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Abstract: The transfer function of a linear system is defined in terms of the quadruplet of
matrices (A,B,C,D) that can be identified from input and output measurements. Similarly
these matrices determine the state space evolution for the considered dynamical system.
Estimation of the quadruplet has been well studied in the literature from both theoretical and
practical points of view. Nonetheless, the uncertainty quantification of their estimation errors has
been mainly discussed from a theoretical viewpoint. For several output-only and input/output
subspace methods, the variance of the (A,C) matrices can be effectively obtained with recently
developed first-order perturbation-based schemes. This paper addresses the estimation of the
(B,D) matrices, and the remaining problem of the effective variance computation of their
estimates and the resulting transfer function. The proposed schemes are validated on a
simulation of a mechanical system.
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1. INTRODUCTION

Subspace-based methods are effective for the identification
of linear systems (Benveniste and Fuchs, 1985; Larimore,
1990; Verhaegen and Dewilde, 1992; van Overschee and
de Moor, 1994), where they have found applications in
many areas of automatic control and mechanical engi-
neering, amongst others. In the underlying state-space
model, the quadruplet of matrices (A,B,C,D) defines the
evolution of a dynamic system, represented in practice by
input/output data. Estimation of the quadruplet is subject
of many publications, e.g. (van Overschee and de Moor,
1996; Qin et al., 2005). Some of the work focuses par-
ticularly on the identification of (B,D) and subsequently
the transfer function (dos Santos and de Carvalho, 2003;
Gandino et al., 2013), which is a topic of the current paper.

Subspace methods have favorable statistical properties e.g.
are consistent when the noise driving the system is station-
ary (Deistler et al., 1995; Bauer et al., 1999; Bauer and
Jansson, 2000; Knudsen, 2001) or non-stationary (Ben-
veniste and Mevel, 2007). Furthermore, asymptotic nor-
mality has been shown and the theoretical expressions
for their asymptotic variances were derived e.g. in (Ver-
haegen, 1993; Viberg et al., 1997; Jansson, 2000; Chiuso
and Picci, 2004). Use of those expressions for the actual
variance estimation is often problematic in practice, re-
quiring in addition e.g. the estimation of the unknown
states and their variances, which are not required to es-
timate (A,B,C,D). A different approach was proposed
by Pintelon et al. (2007); Reynders et al. (2008), where
the variance of parameters estimated through subspace
identification is computed easily from the sample variances
of the underlying data sequences and related sensitivities,

based on the Delta method (Casella and L. Berger, 2001).
Explicit expressions for the (A,C) matrices have been
proposed in (Döhler and Mevel, 2013; Döhler et al., 2014;
Mellinger et al., 2016). However, explicit expressions relat-
ing the covariance of (B,D) estimates to the covariance of
computed data matrices are missing.

The plan of this work is twofold. First, we derive a scheme
for the estimation of (B,D) in Section 3, which is a simpler
alternative to the combined approach from (van Overschee
and de Moor, 1996), and a modification of the scheme
from (Gandino et al., 2013). The novelty of the proposed
method lies in exploiting the theoretical properties of the
input/output data matrices to cancel the output noise
from the input/output data matrix relation. Second, we
extend the current state of the art on the uncertainty
quantification to provide an explicit covariance expression
for the estimates of (B,D) and the corresponding transfer
function in Section 4. Both schemes are validated on a
numerical example of a mechanical system in Section 5.

2. SYSTEM MODELING

The dynamic behavior of a linear time-invariant system
can be represented by a discrete-time state space model of
order n

xk+1 = Axk +Buk + wk , (1)

yk = Cxk +Duk + vk , (2)

where xk ∈ Rn are the states, uk ∈ Ru are the known
inputs, A ∈ Rn×n, B ∈ Rn×u, C ∈ Rr×n and D ∈ Rr×u
are the state transition, input, output and feedthrough
matrices, and wk and vk are the process and output noises,
respectively. In this paper we shall assume the persistence
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of the excitation of the input process (Bitmead, 1984), and
that there is no feedback from yk to uk.

Definition 1. (Data matrix). Let ak ∈ Rb be a discrete
signal at time step k. The parameter p defines the ‘past’
and ‘future’ data horizons. For 0 ≤ i ≤ j ≤ 2p−1 the data
matrix Ai|j writes

Ai|j =
1√
N


ai ai+1 . . . ai+N−1

ai+1 ai+2 . . . ai+N
...

...
...

