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Abstract: We present the first solution to the problem of estimation of the state of multimachine
power systems with lossy transmission lines. We consider the classical three-dimensional “flux-
decay” model of the power system and assume that the active and reactive power as well
as the rotor angle and excitation voltage at each generator is available for measurement—a
scenario that is feasible with current technology. The design of the observer relies on two recent
developments proposed by the authors: a parameter estimation based approach to the problem
of state estimation and the use of the dynamic regressor extension and mixing technique to
estimate these parameters. Thanks to the combination of these techniques it is possible to
overcome the problem of lack of persistent excitation that stymies the application of standard
observer designs. Simulation results illustrate the performance of the proposed observer.
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1. INTRODUCTION

Power systems are experiencing major changes and chal-
lenges, such as an increasing amount of power-electronics-
interfaced equipment, growing transit power flows and
fluctuating (renewable) generation, see (Winter et al.,
2015). Therefore power systems are operated under more
and more stressed conditions and, thus, closer to their
stability limits as ever before, see (Winter et al., 2015).
Their dynamics become faster, more uncertain and also
more volatile. Fast and accurate monitoring of the system
states is crucial in order to ensure a stable and reliable
system operation, see (Zhao et al., 2019). This, however,
implies that the conventional monitoring approaches based
on steady-state assumptions are no longer appropriate and
instead novel dynamic state estimation (DSE) tools have
to be developed.

By recognizing this need, DSE has become a very active
research area in the past years, see (Zhao et al., 2019; Singh
and Pal, 2018). As of today, the prevalent algorithms in the
literature for DSE are Kalman Filter techniques, including
Extended Kalman Filters, see (Ghahremani and Kamwa,
2011; Paul et al., 2018) and Unscented Kalman Filters,

? This work was supported by the Ministry of Science and Higher
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see (Valverde and Terzija, 2011; Wang et al., 2011; Anag-
nostou and Pal, 2017). The main reasoning behind using
these techniques is that they are in principle applicable to
nonlinear systems, see (Julier and Uhlmann, 1997; Wan
and Van Der Merwe, 2000), such as power system models.
However, a major drawback of the aforementioned results
is that the estimator convergence is only shown empiri-
cally, e.g., via simulations, but no rigorous convergence
guarantees are provided.

Recently, power system state observers have been proposed
in (Rinaldi et al., 2017, 2018, 2019) based on sliding mode
techniques and their convergence has been established
under certain assumptions. Yet, all these results neglect
the voltage dynamics and assume purely inductive trans-
mission lines. In (Anagnostou et al., 2018) an observer-
based anomaly scheme has been derived using a detailed
linearized power system model in combination with a lin-
ear time-varying observer.

In this paper we consider a large-scale power system
consisting of n synchronous generators represented by
the standard three-dimensional ”flux-decay” model, see
(Kundur, 1994; Sauer et al., 2017), and interconnected
through a transmission network, which we assume to
be lossy. That is, we explicitely take into account the
presence of transfer conductances. It is well known that
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the dynamics of power systems with lossy transmission
lines is considerably more complicated than the lossless
one—see (Anderson and Fouad, 2003; Ortega et al., 2005)
for a discussion on this issue.

The main contribution of the present work is the proof
that using the measurements of active and reactive power
as well as rotor angle and excitation voltage at each
generator—a reasonable assumption given the latest tech-
nology, see (Yang et al., 2007)—it is possible to recover
the full state of a multimachine power system, even in the
presence of lossy lines. An important observation that is
made in the paper is that, under the assumed measure-
ment scenario, the problem of estimation of the generator
voltages can be recast as estimation of the state of a linear
time-varying (LTV) system, to which classical state esti-
mation techniques, e.g., Kalman-Bucy filters (Anderson,
1971), can be applied. Unfortunately the associated LTV
system is not uniformly completely observable (UCO), a
necessary condition to ensure convergence of the estimated
states, see (Rueda-Escobedo et al., 2019).

To overcome this problem we invoke two recent results
reported by the authors.

(1) Following the parameter estimation based observer
(PEBO) design proposed in (Ortega et al., 2015), we
reformulate the problem of state observation into one
of parameter estimation.

(2) The unknown parameters are reconstructed using the
dynamic regressor extension and mixing (DREM)
procedure (Aranovskiy et al., 2017).

