Guerra et al. (2012).
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