...
aj aj+1 . . . aj+N−1

 ∈ R(j−i+1)b×N . (3)

From the input and output data, define the data matrices
Y− ∈ Rpr×N , Y+ ∈ Rpr×N , U− ∈ Rqu×N , U+ ∈ Rqu×N

Y− = Y0|p−1, Y+ = Yp|2p−1, (4)

U− = U0|p−1, U+ = Up|2p−1, W− =
[
U−T Y−T

]T
,

and define the data covariance matrices as all the cross-
product of those data matrices

R1 = Y+U+T , R2 = U+U+T , (5)

R3 = Y+W−T , R4 =W−U+T , R5 =W−W−T .

Furthermore, denote respectively the future and past
block-row matrices for the system states as

X− = X0|0, X+ = Xp|p,
and future and past output noise matrices as

V− = V0|p−1, V+ = Vp|2p−1.

Data matrices Y− and Y+ are expressed by recursion of
(1) and (2), as in (van Overschee and de Moor, 1996)

Y− = ΓX− +HU− + V− , (6)

Y+ = ΓX+ +HU+ + V+ , (7)

where Γ ∈ Rpr×n is the extended observability matrix and

H =


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0
. . . . . . . . . . . . . . .

CAp−2B CAp−3B CAp−4B . . . D

 ∈ Rpr×pu

is used to factor D and B in the next section.

3. SYSTEM IDENTIFICATION

In subspace identification, the system matrices are ob-
tained from a matrix H that is usually a projection of the
data matrices in (4) depending on the chosen identification
algorithm, see e.g. (van Overschee and de Moor, 1996).
E.g., for N4SID (van Overschee and de Moor, 1994) it is
defined as the oblique projection of Y+ along U+ on W−,

H = Y+/U+W− ∈ Rpr×N .

Then, Γ can be estimated from H by a Singular Value
Decomposition truncated at model order n,

H = [Us Uker]

[
Ds 0
0 Dker

]
V T , Γ = UsD

1/2
s , (8)

and a least-squares solution for A and C is obtained from
the shift invariance property of Γ.

3.1 Estimation of B and D

To obtain (B,D) from the input/output data relation in
(7) we use the fact that E[V+(U+)T ] = 0. The resulting

estimate can be obtained for any choice of H and is
consistent. Multiplying (7) by UTker (see (8)) from the left

and U+T from the right, and taking the expectation, yields

UTkerY+U+T = UTkerHU+U+T , (9)

UTkerR1(R2)−1 = UTkerH . (10)

Denote M = UTkerR1(R2)−1 ∈ R(pr−n)×pu and partition

M = [M1 . . .Mp] , Mk ∈ R(pr−n)×u, k = 1 . . . p . (11)

Similarly partition UTker = [L1 . . .Lp], Lk ∈ R(pr−n)×r.
Matrices (B,D) follow from the factorization

M1

M2

...
Mp


︸ ︷︷ ︸

=Mv

=


L1 L2 . . . Lp−1 Lp
L2 L3 . . . Lp 0
L3 L4 . . . 0 0
. . . . . . . . . . . . . . .
Lp 0 . . . 0 0


︸ ︷︷ ︸

=L

[
Ir 0
0

¯
Γ

]
︸ ︷︷ ︸

=Os

[
D
B

]
(12)

analogously to (van Overschee and de Moor, 1996) as[
D
B

]
= (Ls)

†Mv, (13)

where Ls = LOs, Mv ∈ Rp(pr−n)×u, L ∈ Rp(pr−n)×pr,
Os ∈ Rpr×(r+n),

¯
Γ ∈ R(p−1)r×n is the matrix Γ without

the last block row and Ir is the r × r identity matrix.
Compared to the combined approach from (van Overschee
and de Moor, 1996), the proposed approach does not
involve approximating the Kalman state sequences, nor
minimizing the prediction error, resulting in a simpler
algorithm. The algorithm in (Gandino et al., 2013) uses
E[V+(Y−)T ] = 0 to cancel the noise term in (7). For the
case when U+ is a white noise process, then E[U+(Y−)T ] =
0 and the estimation of (B,D) becomes impossible in this
case. Moreover, when u > r the product U+(Y−)T is
not full row rank and (13) becomes invalid. The proposed
approach is free of those shortcomings.

3.2 Computation of G(s)

The transfer function is defined for any complex s as

G(s) = C(sIn −A)−1B +D ∈ Cr×u. (14)

Denote the real and imaginary part of a complex variable
as (·)R and (·)I, then[

GR(s)
GI(s)

]
=

[
CZRB +D
CZIB

]
, (15)

where Z = (sIn−A)−1. Since G(s) is complex-valued, it is
usually interpreted by its magnitude mG(s) = |G(s)| and

phase pG(s) = tan−1
(
GI(s)/GR(s)

)
in many engineering

applications.