See (Ortega et al., 2019; Pyrkin et al., 2019) for two recent
applications of these combined techniques. Two outstand-
ing features of DREM estimators that are exploited in
the paper are that, on one hand, no appeal is made to
persistent excitation (PE) arguments to prove its conver-
gence 1 . Instead, a condition of non-square integrability
of a scalar signal is imposed in DREM, see (Aranovskiy
et al., 2017) for further details. On the other hand, as
shown in (Gerasimov et al., 2018), a simple modification
to DREM allows to achieve the very important feature of
finite-time convergence (FTC) under the weakest sufficient
excitation assumption (Kreisselmeier and Rietze-Augst,
1990). The convergence conditions mentioned above are,
of course, necessary since as is well-known some excitation
assumptions are needed to ensure the success of state
observers (Besançon, 2007; Bernard, 2019) and parameter
estimators (Ljung, 1987; Sastry and Bodson, 1989).

2. SYSTEM MODEL AND STATE OBSERVER
PROBLEM FORMULATION

As standard in centralized DSE, see (Zhao et al., 2019), we
consider a Kron-reduced power system consisting of n > 1
interconnected machines and with the dynamics of the i–
th generator described by the classical third order model 2

(Anderson and Fouad, 2003; Kundur, 1994; Sauer et al.,
2017)

1 We recall that PE of the classical linear regression model is
equivalent to non UCO of the associated LTV system (Sastry and
Bodson, 1989).
2 To simplify the notation, whenever clear from the context, the
qualifier “i ∈ n̄” will be omitted in the sequel.

δ̇i = ωi,

Miω̇i = −Dmiωi + ω0(Pmi − Pei),

τiĖi = −Ei − (xdi − x′di)Idi + Efi + νi, i ∈ n̄ := {1, ..., n},
(1)

where the state variables are the rotor angle δi ∈ R, rad,
the speed deviation ωi ∈ R in rad/sec and the generator
quadrature internal voltage Ei ∈ R+, Idi is the d axis
current, Pei is the electromagnetic power, the voltages Efi

and νi are the constant voltage component applied to the
field winding, and the control voltage input. Furthermore,
Dmi, Mi, Pmi, τi, ω0, xdi and x′di are positive parameters.

The active Pei and reactive Qei power are defined as

Pei = EiIqi; Qei = EiIdi, (2)

where Iqi is the q axis current.

These currents establish the connections between the ma-
chines and are given by

Iqi = GmiiEi +

n∑
j=1,j 6=i

EjYij sin(δij + αij)

Idi = −BmiiEi −
n∑

j=1,j 6=i

EjYij cos(δij + αij),

(3)

where we defined δij := δi − δj and the constants Yij =
Yji and αij = αji are the admittance magnitude and
admittance angle of the power line connecting nodes
i and j, respectively. Furthermore, Gmii is the shunt
conductance and Bmii the shunt susceptance at node i.
Finally, combining (1), (2) and (3) results in the well-
known compact form (Langarica et al., 2015)

δ̇i = ωi

ω̇i = −Diωi + Pi − di
[
GmiiE

2
i − Ei

n∑
j=1,j 6=i

EjYij sin(δij + αij)

]
Ėi = −aiEi + bi

n∑
j=1,j 6=i

EjYij cos(δij + αij) + ui,

(4)

where we have defined the signals

ui :=
1

τi
(Efi + νi)

and the positive constants

Di :=
Dmi

Mi
, Pi := diPmi, di :=

ω0

Mi

ai :=
1

τi
[1− (xdi − x′di)Bmii], bi :=

1

τi
(xdi − x′di).

To formulate the observer problem we consider that all
parameters are known, and make the following assumption
on the available measurements.

Assumption 1. The signals δi, ui, Pei and Qei of all
generating units are measurable.

As usual in observer problems (Besançon, 2007; Bernard,
2019) we assume that ui is bounded and such that all state
trajectories are bounded.

Problem Formulation: Consider the multimachine
power system (4), verifying Assumption 1. Design an
observer 3

3 For a set of scalar quantities xi we define the vector x :=
col(x1, x2, . . . , xn).
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χ̇ = F (χ, δ, Pe, Qe);

[
Ê
ω̂

]
:= H(χ, δ, Pe, Qe, Ê, ω̂),

such that

lim
t→∞

[
Ẽ(t)
ω̃(t)

]
= 0, (5)

where we define the estimation errors (̃·) := (̂·)− (·).
Although the centralized measurement of the rotor angles
δi is unlikely in applications, the observer problem without
this assumption is a daunting task. Even if this transfer
of information is possible, another practical consideration
that is neglected in the problem formulation is the diffi-
culty of synchronizing these measurements (Sauer et al.,
2017).