4. COVARIANCE COMPUTATION

Covariance estimates are obtained based on the first-order
Delta method, which allows to characterize the probability
distribution of a function of an asymptotically Gaussian

variable. Let θ̂ be a real-valued vector, which is an estimate

of the (unknown) vector θ∗. Let θ̂ be computed on N

data samples, and assume that θ̂ satisfies a Central Limit
Theorem (CLT), i.e.

√
N(θ̂ − θ∗)

L−→ N (0,Σθ∗), (16)
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where Σθ∗ is the asymptotic covariance of θ̂. Now consider
a vector-valued function g(θ) ∈ R, such that g(θ) is

differentiable in θ∗ with a non-zero derivative J gθ∗ = ∂g
∂θ 6=

0. Then, a first-order Taylor expansion yields

g(θ̂) = g(θ∗) + J gθ∗(θ̂ − θ∗) + o(||θ̂ − θ∗||),
and based on (16), the Delta method states that an

associated CLT holds for g(θ̂) as (Casella and L. Berger,
2001)

√
N
(
g(θ̂)− g(θ∗)

)
L−→ N (0,J gθ∗Σθ∗(J

g
θ∗

)T ),

Consistent estimates of J gθ∗ and Σθ∗ are required for
the estimation of the asymptotic covariance. A consistent

estimate of J gθ∗ can be obtained as J g
θ̂

, i.e. by using θ̂ in its

computation, and a consistent estimate of Σθ∗ is based on
the applied estimation method, e.g. using an underlying
sample variance estimate.

Often an estimate of J gθ∗ cannot be computed directly,
hence it is obtained with the first order perturbation

∆g ≈ J g
θ̂

∆θ ,

where ∆g = g(θ̂)−g(θ∗) and ∆θ = θ̂−θ∗. In consequence,

the asymptotic covariance of g(θ̂) is consistently approxi-
mated by

Σg(θ∗) ≈ J
g

θ̂
Σθ∗(J

g

θ̂
)
T
.

4.1 Covariance related to H

The estimation of B and D depends, amongst others, on
Uker from (8), and thus their covariance is related to the
one of H. For subspace algorithms as in (van Overschee
and de Moor, 1996), in which the number of columns of
H equals the number of samples N , there is no finite limit
as N → ∞, and a sample covariance estimate would be
undefined. Therefore, the matrix H is replaced by the
“square” matrix Hs = HHT , whose properties are equal
for the identification of Γ and thus Uker. Then, matrix
Hs ∈ Rpr×pr can be easily linked to data covariance
matrices such as in (5), whose sample covariance is easy
to evaluate (Mellinger et al., 2016).

Let R1,R2, . . . ,RJ be the data covariance matrices that
the chosen subspace algorithm depends on, and define

vec(R) =

vec(R1)
...

vec(RJ)

 , (17)

and ΣR = cov(vec(R)) that can be easily obtained as a
sample covariance. Then, first-order perturbations yield

vec(∆Hs) = JH
s

R vec(∆R) ,

where JHs

R is dependent on the identification algorithm;
e.g. for N4SID it holds Hs = f(R1,R2,R3,R4,R5), and

vec(∆Hs) = JH
s

R


vec(∆R1)
vec(∆R2)
vec(∆R3)
vec(∆R4)
vec(∆R5)

 ,

where JHs

R is defined in (Mellinger et al., 2016).

Note that while (A,C) can be obtained only from Hs and
thus a relation for their respective covariances follows,

this is not the case for (B,D). Hence, the approach of
(Mellinger et al., 2016) cannot be simply extended to the
covariance computation of (B,D).

4.2 Covariance computation of B and D

Estimates of (B,D) from (13) are a function of data covari-
ance matrices R1 and R2, and of Uker that depends on the
chosen subspace method, thus on the set R of covariance
matrices in (17). The propagation of the covariances of R
to those of the estimates of (B,D) can be made based on
Proposition 2.

Proposition 2. The sensitivity of (D,B) w.r.t. R yields

vec

(
∆

[
D
B

])
=
(
JM

v,1

R + J (Ls)†

R

)
vec(∆R)

+ JM
v,2

R1,2

[
vec(∆R1)
vec(∆R2)

]
(18)

where (JMv,1

R ,JMv,2

R1,2
) and J (Ls)†

R are the respective sen-

sitivities of Mv and (Ls)
† towards the data covariance

matrices.

Proof: Perturbation in B and D is developed as

vec

(
∆

[
D
B

])
= vec

(
∆
(
L†sMv

))
=
(
Iu ⊗ L†s

)
vec (∆Mv)

+
(
MvT ⊗ Ir+n

)
vec
(
∆(L†s)

)
.

The first order perturbation ofMv is linked toM in (11)
by vec(∆Mv) = S1vec(∆M) with the permutation matrix

S1 =

Ip ⊗ e
T
1 ⊗ Ipr−n

...
Ip ⊗ eTu ⊗ Ipr−n


where ej ∈ Ru is a unit vector that is 1 at entry j. The
first order perturbation of M in (11) yields

vec(∆M) = vec
(
∆(UTkerR1R−1

2 )
)

=
(
(R1R−1

2 )T ⊗ Ipr−n
)

vec
(
∆UTker

)
+
(
(R−1

2 )T ⊗ UTker

)
vec(∆R1)

+
(
(R−1

2 )T ⊗ (−UTkerR1R−1
2 )
)

vec(∆R2),

where ∆(R−1
2 ) = −R−1

2 ∆(R2)R−1
2 . vec(∆UTker) was devel-

oped in (Viefhues et al., 2018) and writes

vec(∆UTker) = J U
T
ker

Hs vec(∆Hs) ,

where J U
T
ker

Hs = −(UsD
−1
s V Ts ⊗ UTker). Thus

vec (∆Mv) = JM
v,1

R vec(∆R) + JM
v,2

R1,2

[
vec(∆R1)
vec(∆R2)

]
,

where

JM
v,1

R = S1

(
(R1R−1

2 )T ⊗ Ipr−n
)
J U

T
ker

Hs JH
s

R

JM
v,2

R1,2
= S1

[
(R−1

2 )T ⊗ UTker (R−1
2 )T ⊗−UTkerR1R−1

2

]
.

Next, the first order perturbation of L†s writes as

vec
(
∆(L†s)

)
= J L

†
s

Ls
vec(∆Ls) ,

where J L
†
s

Ls
is expressed after (Golub and Pereyra, 1973)
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J L
†
s

Ls
=
(
L†s

T ⊗−L†s
)

+
(

(Ip(pr−n) − LsL†s)⊗ (L†s
T
L†s)

T
)
Pp(pr−n),r+n ,

(19)

and Pa,b is a permutation matrix such that for X ∈ Ra,b
it holds vec(XT ) = Pa,bvec(X), after (Döhler and Mevel,
2013). Next, the perturbation of Ls yields

vec(∆Ls) =
(
OTs ⊗ Ipr

)
vec(∆L) + (Ir+n ⊗ L) vec(∆Os) .

The expression for L in (12) can be written as

L =


L1 L2 . . . Lp−1 Lp
L2 L3 . . . Lp 0
L3 L4 . . . 0 0
. . . . . . . . . . . . . . .
Lp 0 . . . 0 0

 =


UTkerS3,p

UTkerS3,p−1

...
UTkerS3,1

 ,

where S3,k =

[
0(p−k)r,kr 0(p−k)r,(p−k)r

Ikr 0kr,(p−k)r

]
. Thus, LT =[

ST3,pUker S
T
3,p−1Uker . . . S

T
3,1Uker

]
and the first order per-

turbation of L yields

vec(∆L) = Ppr,p(pr−n)vec(∆LT )

= Ppr,p(pr−n)


Ipr−n ⊗ ST3,p
Ipr−n ⊗ ST3,p−1

...
Ipr−n ⊗ ST3,1


︸ ︷︷ ︸

=S4

vec(∆Uker) .

Next, vec(∆Os) = S5vec(∆Γ), where S5 =

[
0pr2,(p−1)rn

(In ⊗ S6)

]
and S6 =

[
0r,(p−1)r

I(p−1)r

] [
I(p−1)r 0(p−1)r,r

]
.

Therefore vec
(
∆(Ls)

†) writes

vec
(
∆(Ls)

†) = J (Ls)†

R vec(∆R) = J L
†
s

Ls
J Ls

HsJH
s

R vec(∆R) ,

where J Ls

Hs =
(
J Ls

L S4J
UT

ker

Hs + J Ls

Os
S5J Γ

Hs

)
, J Ls

L = (OTs ⊗
Ipr) and J Ls

Os
= (Ir+n ⊗ L), which finishes the proof.