3. MAIN RESULT

Before presenting the proposed observer we first give in
this section an LTV systems perspective of the voltage
dynamics and show its fundamental lack of observability.
To overcome the latter, we then adopt a PEBO perspective
for the state observation problem and apply the DREM
procedure to estimate the unknown parameters.

3.1 An LTV description of the voltage dynamics

To simplify the notation we find convenient to introduce
the following notation

∆ij(t) := δi(t)− δj(t) + αij

A(t) :=


−a1 b1Y12 cos ∆12(t) . . . b1Y1n cos ∆1n(t)

b2Y21 cos ∆21(t) −a2 . . . b2Y2n cos ∆2n(t)
...

...
...

...
bnYn1 cos ∆n1(t) bnYn2 cos ∆n2(t) . . . −an

 .
(6)

Given this notation we observe that we can write the
voltage equations of (4) as an LTV system

Ė = A(t)E + u. (7)

We underscore that, under the standing assumptions, A(t)
is measurable and obviously, bounded.

The following simple lemma is instrumental for our further
developments.

Lemma 2. There exists a measurable matrix C(t) :=
C(Pe(t), Qe(t), δ(t)) ∈ Rn×n such that

C(t)E = 0 (8)

Proof. From (2) we have that

PeId −QeIq = 0.

Clearly, the equations (3)—which are linearly dependent
on E—may be written in the compact form

Iq = S(δ)E, Id = T (δ)E, (9)

for some suitably defined n × n matrices S(δ) and D(δ).
The proof is completed replacing (9) in the identity above
and defining

C(Pe, Qe, δ) :=

Pe1T
>
1 (δ)−Qe1S

>
1 (δ)

...
PenT

>
n (δ)−QenS

>
n (δ)

 , (10)

where T>i (δ), S>i (δ) are the rows of the matrices D(δ) and
S(δ), respectively. 222

Now, we recall that the state trajectories of the system
ẋ = A(t)x with initial condition x(t0) ∈ Rn satisfy
(Demidovich, 1967; Rugh, 1996)

x(t) = Φ(t, t0)x(t0), ∀t ≥ t0. (11)

3.2 A PEBO approach to the estimation of the voltage

The lemma below illustrates how, applying the PEBO ap-
proach proposed in (Ortega et al., 2015), we can generate
a linear regression equation (LRE) where estimation of the
unknown parameters leads to estimation of the unknown
state E.

Lemma 3. Consider the dynamic equations of the voltage
(6)-(8) and the dynamic extension

ξ̇E = A(t)ξE + u; Φ̇ = A(t)Φ, Φ(0) = In. (12)

There exists a constant vector θ ∈ Rn, and measurable
signals y ∈ Rn and ψ ∈ Rn×n such that

E = ξE − Φθ (13)

y = ψθ. (14)

Proof. Define the signal e := ξE − E. From (7) and (12)
we see that e satisfies

ė = A(t)e.

From the equation above and the properties of the state
transition matrix Φ of A(t) given in (11), we conclude that
there exists a constant vector 4 θ ∈ Rn such that e = Φθ
and, consequently, (13) holds.

To establish (14) we multiply (13) by C(t) and, recalling
(8), obtain the equation

C(t)ξE = C(t)Φθ.

The proof is completed defining

y := C(t)ξE ; ψ := C(t)Φ. (15)

222

3.3 Generation via DREM of n scalar LRE for the
unknown parameters θi

In view of Lemma 3 the only remaining step to construct
the observer for E is to, proceeding from the linear regres-
sion (14), propose an estimator for θ. Standard gradient
or least squares estimators will not ensure (exponential)
convergence (Sastry and Bodson, 1989). To bypass this
difficulty we invoke the DREM parameter estimation pro-
cedure proposed in (Aranovskiy et al., 2017).

Although the construction of DREM allows for the use
of general, LTV, L∞-stable operators, for the sake of
simplicity we consider here the use of simple LTI filters.
Towards this end, we propose a stable transfer matrix
F (s) ∈ Rn×n(s), and define the signals

Y := F (p)y ∈ Rn; Ψ := F (p)ψ ∈ Rn×n

Y := adj{Ψ}Y ∈ Rn; ∆ := det{Ψ} ∈ R, (16)

where p := d
dt and adj{·} is the adjugate operator.

Lemma 4. Consider the LRE (14) and the signals (16).
Then, the following scalar LREs hold

Yi = ∆θi. (17)

4 Clearly, we have that θ := e(0).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5104



Proof. Applying the filter F (p) to the LRE (14) we obtain

Y = Ψθ + η,

where η is an exponentially decaying term that, following
the standard procedure, is neglected in the sequel. The
proof is completed by multiplying the equation above by
adj{Ψ} and recalling that for any, possibly singular, n× n
matrix B we have adj{B}B = det{B}In. 222

3.4 Proposed state observers

We are now in position to present our main result: two
globally convergent observers for the state of the multima-
chine power system (4). The first one ensures asymptotic
convergence while the latter guarantees FTC. In both
cases, the required excitation conditions are rather weak.

Proposition 5. Consider the multimachine power system
(4), verifying Assumption 1. Fix an n × n stable transfer
matrix F (s) and 2n positive numbers γi and kωi. The
voltage state observer defined by (6), (10), (12), (15), (16),
together with

˙̂
θi = −γi∆(∆θ̂i − Yi); Ê = ξE − Φθ̂, (18)

and the speed observer given by

ξ̇ωi
= −Diω̂i + Pi − diPei − kωiω̂i

ω̂i = ξωi
+ kωiδi, (19)

ensure (5), with all signals bounded, provided ∆ /∈ L2.

Proof. Replacing (14) in the parameter estimator equa-
tion yields

˙̃
θi = −γi∆2θ̃i. (20)

Given the standing assumption on ∆ we have that θ̃(t)→
0. Hence, invoking (13) and (18), this implies that Ẽ(t)→
0.

To prove the convergence of the speed estimator notice
that, using (2) and (3), the rotor speed dynamics (4) may
be written as

ω̇i = −Diωi + Pi − diPei.

Then, compute from (4) and (19) the error dynamics

˙̃ωi = −(Di + kωi)ω̃i.

This completes the proof of the proposition. 222

As shown in (Gerasimov et al., 2018), a simple modifica-
tion to DREM allows to achieve FTC for the voltage ob-
server, under the weakest sufficient excitation assumption
(Kreisselmeier and Rietze-Augst, 1990), which is articu-
lated in the assumption below. For ease of presentation,
and without loss of generality, we assume that all the
adaptation gains γi in the parameter estimator (18) are
equal to γ > 0. The proof is omitted for space reasons.

Assumption 6. Fix a small constant µ ∈ (0, 1). There
exists a time tc > 0 such that∫ tc

0

∆2(τ)dτ ≥ − 1

γ
ln(1− µ). (21)

Proposition 7. Consider the multimachine power system
(4), verifying Assumption 1. Fix an n × n stable transfer
matrix F (s), a positive numbers γ and µ ∈ (0, 1). The

voltage state observer defined by (6), (10), (12), (15), (16),
together with

˙̂
θi = −γ∆(∆θ̂i − Yi); ẇ = −γ∆2w, w(0) = 1

Ê = ξE − Φ
1

1− wc
[θ̂ − wcθ̂(0)], (22)

where wc is defined via the clipping function

wc =

{
w if w < 1− µ
1− µ if w ≥ 1− µ,

ensures
Ẽ(t) = 0, ∀t ≥ tc

with all signals bounded, provided ∆(t) verifies Assump-
tion 6.

The following remarks are in order.

(R1) The stability properties established in Propositions 5
and 7 are “trajectory-dependent”, in the sense that
they pertain only to the trajectory generated for the
given initial conditions. This means that the flow
of the observer dynamics may contain unbounded
trajectories, and the appearance of a perturbation
may drive our “good” trajectory towards a “bad” one.
This is, of course, a robustness problem that needs to
be further investigated.

(R2) It is interesting to note that the “excitation” con-
dition imposed by Assumption 6 can be weakened
increasing the adaptation gain γ. However, as is well-
known, the use of fast adaptation entails a series of
undesirable phenomena. On the other hand, if the
assumption of ∆ /∈ L2 is strengthened to ∆ being
PE, then the convergence is exponential.