Finally, since R1 and R2 are the first two components of
R (see (17)), the covariance of B and D follows as

ΣD,B = JD,BR ΣR(JD,BR )T

where JD,BR = JMv,1

R + J (Ls)†

R +
[
JMv,2

R1,2
0
]

and 0 is a

matrix of zeros of appropriate dimension.

4.3 Covariance computation of G(s)

Similar to the section above, the scheme to compute the
covariance related to G(s) is general for any input-output
identification algorithm.

Corollary 3. A perturbation in GR(s) and GI(s) yields[
vec(∆GR(s))
vec(∆GI(s))

]
=

[
JGR

A JGR

B JGR

C Iru
JGI

A JGI

B JGI

C 0ru,ru

]vec(∆A)
vec(∆B)
vec(∆C)
vec(∆D)


where JGR

A = ((ZB)T ⊗ CZ)R, JGR

B = Iu ⊗ (CZR
k ),

JGR

C = (ZR
k B)T ⊗ Ir, and analogously JGI

A = ((ZB)T ⊗
CZ)I, JGI

B = Iu ⊗ (CZI) and JGI

C = (ZIB)T ⊗ Ir.

The derivation of the aforementioned sensitivity matrices
is straightforward and omitted for brevity.

In practice G(s) is expressed in terms of its magnitude and
phase (cf. Section 3.2) for each component i = 1, . . . , ru,
denoted by (vec(G(s)))i. The sensitivity of the respective
quantities yields[

∆mi
G(s)

∆piG(s)

]
=

[
JG
mi

G

JG
pi
G

] [
(vec(∆GR(s)))i
(vec(∆GI(s)))i

]
where the derivation of JG

mi
G

and JG
pi
G

is straightforward

and omitted.

5. NUMERICAL VALIDATION

For the numerical validation consider a 6 degrees of free-
dom (DOF) mechanical system governed by the second
order differential equation of motion, which can easily
be transformed to state-space model (1)–(2) (Reynders
et al., 2008). The system is modeled with spring stiffnesses
k1 = k3 = k5 = 100, k2 = k4 = k6 = 200, mass
m1−6 = [1 . . . 6] /20 and a proportional modal damping
matrix, and is excited by a random white noise signal in all
DOFs, sampled with a frequency of 50 Hz for 2000 seconds.
Three known inputs at DOFs 1, 4 and 6 are considered
and the responses at DOFs 1, 2 and 5 are measured.
Gaussian white noise with 5% of the standard deviation
of the output is added to the measured responses. The
computations are performed in a Monte Carlo setup with
m = 1000 realizations of the described signal.

5.1 Validation of B and D estimates and their covariances

Estimates of B are not unique since they are obtained in
an arbitrary basis, thus not directly comparable with the
exact B from the numerical model. Therefore, to validate
estimates of B from (13) and their corresponding variances
from (18), we consider estimates of the product CB and
its perturbation-based variances (vec∆(CB) = (BT ⊗
Ir)vec(∆C) + (Iu ⊗ C)vec(∆B)), which are independent
of the state space basis.

The estimates of D and CB from the Monte Carlo sim-
ulation yield histograms characterizing their underlying
distribution. The variance of this empirical distribution

Fig. 1. Comparison of Monte Carlo estimates of D1,1 to
exact model value and Delta method distribution fits.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

954



Fig. 2. Comparison of Monte Carlo estimates of (CB)1,1

to exact model value and Delta method distribution
fits.

Table 1. Comparison of the exact and mean
values of D components.

Case Component 1 2 3

Exact
1

20 0 0
Mean MC 19.9998 0.0001 -0.0003

Exact
2

0 0 0
Mean MC -0.0003 0.0001 0.0002

Exact
3

0 0 0
Mean MC 0.0004 -0.0001 0.0001

Table 2. Comparison of the exact and mean
values of CB components.

Case Component 1 2 3

Exact
1

-19.0020 0.0110 0.0016
Mean MC -19.0019 0.0109 0.0014

Exact
2

0.1841 1.2189 0.0056
Mean MC 0.1842 1.2190 0.0055

Exact
3

0.0025 0.3840 0.5317
Mean MC 0.0010 0.3837 0.5318

can be directly compared to variances estimated with
Delta method in this paper. Moreover, an average quality
of the estimated variances can be illustrated by a normal
distribution fit characterized by the mean of the Monte
Carlo estimates and the median of Delta method-based
variances, which is shown for the first component of D
and CB in Figures 1 and 2.