4. SIMULATION RESULTS

For simulation we consider a two-machine system, see for
instance (Ortega et al., 2005). The dynamics of the system
result in the sixth-order model

δ̇1 = ω1,

ω̇1 = −D1ω1 + P1 −G11E
2
1 − Y12E1E2 sin(δ12 + α12)

Ė1 = −a1E1 + b1E2 cos(δ12 + α12) + Ef1 + ν1;

δ̇2 = ω2,

ω̇2 = −D2ω2 + P2 −G22E
2
2 + Y21E1E2 sin(δ12 + α12)

Ė2 = −a2E2 + b2E1 cos(δ21 + α21) + Ef2 + ν2,

(23)

with the current equations defined as

Iq1 = G11E1 + E2Y12 sin(δ12 + α12) (24)

Id1 = −B11E1 − E2Y12 cos(δ12 + α12) (25)

Iq2 = G22E2 + E1Y21 sin(δ21 + α21) (26)

Id2 = −B22E2 − E1Y21 cos(δ21 + α21). (27)

In this case we have that

A(t) =

[
−a1 b1 cos(δ12(t) + α12)

b2 cos(δ21(t) + α21) −a2

]
S(δ) =

[
G11 Y12 sin(δ12 + α12)

Y21 sin(δ21 + α21) G22

]
T (δ) =

[
−B11 −Y12 cos(δ12 + α12)

−Y21 cos(δ21 + α21) −B22

]
.

For the observer design we selected the simplest filter

F (p) =

 1 0
k

p+ k
0

 ,
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Fig. 1. Transients of the first voltage observation error
E1 − Ê1 for DREM and FTC observers with a 30%
load change a t = 10 sec

with k > 0. The parameters of the model (23) are given in
Table 1.

Table 1. System parameters

Parameter Initial values After load change

Y12 0.1032 0.1032

Y21 0.1032 0.1032

b1 0.0223 0.02236

b2 0.0265 0.0265

D1 1 1

D2 0.2 0.2

ν1 1 1

ν2 1 1

B11 -0.4373 -0.5685

B22 -0.4294 -0.5582

G11 0.0966 0.1256

G22 0.0926 0.1204

a1 0.2614 0.2898

a2 0.2532 0.2864

P1 28.22 28.22

P2 28.22 28.22

Ef1 0.2405 0.2405

Ef2 0.2405 0.2405

Simulations were carried out for the observers proposed
in Proposition 5 (DREM) and Proposition 7 (FTC). We
consider a scenario of a 30% load change, that happens at
t = 10 sec. It is clear from the proof of Proposition 5 that
this load change does not affect the speed observation.
We used the following initial conditions for the system
E(0) = col(7, 6), and zero for all remaining states. All
initial conditions for the observers were also set equal to
zero. For the DREM observer two different adaptation
gains γi were tried. For the FTC observer we set µ = 0.1 of
Assumption 6. For the speed observer we selected different
values of the coefficient kωi. For the sake of comparison
we also present the behavior of the signals ξEi that—
since the matrix A(t) corresponds to an asymptotically
stable system—provides also an estimate of the voltage E.
The results of the simulations are shown in Fig. 1-Fig. 4.
As expected by the theory, the speed of convergence of
the DREM estimator for the voltage increases for large
values of γi, with a similar behavior of the speed error with
respect to kωi. Also, it is seen that the FTC estimator has
the fastest convergence, and this happens in finite-time. It
is interesting to remark that the behavior of the observers
is highly insensitive to the load change, as it is hardly
visible in Ẽ1 and Ẽ2.

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

6

7

Fig. 2. Transients of the second voltage observation error
E2 − Ê2 for DREM and FTC observers with a 30%
load change at t = 10 sec
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Fig. 3. Transients of the first speed observation error ω1−
ω̂1

0 0.5 1 1.5 2 2.5 3
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-0.6

-0.4

-0.2

0

Fig. 4. Transients of the second speed observation error
ω2 − ω̂2

5. CONCLUDING REMARKS

We have given in this paper a solution to the problem
of state observation of multimachine power systems with
lossy lines assuming measurable the rotor angles, the exci-
tation voltage and the active and reactive power of all
generators. To the best of the authors’ knowledge this
is the first time a solution like this is presented. It is
shown that, under a suitable observability assumption,
global convergence of the voltage estimator is achieved.
By imposing the classical PE condition, the convergence
is exponential ensuring good robustness properties. The
speed observation is ensured without imposing any exci-
tation condition, and it is exponential with tunable and,
possibly, arbitrarily fast rate of convergence.
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