The exact and the mean Monte Carlo values of D and
CB are summarized in Tables 1 and 2. The standard
deviations obtained from the Monte Carlo simulation σMC

of D and CB, and the mean values of standard deviations
estimated with Delta method σDM are summarized in Ta-
bles 3 and 4. One can observe that the mean estimates of
D and CB from Monte Carlo simulation are close to their
respective values from the model. Moreover, the median
Delta method-based distribution accurately characterizes
the empirical distribution of D and CB, and the corre-
sponding mean estimates of the standard deviations are
close to the standard deviation of the Monte Carlo ex-
periments. Each Monte Carlo realization yields a different
variance estimate, however coefficients of variation of the

Table 3. Comparison of the standard devia-
tions of D components.

Case Component 1 2 3

σMC 1
0.0197 0.0103 0.0067

σDM 0.0199 0.0099 0.0066

σMC 2
0.0119 0.0059 0.0041

σDM 0.0118 0.0059 0.0039

σMC 3
0.0105 0.0055 0.0036

σDM 0.0107 0.0053 0.0036

Table 4. Comparison of the standard devia-
tions of CB components.

Case Component 1 2 3

σMC 1
0.0195 0.0095 0.0065

σDM 0.0188 0.0094 0.0063

σMC 2
0.0120 0.0061 0.0042

σDM 0.0127 0.0064 0.0042

σMC 3
0.0118 0.0061 0.0040

σDM 0.0120 0.0060 0.0040

estimated standard deviation are less than 5% for each of
the components of D and CB, which is a small value. This
validates the algorithms proposed in (13) and (18).

5.2 Validation of G(s) variances

Let G(sk) be the discrete transfer function evaluated at
sk = eiωkTs , where 0 ≤ ωk ≤ ωf and ωf is the Nyquist

Fig. 3. m1
G(sk) with zoomed Monte Carlo and Delta

method-based confidence intervals.

Fig. 4. p1
G(sk) with zoomed Monte Carlo and Delta method-

based confidence intervals.
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frequency. For each sk, the magnitude and phase of the
transfer function is plotted with both of its Monte Carlo
and Delta based standard deviations, where the latter is
zoomed 20 times for illustration purposes, in Figures 3 and
4. The mean of standard deviations computed with the
Delta method accurately matches the standard deviation
of the Monte Carlo experiment for both the magnitude and
the phase of the first component of G(sk). That validates
the proposed uncertainty quantification framework.

6. CONCLUSIONS

In this paper we have proposed a simple input/output ma-
trix relation for the estimation of (B,D) in the context of
input/output subspace-based system identification. Based
on this relation, an expression to estimate the covariance of
(B,D) has been developed, which can be easily evaluated
from measurement data. With these results, the covariance
of the transfer function estimate has also been derived. The
proposed expressions have been validated in Monte Carlo
simulations of a mechanical system.
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Mellinger, P., Döhler, M., and Mevel, L. (2016). Vari-
ance estimation of modal parameters from output-only
and input/output subspace-based system identification.
Journal of Sound and Vibration, 379(C), 1 – 27.

Pintelon, R., Guillaume, P., and Schoukens, J. (2007).
Uncertainty calculation in (operational) modal analysis.
Mechanical Systems and Signal Processing, 21(6), 2359
– 2373.

Qin, S.J., Lin, W., and Ljung, L. (2005). A novel subspace
identification approach with enforced causal models.
Automatica, 41(12), 2043 – 2053.

Reynders, E., Pintelon, R., and De Roeck, G. (2008).
Uncertainty bounds on modal parameters obtained from
stochastic subspace identification. Mechanical Systems
and Signal Processing, 22(4), 948 – 969.

van Overschee, P. and de Moor, B. (1994). N4SID:
Subspace algorithms for the identification of combined
deterministic-stochastic systems. Automatica, 30(1), 75
– 93.

van Overschee, P. and de Moor, B. (1996). Subspace
Identification for Linear Systems. Springer, 1st edition.

Verhaegen, M. (1993). Subspace model identification
part 3. analysis of the ordinary output-error state-space
model identification algorithm. International Journal of
Control, 58(3), 555–586.

Verhaegen, M. and Dewilde, P. (1992). Subspace model
identification part 1. The output-error state-space
model identification class of algorithms. International
Journal of Control, 56(5), 1187–1210.

Viberg, M., Wahlberg, B., and Ottersten, B. (1997). Anal-
ysis of state space system identification methods based
on instrumental variables and subspace fitting. Auto-
matica, 33(9), 1603 – 1616.
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